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Abstract—This research proposes a H


robust recurrent 

cerebellar model articulation control system (RRCMACS) for 

MIMO non-linear systems to achieve the robustness of the 

system during operation. In this system, the superior properties 

of the recurrent cerebellar model articulation controller 

(RCMAC) are incorporated to imitate an ideal sliding mode 

controller. The H


robust controller efficiently attenuates the 

effects of uncertainties, external disturbances, and noises to 

maintain the robustness of the system. The parameters of the 

controller were updated in the sense of the Lyapunov-like 

Lemma theory. Therefore, the stability and robustness of the 

system were guaranteed. The simulation results for the micro-

motion stage system are given to prove the effectiveness and 

applicability of the proposed control system for model-free non-

linear systems. 
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I. INTRODUCTION 

Most of the practical applications are non-linear systems. 
The reason for this comes from the effects of friction and 
damping coefficients, cross-coupling, hysteresis phenomenon, 
and time-varying parameters [1-4]. The completely dynamic 
model of the practical systems can’t be obtained. Therefore, 
the model-based controllers cannot achieve good performance 
for the non-linear MIMO systems [5-6]. 

To cope with the drawbacks of the model-based 
controllers, many modern controllers have been developed 
such as Fuzzy Logic Controller (FLC), Sliding Mode 
Controller (SMC), Neural Networks (NNs), and Cerebellar 
Model Articulation Controller (CMAC). In particular, the FLC 
was considered an effective control method for the 
uncertainties, free-model and non-linear systems. The 
essential property of the FLC is that the non-linear and 
uncertain parts are described as fuzzy sets and rules [7-9]. 
Consequently, the FLC overcomes the shortcomings of the 
model-based controllers in dealing with the non-linear, 
uncertainties systems. However, the performance of the FLC 
depends utterly on the selection of fuzzy sets and the number 
of rules. There are not specific methods that ensure the 
optimal selections of fuzzy sets and rules for the controllers so 
far. To achieve good performance for the practical 
applications, the fuzzy sets and rules were mostly selected by 
trial and error. 

To deal with the effects of uncertainties, disturbances, and 
noises in non-linear systems, the SMC was developed and 
applied [10-11]. The SMC guarantees response of the system 
becomes insensitive to disturbances and noise in the sliding 
phase. Consequently, the robustness of the system can be 
guaranteed. The disadvantages and limitations of the SMC are 
the chattering phenomena and the selection of the boundary of 
uncertainties or disturbances. These problems are serious 
difficulty and impossible tasks in realistic applications. 

Along with the SMC, the neural network (NN) was used to 
approximate non-linear functions to arbitrary precision. 
Therefore, it has been proposed for dealing with non-linear 
systems and obtained good results in realistic applications [12-
13]. The NNs, however, have shortcomings that attracted 
much attention from the researchers so far. In particular, all 
weights in the structure of the neural network are updated each 
learning cycle, this is unsuitable for the problems requiring 
real-time learning; the selection of the number of neurons and 
hidden layers to achieve good performances is very difficult to 
obtain in the practical applications. 

In recent decades, the Cerebellar Model Articulation 
Controller (CMAC) has been developed and adopted for the 
complex non-linear MIMO systems due to it has superior 
properties to NNs [14-17]. To improve learning capability and 
dynamic response of the CMAC, the wavelet function and 
recurrent technique were incorporated into the CMAC to 
improve the performance of the system [18]. 

Although the above researches achieved good results in 
designing the controllers to cope with the high non-linear 
MIMO systems, the robustness of the system in the presence 
of disturbances and sensor noise were not totally mentioned. 

In this research, a H
robust recurrent cerebellar model 

articulation control system (RRCMACS) is proposed for the 
non-linear MIMO system. Therein, the RCMAC is used to 
imitate the ideal sliding mode controller to minimize error 

surface and the H
robust controller is utilized to attenuate 

the effects of disturbances, uncertainties, and sensor noise 

acting on the system to achieve the H
robustness 

performance for the overall system. 

The paper is organized as follows: Section 2 presents non-
linear system and proposed control system. Section 3 

describes the structure of the RCMAC and the H
 robust 

controller. The simulation results are provided in Section 4. 
Section 5 presents conclusions and future works. 
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II. PROBLEM FORMULATION AND PROPOSED CONTROL 

SYSTEM 

In general, the dynamic equation of MIMO non-linear 
systems including disturbances, uncertainties, and noise is 
described below: 

n

0 0 = ( ) + ( ) + ( ( ) + ( )) ( )

) + ( ) ( )( 







0 0

x F x ΔF x G x ΔG x u +dn x

F x G x u UD x

y = x

          (1) 

where 
T 0

1 2 0

n
n[x x x, ,..., ] R y = x is the system output 

vector, T T (n-1)T T n
[x x x, ,..., ] R x is the system state vector, 

0

T 0
1 2 n

n
[u , u ,..., u ] R u is the control input vector, 

0 0
0

n n
( ) R


F x  in the nominal non-linear function, 

0 0
0

n n
( ) R


G x  is the nominal gain matrix, ( )ΔF x  and 

( )ΔG x  are the changes in parameters of the 0
0

n n
( ) R


F x , 

and 0 0
0

n n
( ) R


G x , respectively. 

T 0
1 2 0

n
( ) = [dn ,dn ,...,dn ] Rdn x stands for external 

disturbances and noise  ( )  ( ) + ( ) ( ) UD x F x G x u + dn x is 

lumped uncertainties, disturbances, and noise. The objective 
of the control system is designed so that the output signals x  

can only track desired trajectories o
d

n
Rx but also satisfy 

robust performance in the presence of the uncertainties, 
disturbances, and noise 

For the high-order system, the sliding error manifold is 
defined [18] to reduce the order of variables during designing 
and computation the control system, the sliding error manifold 
has the following form: 

n-1 +S e Ke               (2) 

Therein, d e x x  and
T

, , ... ,  
 

n-1
e e e e  are the tracking 

error and error vector of the system, respectively. Derivative 
both sides of s  and combination with the dynamic equation 

(1), yields. 


n n n

d

n
d 0 0

S

F (x) - G (x)u - UD(x)

e + Ke = x - x + K(e)

= x - + K(e)
           (3) 

In case of the nominal values 0 0n x n
0 ( ) RF x , 

1 0 0n xn
0 ( ) R G x , the lumped of external disturbances, 

uncertainties, and noise ( )UD x are exactly known, an ideal 

sliding mode (ISM) controller is designed to guarantee the 
stability of the system as follows [19]: 

1 n

ISM 0 0( ) - ( ) ( ) sgn


   
 dG x x F x UD x K(e) + η (S)u           (4) 

Proof: According to the sliding mode control [9-10], the 
Lyapunov function candidate is selected to prove the stability 
of the system as follows: 

21

2
V(t) = S               (5) 

Derivative two sides of Lyapunov function candidate, and 

replacing u in (5) by ISMu  in (4), yields 

sgn    V(t) SS Sη (S) η S             (6) 

The stability of the system is guaranteed in case of any
η > 0  

However, for the complex high non-linear systems, the 

external disturbances, uncertainties, and noise ( )UD x  cannot 

be defined, measured or estimated exactly in practical 

applications. Consequently, the ISMu cannot satisfy the 

stability and robust performance of the system. To handle 

these problems, a H
robust recurrent cerebellar model 

articulation control system (RRCMACS) is proposed and 
depicted in Fig. 1. In this system, superior properties of the 
recurrent cerebellar model articulation controller (RCMAC) 
are incorporated to imitate the ideal sliding mode controller 

and the H
robust controller efficiently attenuates the effects 

of external disturbances, noise, and uncertainties to a 
prescribed level to maintain the robustness of the system. The 
proposed control system has the following form: 

RRCMACS ISM RC RCMACu = u - u - u             (7) 
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Fig. 1. Structure of the Proposed Control System. 
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III. THE RRCMAC SYSTEM DESIGN 

A. The RCMAC 

The RCMACu with its fast learning, good generalization, 

and dynamic response capability of the CMACs [18] were 

utilized to mimic the ideal sliding mode controller, ISMu in the 

presence of the uncertainties, disturbance, noise to minimize 

the error sliding manifold, S . 

The structure of the RCMAC is depicted in Fig. 2 

including input Space S , association memory space A , 

receptive field space R , weight memory space W , and output 

spaces O . 

The signal propagation in the RCMAC is described as 
follows: 

ri i rik ikS (k) = S (k) + w μ (k -1), i = 1, 2,..., n            (8) 

 
2

ri ik
ik ri b2

ik

S - m
μ (S ) = exp - , k = 1,2,..., n

σ

 
 
  

          (9) 

n

ik ik ri b

i=1

μb = (S ), i = 1,2,...,n,k = 1,2,...,n         (10) 

0 b
T

j jk ik ri

j=1 k=1 i=1

nn n

0μO = w (S ) = w , j = 1,2,..., n  b         (11) 

Where n , on , and bn  are the number of inputs, outputs, 

and blocks in receptive space; rS , μ , b , and O are the input 

data including recurrent elements, Gaussian function, 
overlapped receptive space, and output data, respectively; m

and σ are mean and deviation of Gaussian function; rw and w

are recurrent and output weights. 
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Fig. 2. The Structure of the RCMAC. 

B. The Robust Controller Design 

The RCMAC aims to imitate ISMu in (4). In the case of 

ideal designing, meanwhile, the parameters of the system are 
exactly known, external disturbances and uncertainties are 
absent. An ideal approximation controller can be described as 
follows: 

RCMAC

0 0 0 0 0 0 0T 0( )  ru S ,m ,σ ,w ,w w b ε          (12) 

However, defining exactly the nominal parameters of the 
system is unobtainable in practical applications. Furthermore, 
the disturbances and noise always exist in the non-linear 
systems. Consequently, the estimated parameters are used 

instead of nominal parameters in designing the RRCMACSu  as 

follows: 

T
RRCMACS RC RC

ˆ ˆˆ ˆ ˆ ˆ ˆ( ) w ru S,m,σ,w ,w u b+u         (13) 

Therein, ˆ ˆ ˆ ˆ ˆrS,m,σ,w ,w is an estimation of the nominal 

parameters 0 0 0 0 0
rS ,m ,σ ,w ,w  and RCu is the robust 

controller which attenuates the effects of the uncertainties, 
disturbances, and noise to guarantee the robustness of the 
system. Comprising (4) and (3), the error dynamic is rewritten 
as follows: 

0 ISM( )( sgnS = G x u u)- η (S)           (14) 

By replacing (12) and (13) into (14), yields 
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Where ˆˆ 0 0
w = w w,b = b b is an error of estimation. 

According to the linearization technique, Taylor series 
expansion is used to transform the multi-dimension receptive-
field space into a partially linear form. A linear approximation 

of b in three variables m , σ and rw  has the following form: 
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where 
0 ˆ b b b ,

0 ˆ σ σ σ , r rˆ 0
w w w ,and hoT is 

higher-order terms of Taylor series expansion. 
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Substitution T T T
r hoC m E σ+F w +T and  

0 ˆb b + b into 

error dynamic equation (15), yields 
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where T T T T 0T
r ho( )   UD(x) w C m E σ+F w w T ε  

stands for the external disturbances, noises, and uncertainties  

In other to prove the stability and robustness of the system 
under the effects of disturbances, noises, and uncertainties, the 
Lyapunov function is chosen as follows: 

T
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By selection the adaptive rules as (22)-(25), the H

robustness performance of the system are satisfied. 
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Proof: Taking derivative two sides of the Lyapunov 
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By replacing the adaptive rules from (22)-(25) into (27), 
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Selecting control law for the robust controller as follows: 
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Because of the value of the Lyapunov function,

V(T) 0 , the inequality in (31) can be described as follows: 
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Basing on the equation of the Lyapunov function in (21), 
the inequality in (32) is equivalent to the following form: 

T

r

Tn
2
i

i=1 t=0

T -1 T
0

w

T

m σ

T2i=n
T 2i
r r i

w i=0 t=0

1
( S dt
2

1
S (0)G (x)S(0) + w (0)w(0)

η

1 1
+ m (0)m(0)+ σ (0)σ(0)

η η

β1
+ w (0)w (0) + UD (x) dt

η 2

 

 

        (33) 

If the system starts with initial conditions S = 0 , w = 0 ,

m(0) = 0 ,σ(0) = 0 , r (0) 0w then the H
robust 

performance can be obtained as follows [20-21]: 

 i 2

i=n
i

i
ii=1UD L 0,T

S
β

UD
sup


 
  

 
           (34) 

Where 

T
2 2

i i

t=0

S = S dt , 

T
2 2

i i

t=0

UD = UD dt and iβ is 

the prescribed attenuation level. 

IV. SIMULATION AND RESULTS 

To verify the effectiveness of the proposed control system, 
a micro-motion stage powered by the linear piezoelectric 
motor (LPM) was used to investigate the stability and 
robustness of the system. The dynamic equation of LPM 
including hysteresis and stiffness behavior is described as 
follows [10, 18]: 

H L+
= - + -

F FD K
x x u

M M M
          (35) 

where x stands for displacement of the x-axis, y-axis 
respectively; M is the effective mass of the moving stage; D  

is the friction coefficient; LF is external disturbance forces; 

K is the voltage-to-force coefficient; u is the control volt of 

the LPMs; HF  is the hysteresis frictional force given as 

below: 

H = αb +δ + γF x x            (36) 

Where α,b,δ, γ and x are parameters depending on the 

hysteresis loop and structure of the linear piezoelectric motor. 

In general, the LPM is a complex and high non-linear 
system. According to the dynamic equation of the non-linear 
MIMO system (1), the dynamic equation of the LPM can be 
rewritten as follows: 

o o

o o

+ (x)= - + UD
D K

x x u
M M

          (37) 

where oD , oM , and oK  are nominal values of  D , M  

and K , respectively. 

H0 L0

0

(x) = + f( , t)
+

- H LUD D,F ,F ,K
F F

M
denotes the 

uncertainties due to change in parameters, disturbances, and 
noises. This equation is used to build the simulation program 
for the proposed control system. 

The initial parameters are used in simulation as follows: 

oM = 5kg -6
oD = 66*10 [N.sec / m] EoK = 3[N / Volt] ,

rw m σ wη = η = η = η = 0.01 , b on = 2, n = 11, n = 2 , K = 0.5 ,

β = 0.1 and 1 . 

0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1

0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1

 
  
 

w ,  

1, 0.8, 0.6, 0.4, 0.2,0,0.2,0,4,0,6,0.8,1

1, 0.8, 0.6, 0.4, 0.2,0,0.2,0,4,0,6,0.8,1

     
  

     
m  

0.3,0.3,0,3,0.3,0.3,0,3,0.3,0.3,0,3,0.3,0.3

0.3,0.3,0,3,0.3,0.3,0,3,0.3,0.3,0,3,0.3,0.3

 
  
 

 ,  

r

0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1

0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1

 
  
 

w  

The effects of uncertainties, external disturbances, and 
noise, UD(x) was generated by a random signal with  

mean = 5 and variance = 5 . Sample time = 0.01s. 

The simulation results of the RRCMACS due to periodic 
step commands were represented in Fig. 3 for the X-axis and 
the Fig. 4 for the Y-axis. 

Fig. 5 and Fig. 6 represent the simulation results of the 
RARCMAC due to sinusoidal command in the X-axis and the 
Y-axis, respectively. 
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Fig. 3.  Tracking Response, Tracking error and Control Effort of RRCMACS Due to Periodic Step Command in the X-Axis in Case of 0.1β   and 1β  . 
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Fig. 4. Tracking Response, Tracking Error and Control Effort of RRCMACS Due to Periodic Step Command in the Y-Axis in Case of 0.1β   and 1β  . 
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Fig. 5. Tracking Response, Tracking Error and Control Effort of RRCMACS Due to Sinusoidal Command in the X-Axis in Case of 0.1β   and 1β  . 
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Fig. 6. Tracking Response, Tracking Error and Control Effort of RRCMACS Due to Sinusoidal Command in the Y-Axis in Case of 0.1β   and 1β  . 
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The simulation results showed that the RRCMACS 
achieved good tracking responses in the X-axis and the Y-
axis. The control system obtained the stability and robustness 

in the presence of uncertainties, ( )UD x at 1t = 235s to 

2t = 245s and 3t = 465s  to 4t = 475s  for both periodic step 

command and sinusoidal command. The performance of the 

control system was better as the attenuation level of the 
H

robust controller smaller. 

V. CONCLUSION AND FUTURE WORKS 

In this paper, the RRCMACS was proposed for the non-
linear MIMO system to achieve the stability and robustness in 
the presence of uncertainties, external disturbances, and noise, 

( )UD x . The proposed control system comprised the RCMAC 

and the H robust controller. Therein, the RCMAC was 
utilized to imitate the ideal sliding mode controller to 

minimize the error sliding manifold, and the H
robust 

controller aims to attenuate the effects of uncertainties, 
external disturbance, and noise to the prescribed attenuation 
level. The simulation results of the LPM powered micro-
motion stage proved the effectiveness of the proposed control 

system. In addition, the ( )UD x  stands for the inherent complex 

properties of the non-linear MIMO systems. Therefore, the 
proposed control system can handle other non-linear MIMO 
systems. However, this research needs to mention the 
responses of the hardware equipments to apply for the real-
time control system. 
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