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Abstract—Software development in DevOps practices has 

become popular with the collaborative intersection between 

development and operations teams. The notion of DevOps 

practices drives the software artefacts changes towards 

continuous integration and continuous delivery pipeline. 

Subsequently, traceability management is essential to handle 

frequent changes with rapid software evolution. This study 

explores the process and approaches to manage traceability 

ensuring the artefact consistency towards CICD in DevOps 

practice. We address the key notions in traceability management 

process including artefact change detection, change impact 

analysis, consistency management, change propagation and 

visualization. Consequently, we assess the applicability of existing 

change impact analysis models in DevOps practice. This study 

identifies the conceptualization of the traceability management 

process, explores the state-of-art solutions and suggests possible 

research directions. This study shows that the lack of support in 

heterogeneous artefact consistency management with well-

defined techniques. Most of the related models are limited with 

the industry-level applicability in DevOps practice. Accordingly, 

there is inadequate tool support to manage traceability between 

heterogeneous artefacts. This study identifies the challenges in 

managing software artefact consistency and suggests possible 

research directions that can be applied to manage the traceability 

in the process of software development in DevOps practice. 

Keywords—Consistency management; traceability; continuous 
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I. INTRODUCTION 

Software systems perform in a dynamic context, where 
changes arise due to different factors such as a change in 
business goals, performance improvements, fault corrections 
and change of technology.  DevOps (Development-Operations) 
practice is an emerging software development approach that 
encourages collaborative nature over traditional software 
development [1]. DevOps practice addresses the frequent 
artefact changes during the Software Development Life Cycle 
(SDLC) enabling a Continuous Integrations and Continuous 
Delivery (CICD) pipeline. Consequently, maintaining software 
evolution is essential, although it is challenging to manage the 
artefacts change consistency management [2]. For instance, a 
software artefact barely exists in isolation as it is associated 
with other artefacts in the process. Thus, a change in a 
requirement may have a considerable effect on the entire 
system. Hence, artefact consistency management plays a major 
role in achieving software traceability [3]. 

A software system consists of both homogeneous and 
heterogeneous artefacts in different formats, making 
consistency management a complex task. For example, the 

requirement artefact can be in a natural language, while the 
source code artefact in Java programming language. Therefore, 
a change occurred in one artefact does not directly reflect in 
other artefacts due to the type and format mismatches. The 
artefact traceability is significant in consistency management 
[4]. Generally, an artefact change appears as a request for a 
change without direct action of alteration. Thus, a semi-
automated or manual process of maintaining the artefact 
traceability may subject to errors. 

In traceability established system, it is essential to detect 
artefact changes and identify their impact. The Change Impact 
Analysis (CIA) process identifies the affected artefacts by 
following the trace paths using different techniques such as 
traceability graphs [5], Information Retrieval (IR) and Machine 
Learning (ML) [6][7]. In graph-based traceability, the artefact 
changes are mapped to the nodes and the change are 
propagated via the connected links. However, all the endpoints 
of the links may not be subjected to changes. Therefore, the 
impact of the propagated changes at the linked endpoints needs 
to be measured to identify the actual impacted set of a change. 
Thus, a CIA approach should be selected based on the artefact 
types that are used to measure the impact [8][9]. 

Additionally, the properties of the initial change may highly 
affect the impact calculation, since the linked endpoints are 
compared with the initial change. Several studies have used IR 
techniques to identify the properties of the initial change such 
as the scope and keywords [10][11]. Moreover, CIA techniques 
based on probabilistic methods such as association rules, Bayes 
theorem and Change History have used to measure the impact 
of a change [12][13][14]. However, it is challenging to address 
the change ripple effects after the initial impacted endpoint 
identification, as the changes can propagate continuously. 

The main components of the traceability management 
process include trace-link creation, change detection, CIA, 
consistency management, change propagation and 
collaboration. This survey paper addresses the traceability 
management process in DevOps practice. Section II states an 
overview of DevOps and the traceability management process. 
Section III discusses the artefact change detection methods, 
which is the first step in the CICD process. Section IV 
elaborates CIA with its terminology, approaches and related 
studies. Section V describes the existing change propagation 
and consistency management techniques. Related work on the 
continuous integration in DevOps practice is presented in 
Section VI. Section VII states the limitations and challenges of 
achieving traceability in DevOps practice and the possible 
future research directions. Section VIII concludes the paper. 
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II. BACKGROUND 

A. Concepts of DevOps 

DevOps practice broadens the view of software engineering 
paradigm by improving the collaboration across teams, sharing 
resources, tools and increasing the project performance. This is 
based on a maturity model that integrates the development and 
operations teams [15]. There are stages of a DevOps cycle with 
respect to SDLC phases that include continuous planning, 
integration, testing, delivery, deployment and monitoring 
[1][15][16]. As shown in Fig. 1, in DevOps practice the 
developers implement the project by enforcing the deployment 
process and the operations team monitors the progress and 
faults during the deployment, adhering to CICD process [1]. 
Mainly the development team is responsible to plan, code, 
build, test and the operations team is responsible for the project 
release, deploy, operate and monitor. 

The coordination of human resources in a DevOps 
environment is important to maintain the manageability of 
collaborative nature. DevOps engineer, that can be an 
individual or a team,  plays a major role by managing the tool 
support including automation, version control, configuration, 
maintenance [1]. Consequently, the level of automation in the 
CICD pipeline is controlled by the DevOps engineer. In this 
study, we have mainly explored the Continuous Integration 
(CI) aspects such as change detection, change impact analysis, 
change propagation and consistency management along with 
the identification of DevOps tool support and challenges. 

B. Traceability Management Process 

In a software product, it is essential to maintain artefact 
consistency whenever a change occurs. Software traceability is 
required to handle changes during the process of CICD, that 
integrates the work frequently between the development and 
operations teams leading to multiple integrations per day [2]. 
Software traceability follows the life cycle of an artefact both 
forward and backward and overcomes the inconsistencies 
during the software development [17]. Thus, each alteration 
occurs in an artefact is traced among other artefacts and change 
accordingly based on the impact. The relationship links among 
artefacts must be updated and maintained consistently. Fig. 2 
shows a traceability process model within a collaborative 
environment. The artefacts with changes in various levels are 
usually included in each CI task. Thus, the initially established 
traceability links in the project must be incorporated according 
to the changes included in each integration. This process 
consists of change detection, CIA, consistency management 
and change propagation. Visualization of the traceability links 
is used to understand the dependencies between the artefacts. It 
is challenging and costly to manage the consistency of a larger 
set of artefact relationships whenever a change occurs. Also, 
the effort of maintaining artefact relations is considerably high 
though the number of artefacts is minimal [18]. Thus, the 
accuracy of traceability establishment is important. 

 

Fig. 1. Software Development Process with DevOps practice. 

 

Fig. 2. Traceability Management Process Model. 

III. CHANGE DETECTION 

A. Types of Artefact Changes 

Change is inevitable in any software development process 

and should be handled properly to improve product quality 

while avoiding unnecessary cost [19]. Artefacts in each phase 

of the SDLC are subjected to change at different frequencies 

due to change of requirement, technology, managerial decision 

and fault tolerance. A change in a phase of the SDLC can 

evolve through the phases based on their dependencies. 

Mainly three types of changes can occur during software 
development. (1) edit changes, that alter the existing elements 
or sub-elements of the artefacts. For example, changing the 
name of an attribute in a design class diagram or renaming a 
source code method name is considered as an edit change; (2) 
delete changes, that removes one or more existing artefact 
elements or sub-elements from a traceability model such as 
removing attributes from a source code class or deleting a class 
in a design class diagram is considered as a deletion change; 
(3) add changes, that include new artefact elements or sub-
elements to the existing project. The change detection process 
identifies whether a change has occurred and detect the details 
of change such as change type and artefact type. 

B. Change Detection Techniques 

Among many techniques, edit history approach keeps track 
of the alterations or the edits as a history [20]. Here, each 
change is considered as an item for the history and records as 
another edit. This is already in use with most of the software 
and non-software related tools and methodologies such as text 
editors, mainly the „Undo”, “Redo‟ and „Restore‟ operators 
[20][21]. However, this technique is mostly used for the 
change detection of the source code artefact. 
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Tree differencing is another main change detection 
technique that represents elements as Abstract Syntax Tree 
(AST) and calculates the differences to extract detailed change 
information [22]. AST is a tree representation method of the 
syntactic structure in the source code, where every node 
denotes a construct occurrence in the code. This is a well-
defined method, for instance, the study done in [19], has 
transformed a tree to another in hierarchically structured data 
based on the idea of matching and minimum cost edit scripts. 
Here, the authors have separated the change detection problem 
as „good matching‟ and „minimum conforming edit script‟. 
However, it is required the data to be in a tree format. The 
approach of calculating differences between ASTs is widely 
used for source code artefacts [22][23]. 

The customized differencing algorithm is another technique 
for software artefact change detection. It is used in software 
maintenance aspects such as program-profile estimation (stale 
profile propagation). A software artefact type can be taken as 
the input for a differencing algorithm [22]. However, the 
implementation of a general algorithm for all types of software 
artefacts is identified to be impractical rather than having a set 
of differencing algorithms for each type of software artefacts. 

IV. CHANGE IMPACT ANALYSIS 

A. Terminology of Change Impact Analysis 

Each change in a single artefact may affect one or more 
other related artefacts in different degrees. The goal of the CIA 
is to detect the consequences of an artefact alteration to other 
artefacts in the software system [12]. Traceability is a key 
notion to identify the affected artefacts and decide whether 
evolution is sustainable [24]. Generally, the impact is analyzed 
before or after a change implementation. The prior analysis of 
the impact results in better program understandability, change 
impact prediction and cost estimations. Correspondingly, 
conducting impact analysis after implementation of a change 
can be beneficial in tracing ripple effects, selecting test cases 
and in performing change propagation [1]. Fig. 3 shows the 
iterative CIA process in software development [25]. 

Initially, the process analyses a change request to determine 
the set of changes in which the artefacts can be affected. It is 
referred to as feature location, with the aim of finding a place 
that requires the initial change. Then, the CIA is performed to 
estimate the effects in changes resulting in an Estimated Impact 
Set (EIS). Afterwards, the change is implemented and the 
elements in the Actual Impact Set (AIS) are altered. The AIS is 
not considered to be unique for a given change request as a 
change can be implemented in different ways. 

Fig. 4 shows the types of change impact sets. The Starting 
Impact Set (SIS) denotes the set of entities initially affected by 
the change. Then, a subset of it called Candidate or Estimated 
Impact Set (CIS or EIS) is a subset of SIS, includes the 
identified potential impact entities that are traced from SIS. 
The AIS is required to be identified from the EIS. Discovered 
Impact Set (DIS) are the artefacts that are impacted by the 
change but have not identified by CIS due to the challenging 
effect of artefact type mismatches, development mistakes and 
inconsistencies in artefact naming. These hidden dependencies 
of the artefacts can be identified manually or using a 

knowledge-based technique [26][27]. The False Positive 
Impact Set (FPIS) denotes the artefacts that are overestimated 
as belong to the CIS, but which are not actually impacted yet. 

B. Change Impact Analysis Techniques 

One category of change impact analysis approach is a 
traceability-based and dependence-based technique to identify 
the effect of a change [25]. Traceability-based CIA is narrowed 
in recovering the traceability links among software artefacts. 
Dependence-based CIA evaluates the impact of a proposed 
change. This technique is biased towards in analyzing program 
syntax relations and performing CIA of artefacts in the same 
level of abstraction such as in the level of software design or 
within the level of source code. The higher-level Unified 
Modeling Language (UML) models and use case maps are 
mainly involved in requirement and design level impact 
analysis. In addition, the source code-based CIA techniques are 
more capable to determine change impacts of the final software 
product with improved precision as they analyze the 
implementation details directly. Table I explores different CIA 
techniques with their advantages and limitations. 

Another categorization of CIA technique is static and 
dynamic impact analysis [9][28][29]. Static CIA techniques 
consider all the possible behaviours and inputs. It analyzes the 
syntax and semantic dependencies of source code and 
constructs intermediate representations using call graphs and 
program dependence graphs [9]. Then, the CIA is conducted 
based on the representations resulting in large impact sets that 
are difficult to use in practice. Thus, lower precision is a major 
drawback in static CIA techniques. Besides, dynamic CIA 
techniques overcome this drawback by considering only a part 
of the inputs. Hence, their impact sets are identified to be 
highly precise though lower in safety. Furthermore, dynamic 
CIA depends on the analysis of the data obtained during the 
execution such as trace information, relation and coverage 
information to assess the impact sets. 

 

Fig. 3. Change Impact Analysis Process [25]. 

 

Fig. 4. Change Impact Analysis Categorization.
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TABLE I. COMPARISON OF CHANGE IMPACT ANALYSIS TECHNIQUES 

Category Technique  Description  

Statistical 
analysis 

Data flow analysis, relational language, 
program slicing, static call graphs [30]  

Has identified that the string analysis is not precise for schema CIA. There is a precision versus 
computational cost trade-off in this analysis. 

Comparative analysis: Study on impact 
analysis algorithms, techniques using 
Precision, Recall and Harmonic mean 
[11][26][31][32][33][34]. 

Results certify that existing algorithms require enhancements and effective mechanisms to facilitate 
automated tools for the CIA. Have identified required characteristics in impact analysis. Discovered 
the possibility of transferring impact analysis tools in academia to industry to help developers during 
maintenance and evolution activities. 

Probabilistic-
based  

Change history and Bayes‟ theorem [26]  Maintenance of object-oriented critical systems is addressed. Limited for object-oriented software. 

Call graphs, Entity Dependency Graph 
[35][30][36][37][38][39][38] 

Explain the concept of two dependency states; namely, persistent relationship state and immediate 
relationship state in change propagation. Better program understanding and debugging. 

Formal Semantics [40] Logical 
dependencies and classification [39][41]  

Removal of false positive impacts and consistency checking. Adds valuable information. Restricted 
for particular change and relation types. 

Rule-based  [36][41][42] Allows developers to smoothly retrace the changes. 

Data mining, Apriori algorithm [6] Useful in change predictions. 

History-
based 

Historical co-change analysis, change 
history  [6][43][44] 

Use version histories to identify logical/ evolutionary couplings between entities. Predict impact files 
after a change. 

Machine learning  [7][10][26] 
Classification models to predict the validity of the candidate links. Use unsupervised learning to 
identify hidden dependencies. Less human involvement 

Logical coupling   [27] Use logical coupling with a Markov model. Better accuracy. 

Acharya and Robinson [28] have presented a static CIA 
framework that is developed as a tool named Imp, to analyse 
the impact of source code artefacts during the frequent builds. 

This mathematical model is used forward slicing consists of 
three criteria such as range, dependences and summary edges 
to assess the impact sets. Additionally, this work has used 
Andersen‟s algorithm with pointer analysis. This methodology 
consists of two variations one for high setting impact analysis 
which is expensive and another for low setting impact analysis 
which can be performed frequently and faster at a low cost. 

Another static impact analysis technique is addressed in 
[29], that have created clusters of associated source codes 
based on their co-modification history. Here, dimensionality 
reduction approaches have used to reduce complexity and 
perform the impact analysis efficiently. Initially, they have 
mined the changed repository to find co-occurring source files 
and developed a matrix containing a degree of closeness in 
each pair of files. Then, an intrinsic dimensionality method 
based on eigenvalues has conducted to estimate the lower 
dimensional representation of the matrix and Principle 
Component Analysis (PCA) was used to reduce the matrix. 
Finally, the matrix rows were taken as coordinates of the files; 
the distance between each pair of files was measured and 
passed to five clustering methods. However, quantitative 
measures have not used to evaluate the model impact. 

In dynamic CIA approach, the main techniques are path 
impact and coverage impact [30][35]. Path impact performs at 
the method level with the use of compressed execution traces 
to determine impact sets. It processes forward and backward 
traces to identify the impact of the changes. The forward traces 
determine all the methods called after the altered methods, 

while the backward traces find methods into which the 
execution can return. The coverage impact technique uses the 
coverage information to identify the executions that traverse at 
least one method in the change set and it marks the covered 
methods in each execution. Next, it assesses a static forward 
trace from each change from the marked methods. Thus, the 
methods in computed traces become the impact set. Moreover, 
it is analytically identified that the path impact technique is 
more precise compared to the coverage impact technique as it 
makes use of traces instead of the coverage [35]. However, the 
time and space overhead of the path impact technique is high. 
The required time in path impact tends to depend on the size of 
the analyzed trace, though the coverage impact needs a 
constant time in updating bit vectors at each of the method 
entries. Besides, the space complexity of coverage impact 
technique is linear over the size of the program, while it is also 
proportional to the size of the traces in the path impact 
technique. The use of dependency network measures such as 
centrality measures havw also used for the CIA. The work by 
Nguyen et al. [45] has shown the applicability of dependency 
network analysis measures in practical applications. 

Mainly the CIA techniques can be categorized into a graph, 
formal, historical and scope-based. The comparative and 
classification-based approaches are used in most related work 
while some have developed a specific tool. Among the used 
CIA techniques, call graphs and dependence graphs are widely 
used to handle the changes that enable the backtracking ability 
to debug easily. Most of the artefact types including design, 
code and test cases are influenced by these call graphs related 
techniques and IR based: Latent Semantic Indexing (LSI), 
Frequency-Inverse Document Frequency (TF-IDF) and Vector 
Space Model (VSM) techniques. In contrast, the work in [46] 
has shown the drawbacks of dependence graphs and proposed a 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 4, 2019 

104 | P a g e  

www.ijacsa.thesai.org 

modular-based approach for large-scale product lines. The 
formal semantics, First Order Logic (FOL) and review-based 
analysis have addressed the requirement artefact type solely. 
While most of these techniques are semi-automatic, the use of 
data mining and ML in impact analysis has become a newer 
trend that tries to completely avoid the human effort with full 
automation. However, in terms of the scope-based CIA related 
work, there is a lack of support for later phases of SDLC in 
particular testing and maintenance phases as the majority are 
restricted for requirements artefact or source code [17][47][48]. 
Thus, that limits the applicability of these CIA approaches and 
related works into a DevOps environment. 

C. Change Impact Analysis Models 

A change type classification method for code revision has 
presented in [21]. The authors have proposed a taxonomy for 
change types and defined code changes in the form of tree edit 
operations on the AST of a program. The changes are classified 
based on the significance level such as low, where local 
changes to have a minor significance, medium, high or crucial, 
where interface changes are critical. This work has extended 
with a tool called ChangeDistiller in [49]. This model assigns a 
label to every code entity in the AST that denotes the type of 
each entity and adds a textual named value, covering the actual 
code. Additionally, they have extracted change couplings from 
their release history database which have an identical total 
significance level. These changes have weighted based on the 
number of transactions they occurred in. Accordingly, the 
remaining change couplings were the most likely candidates 
for being affected by changes to coupled entities. This model is 
shown in Fig. 5, and implemented as the ChangeDistiller [49] 
plug-in for Eclipse. However it is limited for small projects. 

Another model for the CIA for Java programs has 
presented in [38]. Fig. 6 shows the architecture of a Java source 
code impact analysis tool called „Chianti‟, which is 
implemented as a plugin in Eclipse IDE. 

There are three main submodules in this tool. The initial 
one is to derive atomic changes from two Java source code 
versions which are done via pairwise AST comparisons. One 
other module is responsible for reading test call graphs to 
detect the original and edited codes. Also, it assesses impacted 
tests and impacting changes. The other module visualizes the 
change impact details to the user. Accordingly, this plugin 
model is mainly based on the call graphs and does not involve 
calculations for each impact in a quantitative value. 

 

Fig. 5. ChangeDistiller Model [49]. 

 

Fig. 6. Chianti Tool Architecture [38]. 

Wong and Cai [50], have proposed a model to extract the 
logical models from UML class diagram. This is based on a 
logical framework named Augmented Constraint Network 
(ACN). Fig. 7 depicts the structure of an ACN translated class. 
The classes are weighted based on their number of augmented 
constraint networks to determine impacted elements. A higher 
rank is assigned, if there are more sub augmented constraint 
networks. The distance between the two classes also affects the 
weight and closely related classes get a higher ranking. The 
weights are then multiplied with the co-change frequency of 
entities that are mined from version histories. Accordingly, ten 
of the highest ranked elements are output to the user. 

One of the earliest CIA models [8], has calculated the 
transitive closure to identify the impacted elements using 
conceptual models. The concept of intra-method and inter-
method data dependency graphs are used to calculate impacts 
on entities in method bodies and change dependencies between 
methods, respectively. Object-oriented dependency graphs are 
used to compute the change impact at the system level. 
Additionally, they have declared four types of impacts between 
every two related entities including contaminated (both are 
impacted), clean (both are not impacted), semi-contaminated 
(the source does not impact the target though the source can be 
impacted) and semi-clean (the source is not impacted, but it 
propagates changes to the target). These types are used to 
assign weights to relationships among entities, based on their 
impact relation type. Then the total change impact weight is 
assessed as the sum of all weights, which are assigned to the 
relations between two entities. Finally, the total change impact 
weight is assigned to all graphs to enable impact calculation. 

A CIA approach for architectural models using OCL4 to 
express explicit rules has proposed in [51]. They have searched 
the impacted elements and a distance measure is used to 
control the propagation of changes to the indirectly related 
software entities. It either cancels the change propagation or 
weights the impact paths based on their nesting depth. Also, 
they have presented a taxonomy of change types that provide 
three elemental change types such as add, remove and change. 
The impact analysis model presented in [52], has extracted 
changes from a repository and compiled into a matrix. The 
authors have computed association clusters using singular 
value decomposition. Every file in a cluster was assigned a 
weight based on its degree of participation in that cluster. High 
singular values have denoted that a file was subjected to be 
impacted by changes to other files of the same cluster. 
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Fig. 7. ACN Translation of a Class [50]. 

Hattori et al. [53], have proposed another approach to 
estimate the possible impact elements using a dependency 
graph that represents the source code and a reachability 
analysis over the graph. They have extracted the change sets 
and analysed the impacted entities using a probabilistic 
algorithm based on Bayes‟ theorem that removes the false-
positives. Apriori and Disjunctive association rule algorithms 
were used to weight and sort the impacts based on their 
likelihood. Another change impact analysis model is presented 
by Arnold and Bohner in the area of traceability [54]. They 
have considered the changes occurred in documentation and 
source codes to identify the SIS. Then, dependency graphs 
were used to obtain CIS based on direct impacts. Moreover, the 
reachability graph visualizations were used to identify the 
indirect impacts. They have applied this process incrementally 
to identify the CIS to minimize the false positive rate. A source 
code artefact CIA approach based on the change requests 
provided in natural language document such as bug reports is 
presented in [55]. They have IR technique to estimate the 
impact set; LSI to analyze textual change requests, dynamic 
analysis to evaluate the execution information and data mining 
to examine the evolutionary information. This work has shown 
that the accuracy improves regarding the metrics; precision, 
recall and f-measure by combining these multiple approaches. 

Although there are several CIA studies, the majority has 
been limited only up to design level or source code artefact in 
considering the artefact types while operational level artefacts 
like build scripts are not addressed. 

V. CONSISTENCY MANAGEMENT 

During SDLC, various artefacts process through different 
stages and it is essential to maintain the consistency between 
all the artefacts, whenever an artefact change occurs. After 
predicting the artefact change effects during the CIA, 
consistency management and change propagation are 
performed to trace the ripple effects [25]. Thus, maintaining 
consistency plays a major role in managing artefact 
consistency during the CICD process in a DevOps 
environment. 

A. Change Propagation Techniques 

Heuristic rules are one of the techniques that can be used to 
aggregate the detected changes to propagate the changes. This 
enables to obtain the optimal solution of the change 
propagation path with higher performance irrespective of the 
completeness of the information [56]. Source code artefact 
change propagation is addressed in [20] using an aggregation 
algorithm with heuristic rules. 

The distance-based technique is mainly based on temporal 
and spatial distance. For the change propagation, this method 
considers the time taken between changes and the location 

distance among two modifications. These distances are 
measured using AST and the graph-based representations 
associated with graph traversal algorithms [20][51]. 

B. Consistency Management Approaches 

Artefact changes or refinements happen at any time. Their 
consequences may not result in a uniform pattern, where some 
refinements may reflect and impact on other artefacts. Thus, 
the stability among artefacts can be inconsistent and can fail in 
representing the expected software solution with stakeholder 
dissatisfaction. Therefore, consistency management, the ability 
to preserve the synchronization among software artefacts along 
with the occurring changes, is essential to minimize efforts in 
software system maintenance [57]. Hence, an artefact alteration 
or the presence of outdated artefacts should consistently reflect 
on the other affected artefacts. 

Several studies have addressed consistency management 
and change propagation with CIA [36][40][42]. A predictive 
model is presented in [14] to predict the change propagation. 
The approach does not require access to the source code. It 
derives information from expert knowledge, user manuals and 
maps them in a weighted dependency graph. Reachability 
analysis is done on that weighted graph to reason the change 
propagation. The tool „JTracker‟ is popular for assisting change 
propagation and CIA in such that when a programmer changes 
a class, this tool creates the potentially impacted neighbouring 
classes. The propagation is terminated if the changes in 
neighbouring classes are not necessary. „JRipples‟ is another 
significant tool to support change propagation during the 
incremental changes [12][25]. 

 In an earlier related study, Lee [58] has addressed impact 
analysis algorithms and evaluation metrics, which have been 
developed in a tool called „ChaT‟ tool leading path to research 
on CIA for object-oriented programs. That algorithm relies on 
the computation of the transitive closure of object-oriented data 
dependency graphs. Those graphs based on control and data 
flow information extracted from the code program. The 
algorithms analyze the relationships between components and 
weight them according to the type of relation. It is expressed as 
a set of impact propagation rules. 

VI. CONTINUOUS INTEGRATION AND DEVOPS TOOLS 

Continuous Integration is the repetitive integration process 
of developing and testing during a software development 
process [2][16]. It elaborates the frequent merging of the sole 
components of a software system to a shared branch by 
preserving the healthiness of the code. The automation of the 
CI process is significant to reduce the risks associated with 
software development such as lack of deployable software, late 
discovery of defects and lower project visibility [2]. 

In CI, the code commits to the version control repositories 
are frequently pushed to the CI servers and generate build 
scripts to integrate the new changes to the software. For 
instance, the concept of a single source point is encouraged 
using version control repositories such as CVS, Subversion, 
Perforce and Visual SourceSafe that allows accessing all the 
source codes from a single primary location. After each build 
script execution by the CI servers, the feedback mechanism 
notifies the status of the build. It is recommended to fix the 
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discovered pipeline failures at the earliest possible way to 
preserve CI. Moreover, CI and testing are intricately linked 
together [16][59]. In order to trace the software artefacts, this 
method uses scripts based on version controlling to control the 
code rather than the individual commands. The „Echo‟ 
approach is an evolving tool-based solution that addresses 
traceability in requirements, as it is impractical to use static 
documents to track the requirement artefacts in an Agile 
environment [60]. 

DevOps enables efficient deliverables by speeding-up the 
customer query processing using tool support [15]. The tool 
support in a DevOps environment, such as Jenkins, Travis, 
Ansible, Docker, Sonar, Maven and OpenStack helps to 
maintain CI and traceability. For instance, the existing high-
level plugins such as Hudson post-build scripts enable 
automated analysis of CI operations in Jenkins. However, 
many supportive tools have mainly considered the source code 
artefact integrations regardless of other artefact combinations 
such as a modification in requirements, design and test cases. 
Further, the consequences of changes in integrations have not 
analyzed in terms of CIA and change propagation aspects. This 
section explores the main features of DevOps supportive tools. 

Jenkins is a prominent opensource DevOps support tool 
that monitors frequently executed jobs. It is a rapid CI server 
with error detection. Jenkins server performs a set of tasks 
supported by a trigger, that can be a change in a version 
management system [61]. The main tasks of theworkflow are 
acquiring Git source code, trigger the job, build the source 
project and notify the results. The list of tasks includes 
performing a software build with Apache Maven, executing a 
shell script, archiving the build results and starting the 

integration tests. Jenkins builds and tests software systems 
continuously and supervises the job executions even though it 
is running on a remote machine. Further, Jenkins configuration 
is simple, deployable in large scale environments and call 
slaves from the cloud by adhering to a slave topology [62]. 

Puppet is another configuration tool in DevOps, based on 
deploying microservices efficiently [59]. The configurations 
are described using a set of scripts defined in a Domain 
Specific Language (DSL). Puppet provides a unified interface 
for activities such as starting system services that require 
different tasks in the various Operating Systems. Travis is 
another distributed CI service that supports building and testing 
open source software projects. It encourages teamwork by 
tightly coupling to DevOps practices [63].  It can perform 
automatically scheduled tests with GitHub repositories. Docker 
is an open platform to build, ship and execute distributed 
software applications even on a virtual machine or a cloud 
environment [59]. The existence of microservices has enriched 
by tools including Docker. It has made the containers or 
objects that hold and transport data accessible easily. 

Table II summarizes the features of the related studies in 
artefact traceability management in terms of change detection, 
CIA, consistency management, change propagation and CI. For 
instance, Zhang et al. [64], have addressed the change detection 
and impact analysis with a framework implemented in AspectJ 
programs and [65] is an architectural level artefact specific 
work. The workspace awareness tool in [66] has involved all 
the phases in continuous integration in an event-based 
approach, but it lacks automation. The tool Echo based on agile 
practice presented by [60], has addressed requirements and 
design related artefacts. 

TABLE II. COMPARISON OF RELATED WORK ON TRACEABILITY MANAGEMENT 

Rated studies 
Traceability 
establishment 

Change detection Change impact analysis 
Consistency 
management 

Change propagation 
Continuous 
integration 

Impact propagation approach based on 
artefact change types [42]. 

A rule-based approach 
to detect dependency 

- 
Rule-based approach. 
Multi-level modelling. 

Multi-
perspective  

Analyze dependency 
relations recursively 

- 

Requirements traceability tool for 
Agile methodologies [60]. 

Text annotations. 
Conversation-centric 
model. 

Visualization. 
Manually via 
visualization. Forward, 
backward traceability. 

- 
Use of elaboration 
activities. 

Versioning. 

CIA to locate failure reasons in 
AspectJ programs [64]. 

 
Use syntactic 
dependency. 

Static AspectJ call 
graphs. 

- - - 

Architectural decisions change 
management to demystify architecture 
[65]. 

A template-based 
approach using 
architectural decision. 

Decision-based 
approach. 

Manual analysis. - 
Decision-based 
approach with manual 
monitoring. 

- 

Tool solution for early change 
detection and resolution on code 
conflicts [66]. 

Event-based approach. Visualization. 
Event-based approach. 
Binary measurements. 

Manual 
visualizations. 

YANCEES 
notification service. 

Use a tool for 
workspace 
awareness 

Artefact change management based on 
a feature-oriented hypothesis. [67]. 

Feature-oriented 
approach. 

Feature-oriented 
manner. 

Calculate artefact 
feature dependencies. 

- - - 

An artefact management tool to assess 
IR capabilities in traceability recovery 
[68]. 

Information retrieval 
methods. 

Matrix-based 
using VSM. 

Rule-based approach. 
Traceability 
recovery using 
LSI. 

- - 

Semi-automated traceability creation 
on requirements, design decisions and 
architecture [69]. 

 
An integrative 
approach by 
using LISA tool. 

An integrative 
approach by integrating 
tool AREL. 

- - - 

Traceability based on event 
notifications in distributed 
development environments [70]. 

Event-based approach. 
Publisher-
subscriber 
technique. 

Event-based approach. 
Event logs for artefacts. 

- 
Update artefact event 
logs. 

- 
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VII. DISCUSSION 

A. Limitations in Existing Studies 

One major limitation in the current state-of-art and 
research-level solutions for change detection, CIA, consistency 
management, change propagation and CI is being solely 
addressing the source code artefact [22][28][55][64]. 
Therefore, tracing heterogeneous artefacts corresponding to all 
the stages of SDLC with CIA remains challenging with respect 
to rapid changes. Otherwise, adapting to multiple separate tools 
or frameworks is one way out which leads to a higher 
traceability management cost. Another challenge in CI is 
identified as having continuous prioritization for integrations. 

The influence of the CIA is important in the traceability 
management process in a DevOps practice as consistency 
management and change propagation depend on it. However, 
many studies have not addressed all the relevant artefacts and 
consider only a few numbers of CIA approaches, due to the 
heterogeneity nature of the artefacts. Thus, related studies are 
limited to either requirement and design level artefacts or 
entirely on source code artefact [17][47][48]. There is a lack of 
research in adequate successful attempts that addresses both 
development and operations level artefacts covering the entire 
SDLC. The existing research-level outcomes lack proper user 
interface and visualization features that are essential for a 
collaborative development environment such as DevOps for 
fast decision making. Moreover, some studies are domain 
specific such as for product line environments, modular 
software, safety critical context. [24][46][34]. Consequently, 
being dependent on a specific tool environment and integration 
incompatibilities with existing tools limits the practical usage 
of traceability tools in a wider range [49][69]. The rule-based 
techniques can resolve the heterogeneity nature of the artefacts, 

but requires human involvement to define newer rules [40]. 
Thus, automation becomes problematic that eventually 
increases the traceability cost. Table III summarizes the feature 
considerations of some of the existing tools. 

The lack of automation capabilities and the need for 
adapting to multiple tool-chains have limited the adaptation of 
traceability in DevOps practice. Some of the existing solutions 
are limited to semi-automation, which is not sufficient to 
reduce the traceability cost in large-scale solutions. Thus, 
achieving automation for complete traceability management 
process model is important for a DevOps environment to cope 
with the frequent change integrations. 

B. Future Research Directions 

Addressing the heterogeneity of artefacts in change 
detection, CIA, consistency management, change propagation 
and CI is one prominent active research directions. This will 
help to reduce the traceability management cost in practice and 
encourage practical traceability adaptation. Machine learning 
and probabilistic methodologies are becoming a promising 
solution stack as well [7]. Thus, a possible suggestion is to 
incorporate machine learning based algorithms to establish 
traceability links, so that the human involvement in defining 
rules and monitoring can be avoided to cope with the new 
formats of artefacts. In addition, it will enable the 
transformation from semi-automation to automation. 

Moreover, different methodologies can be integrated into a 
common platform to reduce the overhead of adapting to 
multiple tools or frameworks. This will reduce the cost 
associated with the tool-chain management and the 
inconsistencies among tools. Further, maintaining the research 
outcomes of the traceability management in the context of 
DevOps would be helpful to approach for stable solutions. 

TABLE III. FEATURE COMPARISON OF EXISTING TRACEABILITY MANAGEMENT TOOLS 

Tools 
TraceME [71] IBM DOORS [72] 

TraceAnalyzer 
[73] 

LDRA-TBmanager 
[74] 

ArchEvol 
[75] 

ReqView 
[76] 

ArchStudio 
[77] 

Features 

Requirement traceability √ √  √  √  

Design level traceability √  √  √  √ 

Heterogeneous artefacts √  √ √    

Traceability visualization  √ √  √  √ 

Traceability validation        

CI/ scheduling/ versioning  √  √ √ √  

Change detection        

Change impact analysis √ √      

CIA validation        

Change propagation visualization        

Consistency management, PM  √    √ √ 

DevOps tools stack supportability        

IDE independence      √ √ 

Performance analysis        
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VIII. CONCLUSION 

This survey explores the current approaches and techniques 
for achieving software artefact traceability in a DevOps 
environment. This paper mainly considered the tasks such as 
change detection, change impact analysis, consistency 
management and change propagation with continuous 
integrations in DevOps practice, that accommodate for feasible 
traceability management. Moreover, software artefacts 
traceability management can be implemented as a supportive 
tool in DevOps practice. Traceability links are generated by 
considering the dependencies among artefacts. In order to 
support the CICD pipeline, change detection is performed for 
each CI task that contains artefact changes in the forms of an 
edit, addition or removal. The main associated techniques are 
edit-history, tree-differencing and differencing algorithms. 
Then, the impact of a given changed is identified with different 
approaches such as call graphs, dependence graphs, program 
slicing, formal semantics, logical coupling, IR and rule-based 
approaches. Further, mathematical weight-based approaches 
are used for the CIA process. Heuristic rules and distance-
based techniques are discussed in the change propagation that 
follows the impacted artefacts based on the CIA results. 

However, most of the related studies have limitations that 
restrict their suitability for traceability management in a 
collaborative DevOps environment. Most of the existing 
methodologies have not addressed artefacts in all stages of 
SDLC and considered only the requirement, design level or 
source code artefacts. Although some studies have addressed a 
fully-automation process considering specific artefact types, 
there are limitations such as high traceability cost and efforts in 
a DevOps environment due to the frequent CI tasks. Thus, 
automated tool support for traceability management that 
addresses the overall SDLC in a DevOps environment is a need 
in practice. Accordingly, the requirement of having a 
generalized traceability solution to cope with the maximum 
types of artefacts, with a minimum cost and maximum level of 
automation is identified as a future research direction for an 
efficient traceability management process in DevOps practice. 
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