
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

100 | P a g e

www.ijacsa.thesai.org

Software Artefacts Consistency Management towards

Continuous Integration: A Roadmap

D. A. Meedeniya
1
, I. D. Rubasinghe

2
, I. Perera

3

Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka

Abstract—Software development in DevOps practices has

become popular with the collaborative intersection between

development and operations teams. The notion of DevOps

practices drives the software artefacts changes towards

continuous integration and continuous delivery pipeline.

Subsequently, traceability management is essential to handle

frequent changes with rapid software evolution. This study

explores the process and approaches to manage traceability

ensuring the artefact consistency towards CICD in DevOps

practice. We address the key notions in traceability management

process including artefact change detection, change impact

analysis, consistency management, change propagation and

visualization. Consequently, we assess the applicability of existing

change impact analysis models in DevOps practice. This study

identifies the conceptualization of the traceability management

process, explores the state-of-art solutions and suggests possible

research directions. This study shows that the lack of support in

heterogeneous artefact consistency management with well-

defined techniques. Most of the related models are limited with

the industry-level applicability in DevOps practice. Accordingly,

there is inadequate tool support to manage traceability between

heterogeneous artefacts. This study identifies the challenges in

managing software artefact consistency and suggests possible

research directions that can be applied to manage the traceability

in the process of software development in DevOps practice.

Keywords—Consistency management; traceability; continuous

integration; DevOps; comparative study

I. INTRODUCTION

Software systems perform in a dynamic context, where
changes arise due to different factors such as a change in
business goals, performance improvements, fault corrections
and change of technology. DevOps (Development-Operations)
practice is an emerging software development approach that
encourages collaborative nature over traditional software
development [1]. DevOps practice addresses the frequent
artefact changes during the Software Development Life Cycle
(SDLC) enabling a Continuous Integrations and Continuous
Delivery (CICD) pipeline. Consequently, maintaining software
evolution is essential, although it is challenging to manage the
artefacts change consistency management [2]. For instance, a
software artefact barely exists in isolation as it is associated
with other artefacts in the process. Thus, a change in a
requirement may have a considerable effect on the entire
system. Hence, artefact consistency management plays a major
role in achieving software traceability [3].

A software system consists of both homogeneous and
heterogeneous artefacts in different formats, making
consistency management a complex task. For example, the

requirement artefact can be in a natural language, while the
source code artefact in Java programming language. Therefore,
a change occurred in one artefact does not directly reflect in
other artefacts due to the type and format mismatches. The
artefact traceability is significant in consistency management
[4]. Generally, an artefact change appears as a request for a
change without direct action of alteration. Thus, a semi-
automated or manual process of maintaining the artefact
traceability may subject to errors.

In traceability established system, it is essential to detect
artefact changes and identify their impact. The Change Impact
Analysis (CIA) process identifies the affected artefacts by
following the trace paths using different techniques such as
traceability graphs [5], Information Retrieval (IR) and Machine
Learning (ML) [6][7]. In graph-based traceability, the artefact
changes are mapped to the nodes and the change are
propagated via the connected links. However, all the endpoints
of the links may not be subjected to changes. Therefore, the
impact of the propagated changes at the linked endpoints needs
to be measured to identify the actual impacted set of a change.
Thus, a CIA approach should be selected based on the artefact
types that are used to measure the impact [8][9].

Additionally, the properties of the initial change may highly
affect the impact calculation, since the linked endpoints are
compared with the initial change. Several studies have used IR
techniques to identify the properties of the initial change such
as the scope and keywords [10][11]. Moreover, CIA techniques
based on probabilistic methods such as association rules, Bayes
theorem and Change History have used to measure the impact
of a change [12][13][14]. However, it is challenging to address
the change ripple effects after the initial impacted endpoint
identification, as the changes can propagate continuously.

The main components of the traceability management
process include trace-link creation, change detection, CIA,
consistency management, change propagation and
collaboration. This survey paper addresses the traceability
management process in DevOps practice. Section II states an
overview of DevOps and the traceability management process.
Section III discusses the artefact change detection methods,
which is the first step in the CICD process. Section IV
elaborates CIA with its terminology, approaches and related
studies. Section V describes the existing change propagation
and consistency management techniques. Related work on the
continuous integration in DevOps practice is presented in
Section VI. Section VII states the limitations and challenges of
achieving traceability in DevOps practice and the possible
future research directions. Section VIII concludes the paper.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

101 | P a g e

www.ijacsa.thesai.org

II. BACKGROUND

A. Concepts of DevOps

DevOps practice broadens the view of software engineering
paradigm by improving the collaboration across teams, sharing
resources, tools and increasing the project performance. This is
based on a maturity model that integrates the development and
operations teams [15]. There are stages of a DevOps cycle with
respect to SDLC phases that include continuous planning,
integration, testing, delivery, deployment and monitoring
[1][15][16]. As shown in Fig. 1, in DevOps practice the
developers implement the project by enforcing the deployment
process and the operations team monitors the progress and
faults during the deployment, adhering to CICD process [1].
Mainly the development team is responsible to plan, code,
build, test and the operations team is responsible for the project
release, deploy, operate and monitor.

The coordination of human resources in a DevOps
environment is important to maintain the manageability of
collaborative nature. DevOps engineer, that can be an
individual or a team, plays a major role by managing the tool
support including automation, version control, configuration,
maintenance [1]. Consequently, the level of automation in the
CICD pipeline is controlled by the DevOps engineer. In this
study, we have mainly explored the Continuous Integration
(CI) aspects such as change detection, change impact analysis,
change propagation and consistency management along with
the identification of DevOps tool support and challenges.

B. Traceability Management Process

In a software product, it is essential to maintain artefact
consistency whenever a change occurs. Software traceability is
required to handle changes during the process of CICD, that
integrates the work frequently between the development and
operations teams leading to multiple integrations per day [2].
Software traceability follows the life cycle of an artefact both
forward and backward and overcomes the inconsistencies
during the software development [17]. Thus, each alteration
occurs in an artefact is traced among other artefacts and change
accordingly based on the impact. The relationship links among
artefacts must be updated and maintained consistently. Fig. 2
shows a traceability process model within a collaborative
environment. The artefacts with changes in various levels are
usually included in each CI task. Thus, the initially established
traceability links in the project must be incorporated according
to the changes included in each integration. This process
consists of change detection, CIA, consistency management
and change propagation. Visualization of the traceability links
is used to understand the dependencies between the artefacts. It
is challenging and costly to manage the consistency of a larger
set of artefact relationships whenever a change occurs. Also,
the effort of maintaining artefact relations is considerably high
though the number of artefacts is minimal [18]. Thus, the
accuracy of traceability establishment is important.

Fig. 1. Software Development Process with DevOps practice.

Fig. 2. Traceability Management Process Model.

III. CHANGE DETECTION

A. Types of Artefact Changes

Change is inevitable in any software development process

and should be handled properly to improve product quality

while avoiding unnecessary cost [19]. Artefacts in each phase

of the SDLC are subjected to change at different frequencies

due to change of requirement, technology, managerial decision

and fault tolerance. A change in a phase of the SDLC can

evolve through the phases based on their dependencies.

Mainly three types of changes can occur during software
development. (1) edit changes, that alter the existing elements
or sub-elements of the artefacts. For example, changing the
name of an attribute in a design class diagram or renaming a
source code method name is considered as an edit change; (2)
delete changes, that removes one or more existing artefact
elements or sub-elements from a traceability model such as
removing attributes from a source code class or deleting a class
in a design class diagram is considered as a deletion change;
(3) add changes, that include new artefact elements or sub-
elements to the existing project. The change detection process
identifies whether a change has occurred and detect the details
of change such as change type and artefact type.

B. Change Detection Techniques

Among many techniques, edit history approach keeps track
of the alterations or the edits as a history [20]. Here, each
change is considered as an item for the history and records as
another edit. This is already in use with most of the software
and non-software related tools and methodologies such as text
editors, mainly the „Undo”, “Redo‟ and „Restore‟ operators
[20][21]. However, this technique is mostly used for the
change detection of the source code artefact.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

102 | P a g e

www.ijacsa.thesai.org

Tree differencing is another main change detection
technique that represents elements as Abstract Syntax Tree
(AST) and calculates the differences to extract detailed change
information [22]. AST is a tree representation method of the
syntactic structure in the source code, where every node
denotes a construct occurrence in the code. This is a well-
defined method, for instance, the study done in [19], has
transformed a tree to another in hierarchically structured data
based on the idea of matching and minimum cost edit scripts.
Here, the authors have separated the change detection problem
as „good matching‟ and „minimum conforming edit script‟.
However, it is required the data to be in a tree format. The
approach of calculating differences between ASTs is widely
used for source code artefacts [22][23].

The customized differencing algorithm is another technique
for software artefact change detection. It is used in software
maintenance aspects such as program-profile estimation (stale
profile propagation). A software artefact type can be taken as
the input for a differencing algorithm [22]. However, the
implementation of a general algorithm for all types of software
artefacts is identified to be impractical rather than having a set
of differencing algorithms for each type of software artefacts.

IV. CHANGE IMPACT ANALYSIS

A. Terminology of Change Impact Analysis

Each change in a single artefact may affect one or more
other related artefacts in different degrees. The goal of the CIA
is to detect the consequences of an artefact alteration to other
artefacts in the software system [12]. Traceability is a key
notion to identify the affected artefacts and decide whether
evolution is sustainable [24]. Generally, the impact is analyzed
before or after a change implementation. The prior analysis of
the impact results in better program understandability, change
impact prediction and cost estimations. Correspondingly,
conducting impact analysis after implementation of a change
can be beneficial in tracing ripple effects, selecting test cases
and in performing change propagation [1]. Fig. 3 shows the
iterative CIA process in software development [25].

Initially, the process analyses a change request to determine
the set of changes in which the artefacts can be affected. It is
referred to as feature location, with the aim of finding a place
that requires the initial change. Then, the CIA is performed to
estimate the effects in changes resulting in an Estimated Impact
Set (EIS). Afterwards, the change is implemented and the
elements in the Actual Impact Set (AIS) are altered. The AIS is
not considered to be unique for a given change request as a
change can be implemented in different ways.

Fig. 4 shows the types of change impact sets. The Starting
Impact Set (SIS) denotes the set of entities initially affected by
the change. Then, a subset of it called Candidate or Estimated
Impact Set (CIS or EIS) is a subset of SIS, includes the
identified potential impact entities that are traced from SIS.
The AIS is required to be identified from the EIS. Discovered
Impact Set (DIS) are the artefacts that are impacted by the
change but have not identified by CIS due to the challenging
effect of artefact type mismatches, development mistakes and
inconsistencies in artefact naming. These hidden dependencies
of the artefacts can be identified manually or using a

knowledge-based technique [26][27]. The False Positive
Impact Set (FPIS) denotes the artefacts that are overestimated
as belong to the CIS, but which are not actually impacted yet.

B. Change Impact Analysis Techniques

One category of change impact analysis approach is a
traceability-based and dependence-based technique to identify
the effect of a change [25]. Traceability-based CIA is narrowed
in recovering the traceability links among software artefacts.
Dependence-based CIA evaluates the impact of a proposed
change. This technique is biased towards in analyzing program
syntax relations and performing CIA of artefacts in the same
level of abstraction such as in the level of software design or
within the level of source code. The higher-level Unified
Modeling Language (UML) models and use case maps are
mainly involved in requirement and design level impact
analysis. In addition, the source code-based CIA techniques are
more capable to determine change impacts of the final software
product with improved precision as they analyze the
implementation details directly. Table I explores different CIA
techniques with their advantages and limitations.

Another categorization of CIA technique is static and
dynamic impact analysis [9][28][29]. Static CIA techniques
consider all the possible behaviours and inputs. It analyzes the
syntax and semantic dependencies of source code and
constructs intermediate representations using call graphs and
program dependence graphs [9]. Then, the CIA is conducted
based on the representations resulting in large impact sets that
are difficult to use in practice. Thus, lower precision is a major
drawback in static CIA techniques. Besides, dynamic CIA
techniques overcome this drawback by considering only a part
of the inputs. Hence, their impact sets are identified to be
highly precise though lower in safety. Furthermore, dynamic
CIA depends on the analysis of the data obtained during the
execution such as trace information, relation and coverage
information to assess the impact sets.

Fig. 3. Change Impact Analysis Process [25].

Fig. 4. Change Impact Analysis Categorization.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

103 | P a g e

www.ijacsa.thesai.org

TABLE I. COMPARISON OF CHANGE IMPACT ANALYSIS TECHNIQUES

Category Technique Description

Statistical
analysis

Data flow analysis, relational language,
program slicing, static call graphs [30]

Has identified that the string analysis is not precise for schema CIA. There is a precision versus
computational cost trade-off in this analysis.

Comparative analysis: Study on impact
analysis algorithms, techniques using
Precision, Recall and Harmonic mean
[11][26][31][32][33][34].

Results certify that existing algorithms require enhancements and effective mechanisms to facilitate
automated tools for the CIA. Have identified required characteristics in impact analysis. Discovered
the possibility of transferring impact analysis tools in academia to industry to help developers during
maintenance and evolution activities.

Probabilistic-
based

Change history and Bayes‟ theorem [26] Maintenance of object-oriented critical systems is addressed. Limited for object-oriented software.

Call graphs, Entity Dependency Graph
[35][30][36][37][38][39][38]

Explain the concept of two dependency states; namely, persistent relationship state and immediate
relationship state in change propagation. Better program understanding and debugging.

Formal Semantics [40] Logical
dependencies and classification [39][41]

Removal of false positive impacts and consistency checking. Adds valuable information. Restricted
for particular change and relation types.

Rule-based [36][41][42] Allows developers to smoothly retrace the changes.

Data mining, Apriori algorithm [6] Useful in change predictions.

History-
based

Historical co-change analysis, change
history [6][43][44]

Use version histories to identify logical/ evolutionary couplings between entities. Predict impact files
after a change.

Machine learning [7][10][26]
Classification models to predict the validity of the candidate links. Use unsupervised learning to
identify hidden dependencies. Less human involvement

Logical coupling [27] Use logical coupling with a Markov model. Better accuracy.

Acharya and Robinson [28] have presented a static CIA
framework that is developed as a tool named Imp, to analyse
the impact of source code artefacts during the frequent builds.

This mathematical model is used forward slicing consists of
three criteria such as range, dependences and summary edges
to assess the impact sets. Additionally, this work has used
Andersen‟s algorithm with pointer analysis. This methodology
consists of two variations one for high setting impact analysis
which is expensive and another for low setting impact analysis
which can be performed frequently and faster at a low cost.

Another static impact analysis technique is addressed in
[29], that have created clusters of associated source codes
based on their co-modification history. Here, dimensionality
reduction approaches have used to reduce complexity and
perform the impact analysis efficiently. Initially, they have
mined the changed repository to find co-occurring source files
and developed a matrix containing a degree of closeness in
each pair of files. Then, an intrinsic dimensionality method
based on eigenvalues has conducted to estimate the lower
dimensional representation of the matrix and Principle
Component Analysis (PCA) was used to reduce the matrix.
Finally, the matrix rows were taken as coordinates of the files;
the distance between each pair of files was measured and
passed to five clustering methods. However, quantitative
measures have not used to evaluate the model impact.

In dynamic CIA approach, the main techniques are path
impact and coverage impact [30][35]. Path impact performs at
the method level with the use of compressed execution traces
to determine impact sets. It processes forward and backward
traces to identify the impact of the changes. The forward traces
determine all the methods called after the altered methods,

while the backward traces find methods into which the
execution can return. The coverage impact technique uses the
coverage information to identify the executions that traverse at
least one method in the change set and it marks the covered
methods in each execution. Next, it assesses a static forward
trace from each change from the marked methods. Thus, the
methods in computed traces become the impact set. Moreover,
it is analytically identified that the path impact technique is
more precise compared to the coverage impact technique as it
makes use of traces instead of the coverage [35]. However, the
time and space overhead of the path impact technique is high.
The required time in path impact tends to depend on the size of
the analyzed trace, though the coverage impact needs a
constant time in updating bit vectors at each of the method
entries. Besides, the space complexity of coverage impact
technique is linear over the size of the program, while it is also
proportional to the size of the traces in the path impact
technique. The use of dependency network measures such as
centrality measures havw also used for the CIA. The work by
Nguyen et al. [45] has shown the applicability of dependency
network analysis measures in practical applications.

Mainly the CIA techniques can be categorized into a graph,
formal, historical and scope-based. The comparative and
classification-based approaches are used in most related work
while some have developed a specific tool. Among the used
CIA techniques, call graphs and dependence graphs are widely
used to handle the changes that enable the backtracking ability
to debug easily. Most of the artefact types including design,
code and test cases are influenced by these call graphs related
techniques and IR based: Latent Semantic Indexing (LSI),
Frequency-Inverse Document Frequency (TF-IDF) and Vector
Space Model (VSM) techniques. In contrast, the work in [46]
has shown the drawbacks of dependence graphs and proposed a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

104 | P a g e

www.ijacsa.thesai.org

modular-based approach for large-scale product lines. The
formal semantics, First Order Logic (FOL) and review-based
analysis have addressed the requirement artefact type solely.
While most of these techniques are semi-automatic, the use of
data mining and ML in impact analysis has become a newer
trend that tries to completely avoid the human effort with full
automation. However, in terms of the scope-based CIA related
work, there is a lack of support for later phases of SDLC in
particular testing and maintenance phases as the majority are
restricted for requirements artefact or source code [17][47][48].
Thus, that limits the applicability of these CIA approaches and
related works into a DevOps environment.

C. Change Impact Analysis Models

A change type classification method for code revision has
presented in [21]. The authors have proposed a taxonomy for
change types and defined code changes in the form of tree edit
operations on the AST of a program. The changes are classified
based on the significance level such as low, where local
changes to have a minor significance, medium, high or crucial,
where interface changes are critical. This work has extended
with a tool called ChangeDistiller in [49]. This model assigns a
label to every code entity in the AST that denotes the type of
each entity and adds a textual named value, covering the actual
code. Additionally, they have extracted change couplings from
their release history database which have an identical total
significance level. These changes have weighted based on the
number of transactions they occurred in. Accordingly, the
remaining change couplings were the most likely candidates
for being affected by changes to coupled entities. This model is
shown in Fig. 5, and implemented as the ChangeDistiller [49]
plug-in for Eclipse. However it is limited for small projects.

Another model for the CIA for Java programs has
presented in [38]. Fig. 6 shows the architecture of a Java source
code impact analysis tool called „Chianti‟, which is
implemented as a plugin in Eclipse IDE.

There are three main submodules in this tool. The initial
one is to derive atomic changes from two Java source code
versions which are done via pairwise AST comparisons. One
other module is responsible for reading test call graphs to
detect the original and edited codes. Also, it assesses impacted
tests and impacting changes. The other module visualizes the
change impact details to the user. Accordingly, this plugin
model is mainly based on the call graphs and does not involve
calculations for each impact in a quantitative value.

Fig. 5. ChangeDistiller Model [49].

Fig. 6. Chianti Tool Architecture [38].

Wong and Cai [50], have proposed a model to extract the
logical models from UML class diagram. This is based on a
logical framework named Augmented Constraint Network
(ACN). Fig. 7 depicts the structure of an ACN translated class.
The classes are weighted based on their number of augmented
constraint networks to determine impacted elements. A higher
rank is assigned, if there are more sub augmented constraint
networks. The distance between the two classes also affects the
weight and closely related classes get a higher ranking. The
weights are then multiplied with the co-change frequency of
entities that are mined from version histories. Accordingly, ten
of the highest ranked elements are output to the user.

One of the earliest CIA models [8], has calculated the
transitive closure to identify the impacted elements using
conceptual models. The concept of intra-method and inter-
method data dependency graphs are used to calculate impacts
on entities in method bodies and change dependencies between
methods, respectively. Object-oriented dependency graphs are
used to compute the change impact at the system level.
Additionally, they have declared four types of impacts between
every two related entities including contaminated (both are
impacted), clean (both are not impacted), semi-contaminated
(the source does not impact the target though the source can be
impacted) and semi-clean (the source is not impacted, but it
propagates changes to the target). These types are used to
assign weights to relationships among entities, based on their
impact relation type. Then the total change impact weight is
assessed as the sum of all weights, which are assigned to the
relations between two entities. Finally, the total change impact
weight is assigned to all graphs to enable impact calculation.

A CIA approach for architectural models using OCL4 to
express explicit rules has proposed in [51]. They have searched
the impacted elements and a distance measure is used to
control the propagation of changes to the indirectly related
software entities. It either cancels the change propagation or
weights the impact paths based on their nesting depth. Also,
they have presented a taxonomy of change types that provide
three elemental change types such as add, remove and change.
The impact analysis model presented in [52], has extracted
changes from a repository and compiled into a matrix. The
authors have computed association clusters using singular
value decomposition. Every file in a cluster was assigned a
weight based on its degree of participation in that cluster. High
singular values have denoted that a file was subjected to be
impacted by changes to other files of the same cluster.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

105 | P a g e

www.ijacsa.thesai.org

Fig. 7. ACN Translation of a Class [50].

Hattori et al. [53], have proposed another approach to
estimate the possible impact elements using a dependency
graph that represents the source code and a reachability
analysis over the graph. They have extracted the change sets
and analysed the impacted entities using a probabilistic
algorithm based on Bayes‟ theorem that removes the false-
positives. Apriori and Disjunctive association rule algorithms
were used to weight and sort the impacts based on their
likelihood. Another change impact analysis model is presented
by Arnold and Bohner in the area of traceability [54]. They
have considered the changes occurred in documentation and
source codes to identify the SIS. Then, dependency graphs
were used to obtain CIS based on direct impacts. Moreover, the
reachability graph visualizations were used to identify the
indirect impacts. They have applied this process incrementally
to identify the CIS to minimize the false positive rate. A source
code artefact CIA approach based on the change requests
provided in natural language document such as bug reports is
presented in [55]. They have IR technique to estimate the
impact set; LSI to analyze textual change requests, dynamic
analysis to evaluate the execution information and data mining
to examine the evolutionary information. This work has shown
that the accuracy improves regarding the metrics; precision,
recall and f-measure by combining these multiple approaches.

Although there are several CIA studies, the majority has
been limited only up to design level or source code artefact in
considering the artefact types while operational level artefacts
like build scripts are not addressed.

V. CONSISTENCY MANAGEMENT

During SDLC, various artefacts process through different
stages and it is essential to maintain the consistency between
all the artefacts, whenever an artefact change occurs. After
predicting the artefact change effects during the CIA,
consistency management and change propagation are
performed to trace the ripple effects [25]. Thus, maintaining
consistency plays a major role in managing artefact
consistency during the CICD process in a DevOps
environment.

A. Change Propagation Techniques

Heuristic rules are one of the techniques that can be used to
aggregate the detected changes to propagate the changes. This
enables to obtain the optimal solution of the change
propagation path with higher performance irrespective of the
completeness of the information [56]. Source code artefact
change propagation is addressed in [20] using an aggregation
algorithm with heuristic rules.

The distance-based technique is mainly based on temporal
and spatial distance. For the change propagation, this method
considers the time taken between changes and the location

distance among two modifications. These distances are
measured using AST and the graph-based representations
associated with graph traversal algorithms [20][51].

B. Consistency Management Approaches

Artefact changes or refinements happen at any time. Their
consequences may not result in a uniform pattern, where some
refinements may reflect and impact on other artefacts. Thus,
the stability among artefacts can be inconsistent and can fail in
representing the expected software solution with stakeholder
dissatisfaction. Therefore, consistency management, the ability
to preserve the synchronization among software artefacts along
with the occurring changes, is essential to minimize efforts in
software system maintenance [57]. Hence, an artefact alteration
or the presence of outdated artefacts should consistently reflect
on the other affected artefacts.

Several studies have addressed consistency management
and change propagation with CIA [36][40][42]. A predictive
model is presented in [14] to predict the change propagation.
The approach does not require access to the source code. It
derives information from expert knowledge, user manuals and
maps them in a weighted dependency graph. Reachability
analysis is done on that weighted graph to reason the change
propagation. The tool „JTracker‟ is popular for assisting change
propagation and CIA in such that when a programmer changes
a class, this tool creates the potentially impacted neighbouring
classes. The propagation is terminated if the changes in
neighbouring classes are not necessary. „JRipples‟ is another
significant tool to support change propagation during the
incremental changes [12][25].

 In an earlier related study, Lee [58] has addressed impact
analysis algorithms and evaluation metrics, which have been
developed in a tool called „ChaT‟ tool leading path to research
on CIA for object-oriented programs. That algorithm relies on
the computation of the transitive closure of object-oriented data
dependency graphs. Those graphs based on control and data
flow information extracted from the code program. The
algorithms analyze the relationships between components and
weight them according to the type of relation. It is expressed as
a set of impact propagation rules.

VI. CONTINUOUS INTEGRATION AND DEVOPS TOOLS

Continuous Integration is the repetitive integration process
of developing and testing during a software development
process [2][16]. It elaborates the frequent merging of the sole
components of a software system to a shared branch by
preserving the healthiness of the code. The automation of the
CI process is significant to reduce the risks associated with
software development such as lack of deployable software, late
discovery of defects and lower project visibility [2].

In CI, the code commits to the version control repositories
are frequently pushed to the CI servers and generate build
scripts to integrate the new changes to the software. For
instance, the concept of a single source point is encouraged
using version control repositories such as CVS, Subversion,
Perforce and Visual SourceSafe that allows accessing all the
source codes from a single primary location. After each build
script execution by the CI servers, the feedback mechanism
notifies the status of the build. It is recommended to fix the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

106 | P a g e

www.ijacsa.thesai.org

discovered pipeline failures at the earliest possible way to
preserve CI. Moreover, CI and testing are intricately linked
together [16][59]. In order to trace the software artefacts, this
method uses scripts based on version controlling to control the
code rather than the individual commands. The „Echo‟
approach is an evolving tool-based solution that addresses
traceability in requirements, as it is impractical to use static
documents to track the requirement artefacts in an Agile
environment [60].

DevOps enables efficient deliverables by speeding-up the
customer query processing using tool support [15]. The tool
support in a DevOps environment, such as Jenkins, Travis,
Ansible, Docker, Sonar, Maven and OpenStack helps to
maintain CI and traceability. For instance, the existing high-
level plugins such as Hudson post-build scripts enable
automated analysis of CI operations in Jenkins. However,
many supportive tools have mainly considered the source code
artefact integrations regardless of other artefact combinations
such as a modification in requirements, design and test cases.
Further, the consequences of changes in integrations have not
analyzed in terms of CIA and change propagation aspects. This
section explores the main features of DevOps supportive tools.

Jenkins is a prominent opensource DevOps support tool
that monitors frequently executed jobs. It is a rapid CI server
with error detection. Jenkins server performs a set of tasks
supported by a trigger, that can be a change in a version
management system [61]. The main tasks of theworkflow are
acquiring Git source code, trigger the job, build the source
project and notify the results. The list of tasks includes
performing a software build with Apache Maven, executing a
shell script, archiving the build results and starting the

integration tests. Jenkins builds and tests software systems
continuously and supervises the job executions even though it
is running on a remote machine. Further, Jenkins configuration
is simple, deployable in large scale environments and call
slaves from the cloud by adhering to a slave topology [62].

Puppet is another configuration tool in DevOps, based on
deploying microservices efficiently [59]. The configurations
are described using a set of scripts defined in a Domain
Specific Language (DSL). Puppet provides a unified interface
for activities such as starting system services that require
different tasks in the various Operating Systems. Travis is
another distributed CI service that supports building and testing
open source software projects. It encourages teamwork by
tightly coupling to DevOps practices [63]. It can perform
automatically scheduled tests with GitHub repositories. Docker
is an open platform to build, ship and execute distributed
software applications even on a virtual machine or a cloud
environment [59]. The existence of microservices has enriched
by tools including Docker. It has made the containers or
objects that hold and transport data accessible easily.

Table II summarizes the features of the related studies in
artefact traceability management in terms of change detection,
CIA, consistency management, change propagation and CI. For
instance, Zhang et al. [64], have addressed the change detection
and impact analysis with a framework implemented in AspectJ
programs and [65] is an architectural level artefact specific
work. The workspace awareness tool in [66] has involved all
the phases in continuous integration in an event-based
approach, but it lacks automation. The tool Echo based on agile
practice presented by [60], has addressed requirements and
design related artefacts.

TABLE II. COMPARISON OF RELATED WORK ON TRACEABILITY MANAGEMENT

Rated studies
Traceability
establishment

Change detection Change impact analysis
Consistency
management

Change propagation
Continuous
integration

Impact propagation approach based on
artefact change types [42].

A rule-based approach
to detect dependency

-
Rule-based approach.
Multi-level modelling.

Multi-
perspective

Analyze dependency
relations recursively

-

Requirements traceability tool for
Agile methodologies [60].

Text annotations.
Conversation-centric
model.

Visualization.
Manually via
visualization. Forward,
backward traceability.

-
Use of elaboration
activities.

Versioning.

CIA to locate failure reasons in
AspectJ programs [64].

Use syntactic
dependency.

Static AspectJ call
graphs.

- - -

Architectural decisions change
management to demystify architecture
[65].

A template-based
approach using
architectural decision.

Decision-based
approach.

Manual analysis. -
Decision-based
approach with manual
monitoring.

-

Tool solution for early change
detection and resolution on code
conflicts [66].

Event-based approach. Visualization.
Event-based approach.
Binary measurements.

Manual
visualizations.

YANCEES
notification service.

Use a tool for
workspace
awareness

Artefact change management based on
a feature-oriented hypothesis. [67].

Feature-oriented
approach.

Feature-oriented
manner.

Calculate artefact
feature dependencies.

- - -

An artefact management tool to assess
IR capabilities in traceability recovery
[68].

Information retrieval
methods.

Matrix-based
using VSM.

Rule-based approach.
Traceability
recovery using
LSI.

- -

Semi-automated traceability creation
on requirements, design decisions and
architecture [69].

An integrative
approach by
using LISA tool.

An integrative
approach by integrating
tool AREL.

- - -

Traceability based on event
notifications in distributed
development environments [70].

Event-based approach.
Publisher-
subscriber
technique.

Event-based approach.
Event logs for artefacts.

-
Update artefact event
logs.

-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

107 | P a g e

www.ijacsa.thesai.org

VII. DISCUSSION

A. Limitations in Existing Studies

One major limitation in the current state-of-art and
research-level solutions for change detection, CIA, consistency
management, change propagation and CI is being solely
addressing the source code artefact [22][28][55][64].
Therefore, tracing heterogeneous artefacts corresponding to all
the stages of SDLC with CIA remains challenging with respect
to rapid changes. Otherwise, adapting to multiple separate tools
or frameworks is one way out which leads to a higher
traceability management cost. Another challenge in CI is
identified as having continuous prioritization for integrations.

The influence of the CIA is important in the traceability
management process in a DevOps practice as consistency
management and change propagation depend on it. However,
many studies have not addressed all the relevant artefacts and
consider only a few numbers of CIA approaches, due to the
heterogeneity nature of the artefacts. Thus, related studies are
limited to either requirement and design level artefacts or
entirely on source code artefact [17][47][48]. There is a lack of
research in adequate successful attempts that addresses both
development and operations level artefacts covering the entire
SDLC. The existing research-level outcomes lack proper user
interface and visualization features that are essential for a
collaborative development environment such as DevOps for
fast decision making. Moreover, some studies are domain
specific such as for product line environments, modular
software, safety critical context. [24][46][34]. Consequently,
being dependent on a specific tool environment and integration
incompatibilities with existing tools limits the practical usage
of traceability tools in a wider range [49][69]. The rule-based
techniques can resolve the heterogeneity nature of the artefacts,

but requires human involvement to define newer rules [40].
Thus, automation becomes problematic that eventually
increases the traceability cost. Table III summarizes the feature
considerations of some of the existing tools.

The lack of automation capabilities and the need for
adapting to multiple tool-chains have limited the adaptation of
traceability in DevOps practice. Some of the existing solutions
are limited to semi-automation, which is not sufficient to
reduce the traceability cost in large-scale solutions. Thus,
achieving automation for complete traceability management
process model is important for a DevOps environment to cope
with the frequent change integrations.

B. Future Research Directions

Addressing the heterogeneity of artefacts in change
detection, CIA, consistency management, change propagation
and CI is one prominent active research directions. This will
help to reduce the traceability management cost in practice and
encourage practical traceability adaptation. Machine learning
and probabilistic methodologies are becoming a promising
solution stack as well [7]. Thus, a possible suggestion is to
incorporate machine learning based algorithms to establish
traceability links, so that the human involvement in defining
rules and monitoring can be avoided to cope with the new
formats of artefacts. In addition, it will enable the
transformation from semi-automation to automation.

Moreover, different methodologies can be integrated into a
common platform to reduce the overhead of adapting to
multiple tools or frameworks. This will reduce the cost
associated with the tool-chain management and the
inconsistencies among tools. Further, maintaining the research
outcomes of the traceability management in the context of
DevOps would be helpful to approach for stable solutions.

TABLE III. FEATURE COMPARISON OF EXISTING TRACEABILITY MANAGEMENT TOOLS

Tools
TraceME [71] IBM DOORS [72]

TraceAnalyzer
[73]

LDRA-TBmanager
[74]

ArchEvol
[75]

ReqView
[76]

ArchStudio
[77]

Features

Requirement traceability √ √ √ √

Design level traceability √ √ √ √

Heterogeneous artefacts √ √ √

Traceability visualization √ √ √ √

Traceability validation

CI/ scheduling/ versioning √ √ √ √

Change detection

Change impact analysis √ √

CIA validation

Change propagation visualization

Consistency management, PM √ √ √

DevOps tools stack supportability

IDE independence √ √

Performance analysis

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

108 | P a g e

www.ijacsa.thesai.org

VIII. CONCLUSION

This survey explores the current approaches and techniques
for achieving software artefact traceability in a DevOps
environment. This paper mainly considered the tasks such as
change detection, change impact analysis, consistency
management and change propagation with continuous
integrations in DevOps practice, that accommodate for feasible
traceability management. Moreover, software artefacts
traceability management can be implemented as a supportive
tool in DevOps practice. Traceability links are generated by
considering the dependencies among artefacts. In order to
support the CICD pipeline, change detection is performed for
each CI task that contains artefact changes in the forms of an
edit, addition or removal. The main associated techniques are
edit-history, tree-differencing and differencing algorithms.
Then, the impact of a given changed is identified with different
approaches such as call graphs, dependence graphs, program
slicing, formal semantics, logical coupling, IR and rule-based
approaches. Further, mathematical weight-based approaches
are used for the CIA process. Heuristic rules and distance-
based techniques are discussed in the change propagation that
follows the impacted artefacts based on the CIA results.

However, most of the related studies have limitations that
restrict their suitability for traceability management in a
collaborative DevOps environment. Most of the existing
methodologies have not addressed artefacts in all stages of
SDLC and considered only the requirement, design level or
source code artefacts. Although some studies have addressed a
fully-automation process considering specific artefact types,
there are limitations such as high traceability cost and efforts in
a DevOps environment due to the frequent CI tasks. Thus,
automated tool support for traceability management that
addresses the overall SDLC in a DevOps environment is a need
in practice. Accordingly, the requirement of having a
generalized traceability solution to cope with the maximum
types of artefacts, with a minimum cost and maximum level of
automation is identified as a future research direction for an
efficient traceability management process in DevOps practice.

ACKNOWLEDGMENT

The authors acknowledge the support received from the
Senate Research Committee Grant SRC/LT/2017/12,
University of Moratuwa, Sri Lanka in publishing this paper.

REFERENCES

[1] L. J. Bass, I. M. Weber, and L. Zhu, DevOps : A Software Architect‟s
Perspective, 1st ed. Addison-Wesley Professional, 2015.

[2] P. M. Duvall, S. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk, 1st ed. Addison-
Wesley Professional, 2007.

[3] S. A. Bohner and R. S. Arnold, Software change impact analysis. Wiley-
IEEE Computer Society, 1996.

[4] I. Sommerville, Software Engineering, 10th ed. New York: Addison-
Wesley Professional, 2010.

[5] W.T. Lee, W.Y. Deng, J. Lee, and S.J. Lee, “Change impact analysis
with a goal-driven traceability-based approach,” Int. J. Intell. Syst., vol.
25, no. 8, pp. 878–908, 2010.

[6] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE Trans. Softw. Eng.,
vol. 31, no. 6, pp. 429–445, 2005.

[7] C. Mills, “Towards the automatic classification of traceability links,” in
32nd IEEE/ACM International Conference on Automated Software
Engineering-ASE 2017, 2017, pp. 1018–1021.

[8] M. Lee and A. J. Offutt, “Algorithmic analysis of the impacts of changes
to object-oriented software,” in Technology of Object-Oriented
Languages and Systems, 2002, pp. 61–70.

[9] G. Tóth, P. Hegedűs, Á. Beszédes, T. Gyimóthy, and J. Jász,
“Comparison of different impact analysis methods and programmer‟s
opinion: an empirical study,” in 8th International Conference on the
Principles and Practice of Programming in Java - PPPJ ‟10, 2010, pp.
109–118.

[10] W. Wang, Y. He, T. Li, J. Zhu, and J. Liu, “An Integrated Model for
Information Retrieval Based Change Impact Analysis,” Sci. Program.,
vol. 2018, no. Article ID 5913634, pp. 1–13, 2018.

[11] Y. Zhang, C. Wan, and B. Jin, “An empirical study on recovering
requirement-to-code links,” in 17th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing - SNPD, 2016, pp. 121–
126.

[12] S. Lehnert, “A taxonomy for software change impact analysis,” in 12th
International Workshop and the 7th Annual ERCIM Workshop on
Principles on Software Evolution and Software Evolution - IWPSE-
EVOL ‟11, 2011, pp. 41–50.

[13] T. Mens, J. Buckley, M. Zenger, and A. Rashid, “Towards a Taxonomy
of Software Evolution,” Journal of Software Maintanance and
Evolution, vol. 17, no. 5, pp. 309–332, 2005.

[14] A. Aryani, I. D. Peake, and M. Hamilton, “Domain-based change
propagation analysis: An enterprise system case study,” in 2010 IEEE
International Conference on Software Maintenance, 2010, pp. 1–9.

[15] F. M. A. Erich, C. Amrit, and M. Daneva, “A qualitative study of
DevOps usage in practice,” Journal of Software Evolution and Process,
vol. 29, no. 6, p. e1885, 2017.

[16] A. Eck, F. Uebernickel, and W. Brenner, “Fit for continuous integration:
how organizations assimilate an agile practice,” in 20th Americas
Conference on Information Systems - AMCIS ‟14, 2014, pp. 1–11.

[17] M. Rath, D. Lo, and P. Mäder, “Analyzing requirements and traceability
information to improve bug localization,” Proc. 15th Int. Conf. Min.
Softw. Repos. - MSR ‟18, pp. 442–453, 2018.

[18] J. Cleland-Huang, A. Zisman, and O. Gotel, Software and Systems
Traceability, 1st ed. London: Springer-Verlag London, 2012.

[19] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom,
“Change detection in hierarchically structured information,” ACM
SIGMOD Rec., vol. 25, no. 2, pp. 493–504, 1996.

[20] E. Kitsu, T. Omori, and K. Maruyama, “Detecting Program Changes
from Edit History of Source Code,” in 20th Asia-Pacific Software
Engineering Conference (APSEC), 2013, pp. 299–306.

[21] B. Fluri and H. C. Gall, “Classifying Change Types for Qualifying
Change Couplings,” in 14th IEEE International Conference on Program
Comprehension (ICPC‟06), 2006, vol. 2006, pp. 35–45.

[22] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Montperrus,
“Fine-grained and accurate source code differencing,” in 29th
ACM/IEEE International Conference on Automated Software
Engineering - ASE ‟14, 2014, pp. 313–324.

[23] T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer, “Detecting similar
Java classes using tree algorithms,” in International Workshop on
Mining Software Repositories - MSR ‟06, 2006, pp. 65–71.

[24] H. Cho, J. Gray, Y. Cai, S. Wong, and T. Xie, “Model-Driven Impact
Analysis of Software Product Lines,” in Model-Driven Domain Analysis
and Software Development, IGI Global, 2011, pp. 275–303.

[25] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based change
impact analysis techniques,” Softw. Test. Verif. Reliab., vol. 23, no. 8,
pp. 613–646, Dec. 2013.

[26] I. G. Czibula, G. Czibula, D. L. Miholca, and Z. Marian, “Identifying
Hidden Dependencies in Software Systems,” Stud. Univ. Babeș-Bolyai
Inform., vol. 62, no. 1, pp. 90–106, 2017.

[27] S. Wong, Y. Cai, and M. Dalton, “Change Impact Analysis with
Stochastic Dependencies,” PA, USA, 2011.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

109 | P a g e

www.ijacsa.thesai.org

[28] M. Acharya and B. Robinson, “Practical change impact analysis based
on static program slicing for industrial software systems,” in 33rd
International Conference on Software Engineering - ICSE ‟11, 2011, pp.
746–755.

[29] M.-A. Jashki, R. Zafarani, and E. Bagheri, “Towards a more efficient
static software change impact analysis method,” in 8th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering - PASTE ‟08, 2008, pp. 84–90.

[30] G. A. Oliva, M. A. Gerosa, D. Milojicic, and V. Smith, “A change
impact analysis approach for workflow repository management,” in
IEEE 20th International Conference on Web Services, ICWS 2013,
2013, pp. 308–315.

[31] S. J. Kabeer, M. Nayebi, G. Ruhe, C. Carlson, and F. Chew, “Predicting
the Vector Impact of Change - An Industrial Case Study at Brightsquid,”
in ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2017, pp. 131–140.

[32] M. Shahid and S. Ibrahim, “Change impact analysis with a software
traceability approach to support software maintenance,” in 13th
International Bhurban Conference on Applied Sciences and Technology
(IBCAST), 2016, pp. 391–396.

[33] F. Déhoulé, L. Badri, and M. Badri, “A Change Impact Analysis Model
for Aspect Oriented Programs,” in 12th International Conference on
Evaluation of Novel Approaches to Software Engineering, 2017, pp.
144–157.

[34] M. Borg, K. Wnuk, B. Regnell, and P. Runeson, “Supporting Change
Impact Analysis Using a Recommendation System: An Industrial Case
Study in a Safety-Critical Context,” IEEE Trans. Softw. Eng., vol. 43,
no. 7, pp. 675–700, 2017.

[35] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and precise
dynamic impact analysis using execute-after sequences,” in 27th
International Conference on Software Engineering - ICSE ‟05, 2005, pp.
432–441.

[36] Y. Wang, J. Zhang, and Y. Fu, “Rule-Based Change Impact Analysis
Method in Software Development,” in 2nd International Conference on
Computer Engineering, Information Science & Application Technology
- ICCIA, 2017, vol. 74, pp. 396–403.

[37] D. Kchaou, N. Bouassida, and H. Ben-Abdallah, “UML models change
impact analysis using a text similarity technique,” IET Softw., vol. 11,
no. 1, pp. 27–37, 2017.

[38] X. Ren, B. G. Ryder, M. Stoerzer, and F. Tip, “Chianti: a change impact
analysis tool for Java programs,” in 27th International Conference on
Software Engineering - ICSE ‟05, 2005, pp. 664–665.

[39] A. M. D. Duarte, D. Duarte, and M. Thiry, “TraceBoK: Toward a
Software Requirements Traceability Body of Knowledge,” in 24th
International Requirements Engineering Conference, 2016, pp. 236–245.

[40] A. Goknil, I. Kurtev, and K. van den Berg, “A Rule-Based Change
Impact Analysis Approach in Software Architecture for Requirements
Changes,” eprint arXiv:1608.02757, pp. 1–44, 2016.

[41] S. Lehnert, “Multiperspective Change Impact Analysis to Support
Software Maintenance and Reengineering,” University of Hamburg,
2015.

[42] S. Lehnert, Q. U. A. Farooq, and M. Riebisch, “Rule-based impact
analysis for heterogeneous software artifacts,” in European Conference
on Software Maintenance and Reengineering - CSMR, 2013, pp. 209–
218.

[43] H. Kagdi, “Improving change prediction with fine-grained source code
mining,” in 22nd IEEE/ACM International Conference on Automated
Software Engineering - ASE ‟07, 2007, pp. 559–562.

[44] A. R. Sharafat and L. Tahvildari, “A Probabilistic Approach to Predict
Changes in Object-Oriented Software Systems,” in 11th European
Conference on Software Maintenance and Reengineering - CSMR‟07,
2007, pp. 27–38.

[45] T. H. D. Nguyen, B. Adams, and A. E. Hassan, “Studying the impact of
dependency network measures on software quality,” in 2010 IEEE
International Conference on Software Maintenance, 2010, pp. 1–10.

[46] F. Angerer, H. Prahofer, and P. Grunbacher, “Modular Change Impact
Analysis for Configurable Software,” in 2016 IEEE International
Conference on Software Maintenance and Evolution - ICSME, 2016, pp.
468–472.

[47] B. Dit et al., “ImpactMiner: a tool for change impact analysis,” in 36th
International Conference on Software Engineering - ICSE Companion
2014, 2014, pp. 540–543.

[48] L. Zhang, M. Kim, and S. Khurshid, “FaultTracer: a change impact and
regression fault analysis tool for evolving Java programs,” in ACM
SIGSOFT 20th International Symposium on the Foundations of
Software Engineering - FSE ‟12, 2012, pp. 40:1-40:4.

[49] H. C. Gall, B. Fluri, and M. Pinzger, “Change Analysis with Evolizer
and ChangeDistiller,” IEEE Softw., vol. 26, no. 1, pp. 26–33, 2009.

[50] S. Wong and Y. Cai, “Predicting change impact from logical models,” in
IEEE International Conference on Software Maintenance, ICSM, 2009,
pp. 467–470.

[51] L. C. Briand, Y. Labiche, and L. O‟Sullivan, “Impact analysis and
change management of UML models,” in International Conference on
Software Maintenance, ICSM 2003, 2003, pp. 256–265.

[52] M. Sherriff and L. Williams, “Empirical software change impact
analysis using singular value decomposition,” in 1st International
Conference on Software Testing, Verification and Validation, ICST,
2008, pp. 268–277.

[53] L. Hattori, G. dos Santos Jr, F. Cardoso, and M. Sampaio, “Mining
software repositories for software change impact analysis: a case study,”
in SBBD ‟08 23rd Brazilian symposium on Databases, 2008, pp. 210–
223.

[54] A. De Lucia, F. Fasano, and R. Oliveto, “Traceability management for
impact analysis,” in Frontiers of Software Maintenance, 2008, pp. 21–
30.

[55] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated impact
analysis for managing software changes,” in 2012 34th International
Conference on Software Engineering - ICSE, 2012, pp. 430–440.

[56] J. Cleland-Huang, O. C. Z. Gotel, J. H. Hayes, P. Mäder, and A. Zisman,
“Software traceability: trends and future directions,” in Future of
Software Engineering - FOSE 2014, 2014, pp. 55–69.

[57] I. Pete and D. Balasubramaniam, “Handling the differential evolution of
software artefacts: A framework for consistency management,” in IEEE
22nd International Conference on Software Analysis, Evolution, and
Reengineering - SANER, 2015, pp. 599–600.

[58] M. L. Lee, “Change impact analysis of object-oriented software,”
George Mason University, Virginia, 1998.

[59] V. Farcic, The DevOps 2.0 Toolkit: Automating the Continuous
Deployment Pipeline with Containerized Microservices, 1st ed.
CreateSpace Independent Publishing Platform, 2016.

[60] C. Lee, L. Guadagno, and X. Jia, “An agile approach to capturing
requirements and traceability,” in 2nd International Workshop on
Traceability in Emerging Forms of Software Engineering, 2003, pp. 1–7.

[61] J. Hembrink and P.-G. Stenberg, “Continuous integration with Jenkins,”
Coach. Program. Teams - EDA 270, pp. 1–8, 2013.

[62] A. M. Berg, Jenkins Continuous Integration Cookbook, 2nd ed. Packt
Publishing, 2015.

[63] “Travis CI,” Travis CI, 2018. [Online]. Available: https://travis-ci.org/.
[Accessed: 05-Jul-2017].

[64] S. Zhang, Z. Gu, Y. Lin, and J. Zhao, “Change impact analysis for
AspectJ programs,” in IEEE International Conference on Software
Maintenance, 2008, pp. 87–96.

[65] J. Tyree and A. Akerman, “Architecture decisions: Demystifying
architecture,” IEEE Softw., vol. 22, no. 2, pp. 19–27, 2005.

[66] A. Sarma, D. F. Redmiles, and A. Van Der Hoek, “Palantír: Early
detection of development conflicts arising from parallel code changes,”
IEEE Trans. Softw. Eng., vol. 38, no. 4, pp. 889–908, 2012.

[67] L. Passos, S. Apel, C. Kästner, K. Czarnecki, A. Wasowski, and J. Guo,
“Feature Oriented Software Evolution,” in 7th International Workshop
on Variability Modelling of Software-intensive Systems - VaMoS ‟13,
2013, pp. 17:1-17:8.

[68] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering
traceability links in software artifact management systems using
information retrieval methods,” ACM Trans. Softw. Eng. Methodol.,
vol. 16, no. 4, pp. 13:1-13:50, 2007.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

110 | P a g e

www.ijacsa.thesai.org

[69] G. Buchgeher and R. Weinreich, “Automatic Tracing of Decisions to
Architecture and Implementation,” in 9th Working IEEE/IFIP
Conference on Software Architecture, 2011, pp. 46–55.

[70] J. Cleland-Huang, C. K. Chang, and M. Christensen, “Event-based
traceability for managing evolutionary change,” IEEE Trans. Softw.
Eng., vol. 29, no. 9, pp. 796–810, 2003.

[71] G. Bavota, L. Colangelo, A. De Lucia, S. Fusco, R. Oliveto and A.
Panichella, “TraceME: Traceability Management in Eclipse”, In 28th
IEEE International Conference on Software Maintenance - ICSM, 2012,
pp. 642–645.

[72] IBM, “IBM-Rational DOORS”, Available https://www.ibm.com/us-
en/marketplace/rational-doors, [October 14, 2018].

[73] A. Egyed, “A scenario-driven approach to traceability”, In 23rd
International Conference on Software Engineering, ICSE, 2001, pp.
123–132.

[74] LDRA, “TBmanager”, Available https://ldra.com/industrial-energy/
products /tbmanager/tbmanager/, [January, 10, 2019].

[75] E. C. Nistor, J. R. Erenkrantz, S. A. Hendrickson and A. van der Hoek,
“ArchEvol: versioning architectural-implementation relationships”, In
12th International Workshop on Software Configuration Management,
SCM, 2005, pp. 99–111.

[76] “ReqView,” 2018. [Online]. Available: https://www.reqview.com/.
[Accessed: 07-May-2018].

[77] E. Dashofy, H. Asuncion, S. Hendrickson, G. Suryanarayana, J.
Georgas, and R. Taylor, “ArchStudio 4: An Architecture-Based Meta-
Modeling Environment,” In 29th International Conference on Software
Engineering - ICSE, 2007, pp. 67–68.

