
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

111 | P a g e

www.ijacsa.thesai.org

A GRASP-based Solution Construction Approach for

the Multi-Vehicle Profitable Pickup and Delivery

Problem

Abeer I. Alhujaylan
1
, Manar I. Hosny

2

Computer Science Department

College of Computer and Information Sciences (CCIS)

King Saud University (KSU)

Riyadh, Saudi Arabia

Abstract—With the advancement of e-commerce and Internet

shopping, the high competition between carriers has made many

companies rethink their service mechanisms to customers, in

order to ensure that they stay competitive in the market.

Therefore, companies with limited resources focus on serving

only customers who provide high profits at the lowest possible

cost. The Multi-Vehicle Profitable Pickup and Delivery Problem

(MVPPDP) is a vehicle routing problem and one variant of the

Selective Pickup and Delivery Problem (SPDP) that is considered

to plan the services for these types of companies. The MVPPDP

aims to serve only the profitable customers, where the products

are transformed from a selection of pickup customers to the

corresponding delivery customers, within a given travel time

limit. In this paper, we utilize the construction phase of the well-

known Greedy Randomized Adaptive Search Procedure

(GRASP) to build initial solutions for the MVPPDP. The

performance of the proposed method is compared with two

greedy construction heuristics that were previously used in the

literature to build the initial solutions of the MVPPDP. The

results proved the effectiveness of the proposed method, where

eight new initial solutions are obtained for the problem. Our

approach is especially beneficial for building a population of

solutions that combine both diversity and quality, which can help

to obtain good solutions in the improvement phase of the

problem.

Keywords—Selective pickup and delivery problem; multi-

vehicle profitable pickup and delivery problem; greedy randomized

adaptive search procedure; metaheuristic algorithms

I. INTRODUCTION

Transportation management is considered one of the most
difficult problems facing people and governments in different
countries all over the world. In our daily life, millions of
people use land, sea, or air transport means to commute from
one place to another, raising the need to optimize the planning
of these services, in order to reduce their cost as well as their
negative environmental impacts. Therefore, a lot of research
has been conducted recently to address these problems in the
fields of computer science, operations research, and industrial
engineering. Land transport, in particular, has received a great
interest from researchers, due to its huge volume. Research
efforts try to optimize the daily use of the means of
transportation, such as cars, buses, trucks, trains, motorcycles,
trams, etc. Among the most known land transport problems

are: vehicle routing problems [1], pickup and delivery
problems [2], bus scheduling problems [3], truck routing
problems [4], cash transportation problems [5], railroad
blocking problems [6], and others [7][8][9].

Researchers in this field generally aim at minimizing
congestion and the environmental damage of the
transportation services, caused by harmful emissions, such as
carbon dioxide and other greenhouse gases, which cause
pollution and global warming, and have a negative effect on
people's health. In the shipment sector, for instance, the
average fleet emission for delivery trucks and vans is
kg of CO2 per gallon of diesel consumed [10]. Furthermore,
many trucks are not exploited to their full capacity, where
statistics indicate that to of pollution, traffic
congestion, and accidents are caused by empty trucks [11].
Besides the environmental damage, the inefficient regulation
of the trucks’ paths and the non-exploitation of their full
capacity has an economic effect on the companies that work in
the transport sector. In order for these companies to remain
and continue its activities in the market, many solutions are
suggested to increase the companies' profits, as well as to
reduce their costs.

The Vehicle Routing Problem (VRP) is a well-known
combinatorial optimization problem that deals with
transportation network management and the scheduling and
distribution of vehicles and goods. The VRP is concerned with
planning and organizing the distribution of goods to find the
appropriate routes to transfer the customers' demands by using
one or more homogeneous fleet of vehicles. Each vehicle has
a limited capacity and it starts its tour from a distribution
center (depot), then it transfers goods to customers, and
returns to the distribution center. In the literature, several
types of the VRP with different complex constraints have been
presented and solved over the last 50 years which contributed
to minimizing a lot of road transportation problems, such as,
pollution and congestion[12].

The Pickup and Delivery Problem (PDP) is an important
variant of the VRP, which aims to minimize the total
transportation cost when distributing goods or people from
one location (pickup node) to another location (delivery node).
The PDP also has several important variants and applications,
such as the transportation of raw materials from suppliers to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

112 | P a g e

www.ijacsa.thesai.org

factories, the distribution of beverages and the collection of
empty bottles and cans, shipping cargos, etc. One relatively
new variant of the PDP is the Selective Pickup and Delivery
Problem (SPDP), which has recently started to receive interest
in the academic literature. The can be distinguished
from the standard by relaxing the constraint that all
nodes must be visited. The helps companies that have
limited resources and wish to provide high level services to
customers with minimum possible cost, by finding the best
routes to deliver their products and pick up some of them.
Also, the SPDP contributes positively to environmental and
economic considerations; specifically, it helps to reduce the
harmful impacts of transportation that result from pollution
and congestion, by selecting only a subset of customers to be
visited. As such, solving the SPDP helps to achieve the goals
of green supply chain management [13][14][15]. There are
two types of SPDPs: (1) SPDPs subject to minimizing the
travelling cost only (e.g. [16][17][18]), and (2) subject
to minimizing the travelling cost and maximizing the profits
collection (e.g. [19] [20][21]).

The Multi-Vehicle Profitable Pickup and Delivery
Problem (MVPPDP), which has been presented by Gansterer
et al. [22], belongs to the second type of the SPDP. It
considers both travel cost and profit’s collection in the
planning process. The MVPPDP is a static problem with a
central distribution (depot), predefined number of
homogenous fleet of vehicles and a set of requests. Each
request has a predefined pair of customers, a pickup customer
and a delivery customer. Moreover, these requests include
transferring a number of homogenous products from pickup
customers (origins) to their corresponding delivery customers
(destinations) with certain associated profits. The MVPPDP
aims to plan perfect routs to serve some of the customers in a
one-day planning horizon, with the aim of maximizing the
total collected profits minus the total travel costs. Some real-
life applications of this problem include: food delivery mobile
apps, delivery companies that transfer goods from factories to
related shops, etc.

The MVPPDP is an NP-hard problem [22], which means
that exact algorithms can find an optimal solution for only a
small number of input data. Therefore, metaheuristic
algorithms have been often used to find good solutions that are
not necessarily optimal, in a reasonable processing time.

In this paper, we present a new approach to construct
initial solutions for the MVPPDP. We adapt the construction
phase of the well-known Greedy Randomized Adaptive
Search Procedure (GRASP) to the underlying problem.
GRASP is a multi-start metaheuristic that is commonly
applied to solve different combinatorial optimization
problems. It was first introduced by Feo and Resende [23]. It
consists of two phases: construction and improvement phase.
The construction phase is used to build an initial feasible
solution, while the second phase is a local search used to
improve the initial solution found in the construction phase to
get a local optimum [24]. There are several advantages of
GRASP compared to other popular metaheuristics, like
Genetic Algorithms, Simulated Annealing and Tabu Search.
These include combining the advantages of random and
greedy search, which helps the GRASP to be fast, competitive

and able to find good solutions in a reasonable time.
Furthermore, the number of parameters that need to be tuned
is small, which is another advantage that makes the GRASP
preferred over other metaheuristics [25]. Also, GRASP has
successfully contributed to solving different variants of VRP
[26] [27] [28].

The rest of this paper is organized as follows. In Section 2,
a review of some related work is presented. The definition and
mathematical formulation of the tackled problem is given in
Section 3. In Section 4, the proposed method is described in
detail. Experimental results are discussed in Section 5. Finally,
conclusions and future work are presented in Section 6.

II. LITERATURE REVIEW

The MVPPDP belongs to the type of SPDP that is subject
to minimizing the travelling costs and maximizing the profits
collection. The MVPPDP aims to visit only the profitable
customer pairs, in order to make the gathering operation as
profitable as possible. Thus, the MVPPDP can be considered
as a combination of two types of problems: the feature of
selecting a subset of customers belongs to the SPDP, while the
feature of selecting customers that have maximum revenue
belongs to the Profitable Tour Problem (PTP). Therefore, the
literature review of the MVPPDP will be classified into three
parts: The MVRPPDP, the SPDP and the PTP.

A. The Multi-Vehicle Profitable Pickup and Delivery Problem

(MVPPDP)

The MVPPDP was presented by Gansterer et al. [22]. Two
versions of the General Variable Neighborhood Search
(GVNS) were used to solve it: a sequential one (GVNSseq),
and a self-adaptive one (GVNSsa). The initial solution was
built by using a Greedy Construction Heuristic (C1) and a
Two-Stage Cheapest Insertion Heuristic (C2). Then, one of
three strategies had been selected randomly to make some
changes on the initial solution. After that, 11 neighborhoods
operators were used to improve the solution. They tested the
performance of proposed algorithms against Guided Local
Search (GLS) on a newly created dataset that is divided into
three sizes: small, medium, and large. The performance of the
C2 heuristic was found to be better than C1 for most instances.
Also, the results indicated that both variants of GVNS with the
C2 heuristic outperform GLS for all sizes of test data in terms
of solution quality. However, GLS had an advantage
regarding the average runtimes in both medium and large
sized instances.

Haddad [29] presented a new method for the MVPPDP.
The proposed algorithm combined Iterated Local Search (ILS)
and Random Variable Neighborhood Descent (RVND). Also,
the algorithm is not limited to accept only the feasible
solutions during the search. The same greedy constructive
heuristic that was used in [22] was adopted to construct the
initial solution. In order to improve the solution, several
neighborhood moves were applied. The proposed algorithm
was tested on the benchmark instances proposed by [22]. It
proved its efficiency in addressing the small and medium
sized instances, where it was able to find new best solutions on
 instances. However, the performance of the proposed
algorithm was not good enough for large sized instances.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

113 | P a g e

www.ijacsa.thesai.org

B. The Selective Pickup and Delivery Problem (SPDP)

Subject to Travelling Cost and Profits Collection

The work in [13] is an application of the SPDP, where
three heuristics were proposed to solve a complex real-life
problem appearing in the soft drinks distribution and
recyclable containers collection in a Quebec based company.
The algorithms are the Nearest Neighbor Heuristic (NNH),
First Petal Heuristic (FPH), and Second Petal Heuristic (SPH).
The results on real-life instances showed a reduction in
distance by %. The authors in [15] proposed a Mixed
Integer Liner Programming (MILP) and a Tabu Search (TS) to
solve the Single Vehicle Routing Problem with Deliveries and
Selective Pickups (SVRPDSP). Also, three heuristics were
developed: shifting pickups (SP), optimization of the sequence
of customers in the route (RC), and reducing the number of
second visits (RV). The empirical results indicated that the
proposed heuristics gave near-optimal solutions for
instances that were derived from the VRP library

1
. In [14], the

Selective Multi-Depot Vehicle Routing Problem with Pricing
(SMDVRPP) was introduced to tackle the reverse logistics
problem of companies that aim to collect cores of durable
goods from its merchants after re-buying or trade-in by
customers to encourage them to buy. Two MILPs models and
a Rich Neighborhood Tabu Search (TS-RN) were used to
solve this problem. The proposed heuristic was tested on 40
randomly generated instances, showing promising results in
terms of both accuracy and efficiency. In [20][21], two Hybrid
metaheuristics were presented to solve the SVRPDSP: Hybrid
General Variable Neighborhood Search (HGVNS) and a
hybrid metaheuristic based on an Evolutionary Algorithm
(EA). Both metaheuristics were tested on the same instances
as in [15], where the experimental results proved the
effectiveness and robustness of the proposed metaheuristics.
For the interested readers, other applications of the SPDP can
be found in [19] [30] [31] [32] and [33].

C. The Profitable Tour Problem (PTP)

The Profitable Tour Problem (PTP) shares with the SPDP
the same goal of finding a route that maximizes the difference
between the total gained profit and the total cost of traveling.
The difference between them is that in the PTP no restrictions
are imposed on the vehicle route (i.e., the vehicle's capacity,
maximum time of trip and precedence constraints are not
considered) [34]. The studies that address the PTP are so rare
in the literature [35]. In [36], a new neighborhood search is
used to solve the standard VRP. Then, an algorithm that relies
on resource constrained shortest paths is used to find the
optimal subsequence of visits. To evaluate the proposed
method, three metaheuristics were used: local improvement
method, a hybrid genetic search and an iterated local search.
The proposed strategy performed well, where it contributed to
finding new best solutions. In [37] [38], an exact approach
and three metaheuristics were proposed to solve the
capacitated team orienteering and profitable tour problems: a
VNS algorithm and two versions of Tabu Search (TS). The
first version of TS explored only feasible solutions, while the
other one explored the infeasible solutions as well. All
proposed methods succeeded to find the optimal solution

1
 http://or.dei.unibo.it/library/vrplib-vehicle-routing-problem-library

when compared on instances that were solved by a branch-
and-price algorithm. In [39], a hybrid VNS was proposed to
solve a rich variant of the PTP (RPTP). Instances of the
Orienteering Problem with Time Windows (OPTW) were
used to test the efficiency of the proposed algorithm, where it
was able to get good solutions in a reasonable time.

III. PROBLEM DEFINITION AND MATHEMATICAL

FORMULATION

The MVPPDP is a static problem, where all problem
constituents are known in advance. The problem is
characterized by having a central distribution location (depot),
a predefined number of homogenous vehicles and a set of
customers’ requests. Each request has a predefined pair of
customers: a pickup customer and a delivery customer.
Moreover, these requests include transferring a number of
homogenous products (i.e., they have the same characteristics
and quality) from pickup customers (origins) to their
corresponding delivery customers (destinations) to get profits.
Fig. 1 represents a simple example of the problem, where
there are three vehicles that serve only the profitable customer
pairs (i.e., those who make high revenues at the lowest
possible cost) among 50 customers [22].

Several constraints should be taken into consideration
when solving the MVPPDP:

 Pair constraint: Each product has a predefined pair of
pickup and delivery customers.

 Precedence constraint: the pickup customer should be
visited before its related delivery customer.

 Time constraint: Each vehicle has a certain daily travel
time that should not be exceeded during serving the
customers.

 Capacity constraint: The total amount of products
gathered at any point in time should not exceed the
capacity of the vehicle.

 Each vehicle journey should start and end from/at the
depot with empty load.

 Each customer pair cannot be visited more than once.

The objective is to select a set of customer pairs to serve
such that the revenue is maximized and its total cost is
minimized.

The MVPPDP can be formally defined as follows [40]: Let
 () be a graph in which * + defines
the vertex set, where the vertex () represents a
central depot, while the remaining vertices represent the
pickup customers * + and delivery customers
 * + *() + defines the
arc set, where each arc is associated with a non-negative
routing cost . Each delivery vertex i has a revenue to be

gained when visiting it. Also, each vertex has a supply
(pickup,) or demand (delivery,) At start,
there is no supply or demand in the depot () . In
addition, each vertex has service duration There is a set
of vehicles * + each vehicle has a load capacity
and maximum tour time

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

114 | P a g e

www.ijacsa.thesai.org

Some notations used in the following mathematical model
are described as follows: number of pickup customers and
number of delivery customers, : number of vehicles, : set
of pickup customers, * + , set of delivery
vertices, =* +, : set of all vertices including
the depot (starting point= and ending point=),
 * + set of available vehicles,
* + : revenue gained by serving a delivery customer
at vertex , supply (pickup) or demand
(delivery) at vertex , duration of service at
vertex , transportation cost when traveling from to ,

 travel time between vertex and vertex , : loading

capacity of a vehicle, : maximum travel time of a vehicle,
 binary decision variable equal to one if and only if arc
is used by vehicle , decision variable giving the loading
amount of vehicle after visiting vertex , decision
variable for the beginning of service time of vehicle at
vertex .

The mathematical model can be formulated as in [22] as
follows:

 ∑ ∑ ∑ () (1)

The constraints are

∑ ∑ (2)

∑ ∑ (3)

 (4)

 (5)

∑ () * + (6)

∑ () (7)

∑ ∑ (8)

() * + (9)

 (10)

 (11)

 (12)

 () (13)

 (14)

 (15)

 (16)

 (17)

Fig. 1. An Example of the MVPPDP.

The objective function (1) tries to maximize the total profit
by subtracting the total travel costs from the total revenues.
Constraints (2) and (3) mean that each vertex is visited at most
once. Constraints (4) and (5) mean that the origin depot
(starting point) cannot be entered, and the destination depot
(end point) cannot be departed by any vehicle . Constraint
(6) means flow conservation. Constraint (7) means that each
customer pair (pickup customer and delivery customer) has to
be served by the same vehicle. Constraint (8) means all
vehicles must start from the depot and return to the depot.
Constraint (9) means exceeding the vehicle capacity is not
allowed. Constraint (10) means that the load of a vehicle is
bounded by . Constraint (11) means that all the vehicles
start with empty load. Constraint (12) means that the delivery
customer cannot be visited before its corresponding pickup
customer. Constraint (13) means that the earliest time to start
the service at vertex is given by the beginning of service
time at vertex plus the service time at and the travel time
between and . Constraint (14) means that the maximum
time for each vehicle is restricted by . Constraint (15) means
each vehicle starts at the depot at time 0. Finally, decision
variables are defined by (16) and (17).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

115 | P a g e

www.ijacsa.thesai.org

IV. PROPOSED METHOD

Most metaheuristic algorithms start solving a problem by
generating one or more initial solutions and then they improve
them using some local search method. The type of method
used in generating the initial solution(s) plays an important
role in the efficiency and effectiveness of those algorithms,
regardless of the improvement method used. There are two
main approaches that can be used to construct initial solutions:
random and greedy. The random approach is simple, fast, and
can create diverse solutions. However, the produced random
solutions maybe of very low quality, which makes the job of
the improvement procedure harder. In contrast, the greedy
approach, which takes the objective function into
consideration while constructing a solution, is often
complicated and needs more computation time. In addition,
although it overcomes the other approach with respect to the
quality of solution, it risks getting stuck in local optima
mainly due to lack of diversity [24]. To combine the
advantages of the random and greedy approaches, Greedy-
Randomized (GR) procedures can be used. The main idea
behind these procedures in general is to select at random one
of the best (greedy) decisions (instead of the absolute best as
done in pure greedy methods). This helps in diversifying the
search and is especially beneficial for use within population-
based metaheuristics.

In our proposed method, we use a greedy-randomized
procedure that is based on the well-known GRASP (Greedy
Randomized Adaptive Search Procedure) to generate initial
solutions for the MVPPDP. As previously mentioned, the
GRASP consists of a construction phase (greedy-randomized)
and an improvement phase (local search). In this paper we
only utilize the construction phase to generate the initial
solutions for the MVPPDP. Any local search method (e.g. hill
climbing, simulated annealing, genetic algorithm, etc.) can be
used later to improve the constructed solution quality. The
framework of the greedy randomized procedure is shown in
Algorithm 1 [24]. We adapted the GR procedure to our
problem as explained next.

First, we select seed customers for each route based on a
greedy approach. Then, we fill up the routes with the rest of
the customers, based on combining two criteria: greediness
and randomness.

Because of the importance of selecting seed customers and
their clear impact on the performance of the algorithm in
general, several heuristics have been proposed. The seed
vertex is usually selected according to a specific criterion,
often in relation to the depot (e.g., nearest, farthest, related, ...,
etc.). In our method, we select the seed customer pairs for
each route according to a certain measure that we call the
Customer Benefit (CB). The CB is calculated based on the
revenue gained after delivering the demand to the delivery
customer, with respect to the distance between the customer
pair. Using the notations of Section 3, the customer benefit of
a customer pair () is calculated as shown in Equation
(18):

 (18)

Algorithm 1: The greedy-randomized procedure[24]

Where is the revenue gained after delivering the

goods to the delivery customer, and is the cost of

travelling from the pickup node to the delivery node. Thus, the
CB tries to rank customers based on their relative benefit
versus cost with respect to the operating company. The
customer pair that has the highest benefit is selected to be a
seed customer.

After selecting the seed customer in the route, several
candidate sub-routes will be generated for each vehicle. The
following steps will be repeated to fill up each vehicle until
either the final allowed time of the vehicle has been reached or
no more customer pairs need to be served. Firstly, insert all
customer pairs that are not served yet, where each pair of
customers is inserted individually into a route in the best
possible position. That is, the position that leads to the lowest
possible total distance. While doing this, in order to achieve
the precedence constraint, the best position for the delivery
customer will be selected after adding the pickup customer.

After that, we calculate what we call the Insertion Ratio
(IR) for each candidate pair [40]. For example, suppose we
have the nodes (), where (pickup) and
 (delivery), and represents the depot. Also
assume that the current route is { }, where () is
a seed customer pair, while () is the candidate customer
pair to be added in the route. After determining the best
position of () assume that the route will be
{ }. Thus, the insertion ratio of () is
computed by dividing its revenue by its insertion cost (in its
best position) in the route, as shown in Equation 19:

() ()
 (19)

Thus, the IR represents the greedy property of selecting the
next customer to be inserted in the route. Then, all the
candidate customer pairs will be sorted in descending order
with respect to their IR values and assigned to the Candidate
Solution Set (CSS). After this, the first half of the candidate
solution set is assigned to the Restricted Candidate List (),
so that the opportunity of selecting a good pair of customers
increases. Thus, the random property lies in choosing one
customer pair randomly from the . The previous process
will be repeated to add the rest of the un-served pairs of
customers, while considering the time limit and the vehicle
capacity constraint. Once the time limit of the vehicle has
been exhausted, a new route (vehicle) will be initiated. At the
end, we will have an initial solution for the MVPPDP which
contains a number of routs equal to the number of vehicles.

Evaluate the fitne value of all candidate element ;
𝐑𝐞𝐩𝐞𝐚𝐭

𝐔𝐧𝐭𝐢𝐥 omplete olution i con tructed

𝑆 *+ ; //Initialize the current olution to empty

 on truct the e tricted andidate i t 𝑅𝐶𝐿 based on the fitness

values of the candidate element
 // elect one element randomly from the 𝑅𝐶𝐿

 𝑒 = electAt andom(𝑅𝐶𝐿) ;

 If 𝑠 𝑒 is feasible then

 𝑠 𝑠 𝑒 ;
 Reevaluate the fitness values of candidate elements;

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

116 | P a g e

www.ijacsa.thesai.org

To increase the opportunity of getting better solutions, we
decided to use the concept of the population-based
metaheuristics, where a number of solutions are generated at
the same time and then we select the best one according to a
certain evaluation criterion. Therefore, the previous method of
generating the initial solution will be repeated several times
according to the population size to generate a number of
candidate solutions. The quality of each candidate solution is
evaluated in terms of the value of the objective function (OF).
This objective function is defined as maximizing the total
profit by subtracting the total travel cost from the revenues
collected, as shown in Equation (1). After that, the best
solution that has the highest value is saved in a matrix to
compare it with other best solutions that are selected from
different iterations. Finally, we select the best overall solution
which represents the initial solution for the MVPPDP.

The outline of the construction phase of our GRASP is
presented in Algorithm 2, where the meaning of each notation
is as follows: Pop_Size: the size of the population, Max_Iter:
maximum number of iterations, Num_Vehicles: number of
vehicles, CSS: Candidate Solutions Set, RCL: Restricted
Candidate List, US: Un-Served pairs of customers and SM:
Solutions Matrix that contains the best solutions in the
population for each iteration.

V. COMPUTATIONAL EXPERIMENTS

The computational experiments aim to compare the
performance of our proposed algorithm with the construction
heuristics used in [40]: the Greedy Construction Heuristic and
the Two-Stage Cheapest Insertion Heuristic. Before we
present the results of the experiments, we describe the dataset
that was used to test the algorithm and the values chosen for
each parameter.

A. Test Instances

We used the same instances that are proposed in [22] and
[40]

2
. The data instances are 36 instances, which are classified

into three groups: small size, which contains 20 and 50
customers, medium size, which contains 100 and 250
customers and large size which contains 500 and 1000
customers. The number of instances in each group is 12
instances. The customers are set to be pickup customers and
delivery customers. There is only one central depot, There are
at most 8 vehicles which are organized as follows: 2 vehicles
to serve 20 customers, 3 vehicles to serve 50 customers, 4
vehicles to serve 100 customers, 5 vehicles to serve 250
customers, 6 vehicles to serve 500 customers and 8 vehicles to
serve 1000 customers. The capacity of the vehicle is between
[50, 120]. Each pickup customer has an integer demand value
between [1, 50], which is transported from a pickup customer
and delivered to the related delivery customer to get the
associated revenue. The revenue amounts are set to be either
fixed for all customers, proportional to the demands, or
randomly. Also, the total time limit is set to be either small or
large, where the range is within [2500, 15000] to generate
short and long routes.

2 We note that [22] is the published paper of the thesis in [40].

B. Parameter Tuning

Few number of parameters that needs to be tuned is one of
the reasons that encouraged us to choose the GRASP
metaheuristic. There are only three parameters: the size of the
Candidate Solutions Set (CSS), the size of the Restricted
Candidate List (RCL), and the number of iterations
(Max_Iter). In our method, we added a fourth parameter
which is the size of the population (Pop_size); that is the
number of solutions that were generated using the greedy-
randomized approach, and the best one is selected before
moving to the next iteration. Empirical experiments were
performed to select the suitable value for each parameter. Six
medium-sized data instances have been used to tune the
parameters. These are the data instances containing
customers that are served by vehicles. All three revenue
states were considered in the instances namely fixed revenue
for all customers, proportional revenue to demand and
randomly selected revenues. Also, each revenue case has been
tested twice: when the vehicle capacity is units and the
total time limit is 6000 to generate a long route, and when the
vehicle capacity is and a total time limit is to
generate a short route. The details of testing each parameter
are as follow:

1) The size of the Restricted Candidate List (RCL): To

increase the diversity of solutions, half of the solutions that are

found in the CSS were assigned to the RCL; i.e., if the number

of solutions in , then ⌈() solutions are assigned

to the RCL. This value has been chosen by trial, since

choosing a smaller size for the RCL resulted in solutions that

are similar to each other and thus lack diversity.

2) The number of iterations: Table I shows the objective

function values after testing six datasets: customers with

fixed revenue to generate short route (- -S), 100

customers with fixed revenue to generate long route (- -

), customers with proportional revenue to generate short

route (100-P-S), 100 customers with proportional revenue to

generate long route (100-P-L), 100 customers with random

revenue to generate short route (100-R-S), 100 customers with

random revenue to generate long route (100-R-L). Each data

instance was tested with different numbers of iterations: 10,

50,100 and 500. The results of testing show that there is no

enhancement in the objective function values after 100

iterations. Thus, the maximum number of iterations was taken

to be 100.

3) The size of the population: The same previous dataset

instances were tested again to select the appropriate number of

solutions in the population. The population size was increased

from 10 to solutions. Table II presents the values of the

objective function after setting the number of iterations to

 . The results showed that increasing the population size

did not lead to an improvement in the objective function

value. Thus, the population size was taken to be 10.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

117 | P a g e

www.ijacsa.thesai.org

Algorithm 2: The pseudocode of the construction phase of GRASP

TABLE I. RESULTS OF TUNING THE NUMBER ITERATIONS

Number of

Iterations

Dataset Instances

100-F-S 100-F-L 100-P-S 100-P-L 100-R-S 100-R-L

10 12826.14 25948.13 48647.27 80966.13 4336.17 74177.33

50 14053.64 29000.17 49305.84 80966.13 47310.47 75913.21

100 14053.64 29000.17 51323.10 80966.13 47310.47 76031.08

500 14053.64 29000.17 51323.10 80966.13 47310.47 76031.08

TABLE II. RESULTS OF TUNING THE POPULATION SIZE

Dataset instances
Population size

10 20

100-F-S 14053.64 14053.64

100-F-L 29000.17 29000.17

100-P-S 51323.10 51323.10

100-P-L 80966.13 80966.13

100-R-S 47310.47 47310.47

100-R-L 76031.08 76031.08

C. Experimental Results

In this experiment, the proposed algorithm was run 5 times
for every dataset. The stopping criterion is the number of
iterations which is 100 for all datasets except the large-sized
data instances which was set to 20 iterations only, due to time
limitation. Before presenting the results of our method, we
describe briefly the main construction heuristics that were
used in [40], since we are comparing our results with them.

In the Greedy Construction Heuristic (C1), the customer
pairs are added sequentially to the route based on the value of
the Selection Ratio (SR). In each iteration, the SR is calculated
for all candidate customer pairs () as follows:

 (20)

Where is a revenue of the candidate pair, is the

distance from the last vertex () in the route to the candidate
pickup customer, is the distance between the candidate

customer pair nodes, and is the distance from the

candidate delivery customer to the depot. Then, the customer
pair that has the highest selection ratio is inserted into the
route. This procedure is repeated until either the allowed time
is consumed or no more customer pairs need to be served. In
the C1 heuristic, there is no need to check the precedence and
capacity constraints, because each delivery customer is added
directly after the related pickup customer.

The Two-Stage Cheapest Insertion Heuristic (C2) works
as follow: In the first stage, select the seed customer pair for
each route, based on the Idle Distance (ID), which is
computed for each candidate pair () as follows:

I (21)

Where is the distance from the depot to the candidate

pickup customer, and is the distance from the candidate

delivery customer to the depot. The pair with the shortest ID is
selected to be a seed customer for the route. Then, the routes
are constructed with the rest of unvisited customers by
computing the Insertion Ration (IR) for each customer pair as

For 𝑖=1 to Max_Iter

 For 𝑆=1 to Pop_Size

 For 𝑘=1 to Num_Vehicles

 Phase 1: Seed Vertex Selection

 Step 1: Compute the Customer Benefit (CB) for all pairs of customers

 Step 2: Select the customer pair that has the highest CB and insert it in
 the route as a seed customer

 Phase 2: Route Construction

 While Maximum Route Time is not violated

 Step 3: For each customer pair 𝑈𝑆, insert it in the best position in the route after checking the precedence,

 time, and capacity constraints
 Step 4: Compute the insertion Ratio (IR) for all candidate customer pairs, based on their best insertion

 position calculated in Step 3.

 Step 5: Put all the candidate customer pairs in the 𝐶𝑆𝑆 in descending order of IR

 Step 6: Assign half of the candidate customer pairs in the 𝐶𝑆𝑆 to the 𝑅𝐶𝐿

 Step 7: Pick one customer pair randomly from the 𝑅𝐶𝐿 and insert it in its best position in the route, as
 calculated in Step 3.

 End While

 End For

 Step 8: Compute the objective function for the solution and assign the solution to the 𝑆𝑀

 End For

 Step 9: Select the best solution that has the highest objective function in 𝑆𝑀 and assign it to Final-Best-Solutions matrix

End For

Step 10: Select the best solution that has the highest objective function in the Final-Best-Solutions matrix to be the initial solution for the 𝑀𝑉𝑃𝑃𝐷𝑃

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

118 | P a g e

www.ijacsa.thesai.org

done in Equation (19). The customer pair with the highest IR
is inserted in the route with respect to the precedence and
capacity constraints. The second stage of the algorithm, tries
to insert all customers that have not been inserted in the first
stage, due to capacity violation.

Table III presents the results of constructing initial
solutions for the MVRPPDP using our GRASP method. The
results are calculated in terms of the objective function (OF)
of the solution (i.e., the gained profit), which is equal to total

revenue – total cost, as previously shown in Equation (1).
Thus, the larger the OF value, the better is the solution
obtained. The results of our GRASP were compared with the
results of C1 and C2. In Table III, the first column presents the
instance name. The following two columns show the results of
GRASP in terms of the average and best objective value of 5
runs respectively. The third and fourth columns represent the
results of C1 and C2 algorithms in terms of the best objective
value. For each group of instances of a particular size, the
average results are shown in the highlighted row.

TABLE III. COMPARISON OF THE RESULTS THE GRASP WITH C1 AND C2 IN TERMS OF PROFIT

Instance Name GRASP (AVG) GRASP (Best) C1 (Best) C2 (Best)

20-F-S 18097.3 18097.3 16185.4 21400

20-F-L 37937.2 37937.3 22006.2 32400.1

20-P-S 39957.7 39957.7 39646.5 43528

20-P-L 57763.9 57763.9 54849.9 55775.5

20-R-S 30039.9 30039.9 22954.4 26884

20-R-L 42845.9 42845.8 30486.7 41933

Average_20 37773.65 37773.65 31021.5167 36986.7667

50-F-S 18396.2 18443.6 15000.5 17958.2

50-F-L 32686.3 33259.2 34988.2 43008.3

50-P-S 53631.8 53631.8 53694.8 38796.9

50-P-L 91164.1 92502.1 99109 62731.2

50-R-S 24364.4 24364.5 19789.7 24619.2

50-R-L 52889.2 54712.1 45326.9 51723.3

Average_50 45522 46152.21667 44651.5167 39806.1833

100-F-S 13369.3 13749.3 19033.1 28818.1

100-F-L 27336.9 28692.9 31825.6 55322.2

100-P-S 51218.1 54475.1 44329.1 46547.4

100-P-L 80299.3 86141.8 69459.3 79541.3

100-R-S 46160.4 46450.7 49912,7 70214.6

100-R-L 76019.9 77136.6 63116.1 91663.1

Average_100 49067.3167 51107.73333 45552.64 62017.7833

250-F-S 10831.9 11231.9 27676.1 40906.1

250-F-L 49193.5 50980.9 44456 67845.1

250-P-S 33041.9 34606.8 63930 43247.3

250-P-L 102591 107171.1 112471 94126.8

250-R-S 40446.5 41914 79486.1 102873

250-R-L 128304.5 129344.6 130371 143886

Average_250 60734.8833 62541.55 71898.3667 83647.3833

500-F-S 21758.3 24012.2 49210 78580.2

500-F-L 84616.4 85889.1 73299.8 135652

500-P-S 49864.8 51297.9 124075 84513.6

500-P-L 138057.2 142740.2 179001 169098

500-R-S 54859.3 56901.7 108049 116568

500-R-L 163822.4 166232.5 170205 218965

Average_500 85496.4 87845.6 117306.633 133896.133

1000-F-S 9132.4 11045.9 27655.6 66345.3

1000-F-L 56276.1 58068.2 32078.4 112840

1000-P-S 134015.9 141167.4 264997 152307

1000-P-L 325103.1 340418.4 380514 318268

1000-R-S 99173.9 102051 193390 197083

1000-R-L 268887.4 271613.1 275805 362266

Average_1000 148764.8 154060.6667 195740 201518.217

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

119 | P a g e

www.ijacsa.thesai.org

D. Results and Discussion

Observing the results in Table III, the proposed algorithm
demonstrated good performance on average in solving the
small and some medium-sized data instances, where we got
new best solutions for 8 data instances (bold values). Also, we
got 8 solutions that were better than either C1 or C2
(underlined values). However, the proposed algorithm was not
the best one for the large instances on average, but its
performance was acceptable in some cases where we got two
solutions that are better than one of the other two heuristics.
This is probably due to decreasing the number of iterations for
the large instances due to extensive time consumption. Also,
we observed that when the GRASP was better than one of the
other heuristics, its performance was better than C1 for
instances with fixed and random profits (except 20-P-S). On
the other hand, it was better than C2 on instances with
proportional profits to its demand. Overall, we believe that our
method is comparable with the other two methods and has the
advantage of being able to construct a number of solutions (a
population) that are characterized with the greedy-randomized
feature, rather than just one greedy solution as done in the
other two construction methods.

VI. CONCLUSION

In this paper, the construction phase of a Greedy
Randomized Adaptive Search Procedure (GRASP) was used
to build initial solutions for the Multi-Vehicle Profitable
Pickup and Delivery Problem (MVPPDP). The algorithm uses
the concept of a Restricted Candidate List (RCL) to combine
between random and greedy properties, which can help in the
diversification of the search, and is especially beneficial for
population-based metaheuristics. The performance of our
algorithm was compared with two construction heuristics that
were previously used to build the initial solutions of the
MVPPDP. The results proved the effectiveness of the
proposed method on small-medium sized instances, where
eight new solutions were obtained for the MVPPDP. Also, the
GRASP method had a better performance than one of the
other construction heuristics on 11 test instances.
Nevertheless, the proposed method is not currently able to
produce good results on large-sized instances (500 and 1000
customers). This is possibly due to decreasing the number of
iterations because of time limitations. Future work will try to
improve the performance of the algorithm by optimizing its
runtime. In addition, a second phase may be added to try to
insert un-visited customers to increase the profit of the
company and improve the quality of the initial solutions.
Finally, an improvement phase, using a selected population-
based metaheuristic, will be added to improve the initial
constructed solutions by the GRASP based method.

REFERENCES

[1] Toth, Paolo and Vigo, The vehicle routing problem. SIAM, 2002.

[2] R. F. Parragh, Sophie N and Doerner, Karl F and Hartl, “A survey on
pickup and delivery problems,” J. für Betriebswirtschaft, vol. 58, no. 1,
pp. 21–51, 2008.

[3] J. Saha, “An algorithm for bus scheduling problems,” J. Oper. Res. Soc.,
vol. 21, no. 4, pp. 463–474, 1970.

[4] U. Y. ¨ uceer and A. ¨ O. ¨ ¸a, “A truck loading problem,” Comput. Ind.
Eng., vol. 58, no. 4, pp. 766–773, 2010.

[5] M.-W. Yan, Shangyao and Wang, Sin-Siang and Wu, “A model with a
solution algorithm for the cash transportation vehicle routing and
scheduling problem,” Comput. Ind. Eng., vol. 63, no. 2, pp. 464–473,
2012.

[6] P. H. Barnhart, Cynthia and Jin, Hong and Vance, “Railroad blocking: A
network design application,” Oper. Res., vol. 48, no. 4, pp. 603–614,
2000.

[7] R. A. Díaz-Parra, O., Ruiz-Vanoye, J. A., Bernábe Loranca, B., Fuentes-
Penna, A., & Barrera-Cámara, “A survey of transportation problems,” J.
Appl. Math., vol. 2014, 2014.

[8] J. R. F. Cornillier, F. F. Boctor, G. Laporte, “An exact algorithm for the
petrol station replenishment problem,” J. Oper. Res. Soc., vol. 59, no. 5,
pp. 607–615, 2008.

[9] R. C. C. Zhu, J. Q. Hu, F. Wang, Y. Xu, “On the tour planning
problem,” Ann. Oper. Res., vol. 192, pp. 67–86, 2012.

[10] D. Kodjak, “Policy discussion--heavy-duty truck fuel economy,” 10th
Diesel Engine Emiss. Reduct., 2004.

[11] M. Gansterer, R. F. Hartl, and R. Vetschera, “The cost of incentive
compatibility in auction-based mechanisms for carrier collaboration,”
Networks, Jun. 2018.

[12] C. Lin, K. L. Choy, G. T. S. Ho, S. H. Chung, and H. Y. Lam, “Survey
of Green Vehicle Routing Problem: Past and future trends,” Expert Syst.
Appl., vol. 41, no. 4, pp. 1118–1138, Mar. 2014.

[13] J. Privé, J. Renaud, F. Boctor, and G. Laporte, “Solving a vehicle-
routing problem arising in soft-drink distribution,” J. Oper. Res. Soc.,
vol. 57, no. 9, pp. 1045–1052, Sep. 2006.

[14] N. Aras, D. Aksen, and M. Tuğrul Tekin, “Selective multi-depot vehicle
routing problem with pricing,” Transp. Res. Part C Emerg. Technol.,
vol. 19, no. 5, pp. 866–884, Aug. 2011.

[15] I. Gribkovskaia, G. Laporte, and A. Shyshou, “The single vehicle
routing problem with deliveries and selective pickups,” Comput. Oper.
Res., vol. 35, no. 9, pp. 2908–2924, Sep. 2008.

[16] C.-K. Ting and X.-L. Liao, “The selective pickup and delivery problem:
Formulation and a memetic algorithm,” Int. J. Prod. Econ., vol. 141, no.
1, pp. 199–211, Jan. 2013.

[17] X.-L. Liao and C.-K. Ting, “An evolutionary approach for the selective
pickup and delivery problem,” in Evolutionary Computation (CEC),
2010 IEEE Congress on, IEEE, 2010, pp. 1–8.

[18] W. Y. Ho, Sin C and Szeto, “GRASP with path relinking for the
selective pickup and delivery problem,” Expert Syst. Appl., vol. 51, pp.
14–25, Jun. 2016.

[19] I. M. Coelho, P. L. A. Munhoz, L. S. Ochi, M. J. F. Souza, C. Bentes,
and R. Farias, “An integrated CPU–GPU heuristic inspired on variable
neighbourhood search for the single vehicle routing problem with
deliveries and selective pickups,” Int. J. Prod. Res., vol. 54, no. 4, pp.
945–962, Feb. 2016.

[20] I. M. Coelho, P. L. A. Munhoz, M. N. Haddad, M. J. F. Souza, and L. S.
Ochi, “A hybrid heuristic based on General Variable Neighborhood
Search for the Single Vehicle Routing Problem with Deliveries and
Selective Pickups,” Electron. Notes Discret. Math., vol. 39, pp. 99–106,
Dec. 2012.

[21] B. P. Bruck, A. G. dos Santos, and J. E. C. Arroyo, “Hybrid
metaheuristic for the single vehicle routing problem with deliveries and
selective pickups,” in Evolutionary Computation (CEC), 2012 IEEE
Congress on, IEEE, 2012, pp. 1–8.

[22] M. Gansterer, M. Küçüktepe, and R. F. Hartl, “The multi-vehicle
profitable pickup and delivery problem,” OR Spectr., vol. 39, no. 1, pp.
303–319, Jan. 2017.

[23] M. G. Feo, Thomas A and Resende, “Greedy randomized adaptive
search procedures,” J. Glob. Optim., vol. 6, no. 2, pp. 109–133, 1995.

[24] E.-G. Talbi, Metaheuristics: from design to implementation. John Wiley
\& Sons, 2009.

[25] P. Priore-Moreno, R. Pino-Diez, C. Martínez-Carcedo, V. Villanueva-
Madrileño, and I. Fernández-Quesada, “Application of GRASP
methodology to vehicle routing problem,” in Proceedings on the
International Conference on Artificial Intelligence (ICAI), 2012, p. 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 4, 2019

120 | P a g e

www.ijacsa.thesai.org

[26] A. Layeb, M. Ammi, and S. Chikhi, “A GRASP algorithm based on new
randomized heuristic for vehicle routing problem,” J. Comput. Inf.
Technol., vol. 21, no. 1, pp. 35–46, 2013.

[27] C. Duhamel, Christophe and Lacomme, Philippe and Prins, Christian
and Prodhon, “A GRASP×ELS approach for the capacitated location-
routing problem,” Comput. Oper. Res., vol. 37, no. 11, pp. 1912–1923,
Nov. 2010.

[28] Y. Marinakis, “Multiple Phase Neighborhood Search-GRASP for the
Capacitated Vehicle Routing Problem,” Expert Syst. Appl., vol. 39, no.
8, pp. 6807–6815, Jun. 2012.

[29] M. HADDAD, “AN EFFICIENT HEURISTIC FOR ONE-TO-ONE
PICKUP AND DELIVERY PROBLEMS,” Fluminense Federal
Uneversity, 2017.

[30] G. Gutiérrez-Jarpa, G. Desaulniers, G. Laporte, and V. Marianov, “A
branch-and-price algorithm for the Vehicle Routing Problem with
Deliveries, Selective Pickups and Time Windows,” Eur. J. Oper. Res.,
vol. 206, no. 2, pp. 341–349, Oct. 2010.

[31] S. Qiu, Xiaoqiu and Feuerriegel, “A MULTI-VEHICLE PROFIT-
MAXIMIZING PICKUP AND DELIVERY SELECTION PROBLEM
WITH TIME WINDOWS.”

[32] A. Baniamerian, M. Bashiri, and R. Tavakkoli-Moghaddam, “Modified
variable neighborhood search and genetic algorithm for profitable
heterogeneous vehicle routing problem with cross-docking,” Appl. Soft
Comput., vol. 75, pp. 441–460, 2019.

[33] M. Wen, J. Larsen, J. Clausen, J. Cordeau, and G. Laporte, “Vehicle
routing with cross-docking,” J. Oper. Res. Soc., vol. 60, no. 12, pp.
1708–1718, 2009.

[34] C. Archetti, M. G. Speranza, and D. Vigo, “Chapter 10: Vehicle Routing
Problems with Profits,” in Vehicle Routing: Problems, Methods, and
Applications, Second Edition, 2014, pp. 273–297.

[35] D. Toth, Paolo and Vigo, Vehicle routing : problems, methods, and
applications. Society for Industrial and Applied Mathematics, 2014.

[36] P. H. Vidal, Thibaut and Maculan, Nelson and Ochi, Luiz Satoru and
Vaz Penna, “Large neighborhoods with implicit customer selection for
vehicle routing problems with profits,” Transp. Sci., vol. 50, no. 2, pp.
720–734, 2015.

[37] C. Archetti, N. Bianchessi, and M. G. Speranza, “Optimal solutions for
routing problems with profits,” Discret. Appl. Math., vol. 161, no. 4–5,
pp. 547–557, Mar. 2013.

[38] M. G. Archetti, Claudia and Feillet, Dominique and Hertz, Alain and
Speranza, “The capacitated team orienteering and profitable tour
problems,” J. Oper. Res. Soc., vol. 60, no. 6, pp. 831–842, 2009.

[39] R. Lahyani, M. Khemakhem, and F. Semet, “Heuristics for rich
profitable tour problems,” in Modeling, Simulation and Applied
Optimization, 2013 5th International Conference on, 2013, pp. 1–3.

[40] M. Küçüktepe, “A General Variable Neighbourhood Search Algorithm
for the Multi-Vehicle Profitable Pickup and Delivery Problem,”
University of Vienna, 2014.

