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Abstract—With the advancement of e-commerce and Internet 

shopping, the high competition between carriers has made many 

companies rethink their service mechanisms to customers, in 

order to ensure that they stay competitive in the market. 

Therefore, companies with limited resources focus on serving 

only customers who provide high profits at the lowest possible 

cost. The Multi-Vehicle Profitable Pickup and Delivery Problem 

(MVPPDP) is a vehicle routing problem and one variant of the 

Selective Pickup and Delivery Problem (SPDP) that is considered 

to plan the services for these types of companies.  The MVPPDP 

aims to serve only the profitable customers, where the products 

are transformed from a selection of pickup customers to the 

corresponding delivery customers, within a given travel time 

limit. In this paper, we utilize the construction phase of the well-

known Greedy Randomized Adaptive Search Procedure 

(GRASP) to build initial solutions for the MVPPDP. The 

performance of the proposed method is compared with two 

greedy construction heuristics that were previously used in the 

literature to build the initial solutions of the MVPPDP. The 

results proved the effectiveness of the proposed method, where 

eight new initial solutions are obtained for the problem. Our 

approach is especially beneficial for building a population of 

solutions that combine both diversity and quality, which can help 

to obtain good solutions in the improvement phase of the 

problem. 
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I. INTRODUCTION 

Transportation management is considered one of the most 
difficult problems facing people and governments in different 
countries all over the world. In our daily life, millions of 
people use land, sea, or air transport means to commute from 
one place to another, raising the need to optimize the planning 
of these services, in order to reduce their cost as well as their 
negative environmental impacts. Therefore, a lot of research 
has been conducted recently to address these problems in the 
fields of computer science, operations research, and industrial 
engineering. Land transport, in particular, has received a great 
interest from researchers, due to its huge volume. Research 
efforts try to optimize the daily use of the means of 
transportation, such as cars, buses, trucks, trains, motorcycles, 
trams, etc. Among the most known land transport problems 

are: vehicle routing problems [1], pickup and delivery 
problems [2],  bus scheduling problems [3], truck routing 
problems [4], cash transportation problems [5], railroad 
blocking problems [6], and others [7][8][9]. 

Researchers in this field generally aim at minimizing 
congestion and the environmental damage of the 
transportation services, caused by harmful emissions, such as 
carbon dioxide and other greenhouse gases, which cause 
pollution and global warming, and have a negative effect on 
people's health. In the shipment sector, for instance, the 
average fleet emission for delivery trucks and vans is       
kg of CO2 per gallon of diesel consumed [10]. Furthermore, 
many trucks are not exploited to their full capacity, where 
statistics indicate that     to     of pollution, traffic 
congestion, and accidents are caused by empty trucks [11]. 
Besides the environmental damage, the inefficient regulation 
of the trucks’ paths and the non-exploitation of their full 
capacity has an economic effect on the companies that work in 
the transport sector.  In order for these companies to remain 
and continue its activities in the market, many solutions are 
suggested to increase the companies' profits, as well as to 
reduce their costs. 

The Vehicle Routing Problem (VRP) is a well-known 
combinatorial optimization problem that deals with 
transportation network management and the scheduling and 
distribution of vehicles and goods. The VRP is concerned with 
planning and organizing the distribution of goods to find the 
appropriate routes to transfer the customers' demands by using 
one or more homogeneous fleet of vehicles.  Each vehicle has 
a limited capacity and it starts its tour from a distribution 
center (depot), then it transfers goods to customers, and 
returns to the distribution center. In the literature, several 
types of the VRP with different complex constraints have been 
presented and solved over the last 50 years which contributed 
to minimizing a lot of road transportation problems, such as, 
pollution and congestion[12]. 

The Pickup and Delivery Problem (PDP) is an important 
variant of the VRP, which aims to minimize the total 
transportation cost when distributing goods or people from 
one location (pickup node) to another location (delivery node). 
The PDP also has several important variants and applications, 
such as the transportation of raw materials from suppliers to 
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factories, the distribution of beverages and the collection of 
empty bottles and cans, shipping cargos, etc. One relatively 
new variant of the PDP is the Selective Pickup and Delivery 
Problem (SPDP), which has recently started to receive interest 
in the academic literature. The      can be distinguished 
from the standard      by relaxing the constraint that all 
nodes must be visited. The      helps companies that have 
limited resources and wish to provide high level services to 
customers with minimum possible cost, by finding the best 
routes to deliver their products and pick up some of them.  
Also, the SPDP contributes positively to environmental and 
economic considerations; specifically, it helps to reduce the 
harmful impacts of transportation that result from pollution 
and congestion, by selecting only a subset of customers to be 
visited. As such, solving the SPDP helps to achieve the goals 
of green supply chain management [13][14][15]. There are 
two types of SPDPs: (1) SPDPs subject to minimizing the 
travelling cost only (e.g. [16][17][18]), and (2)        subject 
to minimizing the travelling cost and maximizing the profits 
collection (e.g. [19] [20][21]). 

The Multi-Vehicle Profitable Pickup and Delivery 
Problem (MVPPDP), which has been  presented by Gansterer 
et al. [22], belongs to the second type of the SPDP. It 
considers both travel cost and profit’s collection in the 
planning process. The MVPPDP is a static problem with a 
central distribution (depot), predefined number of 
homogenous fleet of vehicles and a set of requests. Each 
request has a predefined pair of customers, a pickup customer 
and a delivery customer. Moreover, these requests include 
transferring a number of homogenous products from pickup 
customers (origins) to their corresponding delivery customers 
(destinations) with certain associated profits. The MVPPDP 
aims to plan perfect routs to serve some of the customers in a 
one-day planning horizon, with the aim of maximizing the 
total collected profits minus the total travel costs. Some real-
life applications of this problem include: food delivery mobile 
apps, delivery companies that transfer goods from factories to 
related shops, etc. 

The MVPPDP is an NP-hard problem [22], which means 
that exact algorithms can find an optimal solution for only a 
small number of input data. Therefore, metaheuristic 
algorithms have been often used to find good solutions that are 
not necessarily optimal, in a reasonable processing time. 

In this paper, we present a new approach to construct 
initial solutions for the MVPPDP. We adapt the construction 
phase of the well-known Greedy Randomized Adaptive 
Search Procedure (GRASP) to the underlying problem.  
GRASP is a multi-start metaheuristic that is commonly 
applied to solve different combinatorial optimization 
problems. It was first introduced by Feo and Resende [23]. It 
consists of two phases: construction and improvement phase. 
The construction phase is used to build an initial feasible 
solution, while the   second phase is a local search used to 
improve the initial solution found in the construction phase to 
get a local optimum [24]. There are several advantages of 
GRASP compared to other popular metaheuristics, like 
Genetic Algorithms, Simulated Annealing and Tabu Search. 
These include combining the advantages of random and 
greedy search, which helps the GRASP to be fast, competitive 

and able to find good solutions in a reasonable time. 
Furthermore, the number of parameters that need to be tuned 
is small, which is another advantage that makes the GRASP 
preferred over other metaheuristics [25]. Also, GRASP has 
successfully contributed to solving different variants of VRP 
[26] [27] [28]. 

The rest of this paper is organized as follows. In Section 2, 
a review of some related work is presented. The definition and 
mathematical formulation of the tackled problem is given in 
Section 3. In Section 4, the proposed method is described in 
detail. Experimental results are discussed in Section 5. Finally, 
conclusions and future work are presented in Section 6. 

II. LITERATURE REVIEW 

The MVPPDP belongs to the type of SPDP that is subject 
to minimizing the travelling costs and maximizing the profits 
collection. The MVPPDP aims to visit only the profitable 
customer pairs, in order to make the gathering operation as 
profitable as possible.  Thus, the MVPPDP can be considered 
as a combination of two types of problems: the feature of 
selecting a subset of customers belongs to the SPDP, while the 
feature of selecting customers that have maximum revenue 
belongs to the Profitable Tour Problem (PTP). Therefore, the 
literature review of the MVPPDP will be classified into three 
parts: The MVRPPDP, the SPDP and the PTP. 

A. The Multi-Vehicle Profitable Pickup and Delivery Problem 

(MVPPDP) 

The MVPPDP was presented by Gansterer et al. [22]. Two 
versions of the General Variable Neighborhood Search 
(GVNS) were used to solve it: a sequential one (GVNSseq), 
and a self-adaptive one (GVNSsa). The initial solution was 
built by using a Greedy Construction Heuristic (C1) and a 
Two-Stage Cheapest Insertion Heuristic (C2). Then, one of 
three strategies had been selected randomly to make some 
changes on the initial solution. After that, 11 neighborhoods 
operators were used to improve the solution. They tested the 
performance of proposed algorithms against Guided Local 
Search (GLS) on a newly created dataset that is divided into 
three sizes: small, medium, and large. The performance of the 
C2 heuristic was found to be better than C1 for most instances. 
Also, the results indicated that both variants of GVNS with the 
C2 heuristic outperform GLS for all sizes of test data in terms 
of solution quality.  However, GLS had an advantage 
regarding the average runtimes in both medium and large 
sized instances. 

Haddad [29] presented a new method for the MVPPDP. 
The proposed algorithm combined Iterated Local Search (ILS) 
and Random Variable Neighborhood Descent (RVND). Also, 
the algorithm is not limited to accept only the feasible 
solutions during the search. The same greedy constructive 
heuristic that was used in [22] was adopted to construct the 
initial solution. In order to improve the solution, several 
neighborhood moves were applied. The proposed algorithm 
was tested on the benchmark instances proposed by [22]. It 
proved its efficiency in addressing the small and medium 
sized instances, where it was able to find new best solutions on 
  instances. However, the performance of the proposed 
algorithm was not good enough for large sized instances. 
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B. The Selective Pickup and Delivery Problem (SPDP) 

Subject to Travelling Cost and Profits Collection 

The work in [13] is an application of the SPDP, where 
three heuristics were proposed to solve a complex real-life 
problem appearing in the soft drinks distribution and 
recyclable containers collection in a Quebec based company. 
The algorithms are the Nearest Neighbor Heuristic (NNH), 
First Petal Heuristic (FPH), and Second Petal Heuristic (SPH). 
The results on real-life instances showed a reduction in 
distance by   %. The authors in [15] proposed a Mixed 
Integer Liner Programming (MILP) and a Tabu Search (TS) to 
solve the Single Vehicle Routing Problem with Deliveries and 
Selective Pickups (SVRPDSP).  Also, three heuristics were 
developed: shifting pickups (SP), optimization of the sequence 
of customers in the route (RC), and reducing the number of 
second visits (RV). The empirical results indicated that the 
proposed heuristics gave near-optimal solutions for    
instances that were derived from the VRP library

1
. In [14], the 

Selective Multi-Depot Vehicle Routing Problem with Pricing 
(SMDVRPP) was introduced to tackle the reverse logistics 
problem  of companies that aim to collect cores of durable 
goods from its merchants after re-buying or trade-in by 
customers to encourage them to buy. Two MILPs models and 
a Rich Neighborhood Tabu Search (TS-RN) were used to 
solve this problem. The proposed heuristic was tested on 40 
randomly generated instances, showing promising results in 
terms of both accuracy and efficiency. In [20][21], two Hybrid 
metaheuristics were presented to solve the SVRPDSP: Hybrid 
General Variable Neighborhood Search (HGVNS) and a 
hybrid metaheuristic based on an Evolutionary Algorithm 
(EA). Both metaheuristics  were tested on the same instances 
as in [15], where the experimental results proved the 
effectiveness and robustness of the proposed metaheuristics. 
For the interested readers, other applications of the SPDP can 
be found in [19] [30] [31] [32] and [33]. 

C. The Profitable Tour Problem (PTP) 

The Profitable Tour Problem (PTP) shares with the SPDP 
the same goal of finding a route that maximizes the difference 
between the total gained profit and the total cost of traveling. 
The difference between them is that in the PTP no restrictions 
are imposed on the vehicle route (i.e., the vehicle's capacity, 
maximum time of trip and precedence constraints are not 
considered) [34]. The studies that address the PTP are so rare 
in the literature [35]. In [36],  a new neighborhood search is 
used to solve the standard VRP. Then, an algorithm that relies 
on resource constrained shortest paths is used to find the 
optimal subsequence of visits. To evaluate the proposed 
method, three metaheuristics were used: local improvement 
method, a hybrid genetic search and an iterated local search. 
The proposed strategy performed well, where it contributed to 
finding new    best solutions. In [37] [38], an exact approach 
and three metaheuristics were proposed to solve  the 
capacitated team orienteering and profitable tour problems:  a 
VNS algorithm and two versions of Tabu Search (TS). The 
first version of TS explored only feasible solutions, while the 
other one explored the infeasible solutions as well. All 
proposed methods succeeded to find the optimal solution 

                                                           
1
 http://or.dei.unibo.it/library/vrplib-vehicle-routing-problem-library 

when compared on instances that were solved by a branch-
and-price algorithm. In [39], a hybrid VNS was proposed to 
solve a rich variant of the PTP (RPTP). Instances of the 
Orienteering Problem with Time Windows (OPTW) were 
used to test the efficiency of the proposed algorithm, where it 
was able to get good solutions in a reasonable time. 

III. PROBLEM DEFINITION AND MATHEMATICAL 

FORMULATION 

The MVPPDP is a static problem, where all problem 
constituents are known in advance. The problem is 
characterized by having a central distribution location (depot), 
a predefined number of homogenous vehicles and a set of 
customers’ requests. Each request has a predefined pair of 
customers: a pickup customer and a delivery customer. 
Moreover, these requests include transferring a number of 
homogenous products (i.e., they have the same characteristics 
and quality) from pickup customers (origins) to their 
corresponding delivery customers (destinations) to get profits. 
Fig. 1 represents a simple example of the problem, where 
there are three vehicles that serve only the profitable customer 
pairs  (i.e., those who make high revenues at the lowest 
possible cost) among 50 customers [22]. 

Several constraints should be taken into consideration 
when solving the MVPPDP: 

 Pair constraint: Each product has a predefined pair of 
pickup and delivery customers. 

 Precedence constraint: the pickup customer should be 
visited before its related delivery customer. 

 Time constraint: Each vehicle has a certain daily travel 
time that should not be exceeded during serving the 
customers. 

 Capacity constraint: The total amount of products 
gathered at any point in time should not exceed the 
capacity of the vehicle. 

 Each vehicle journey should start and end from/at the 
depot with empty load. 

 Each customer pair cannot be visited more than once. 

The objective is to select a set of customer pairs to serve 
such that the revenue is maximized and its total cost is 
minimized. 

The MVPPDP can be formally defined as follows [40]: Let 
  (   )  be a graph in which   *        + defines 
the vertex set, where the vertex (      ) represents a 
central depot, while the remaining vertices represent the 
pickup customers   *     +   and delivery customers 
  *        +    *(   )            + defines the 
arc set, where each arc is associated with a non-negative 
routing cost     . Each delivery vertex i has a revenue    to be 

gained when visiting it. Also, each vertex    has a supply    
(pickup,      ) or demand (delivery,         )  At start, 
there is no supply or demand in the depot (     ) . In 
addition, each vertex   has service duration     There is a set 
of vehicles   *     +  each vehicle has a load capacity   
and maximum tour time    
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Some notations used in the following mathematical model 
are described as follows:    number of pickup customers and 
number of delivery customers,   : number of vehicles,  : set 
of pickup customers,    *      + ,    set of delivery 
vertices,   =*          +,   : set of all vertices including 
the depot (starting point=   and ending point=     ),     
     *      +    set of available vehicles,    
*       +    : revenue gained by serving a delivery customer 
at vertex  ,     supply (pickup          ) or demand 
(delivery            ) at vertex  ,     duration of service at 
vertex  ,      transportation cost when traveling from   to  , 

      travel time between vertex   and vertex  ,   : loading 

capacity of a vehicle,  : maximum travel time of a vehicle, 
       binary decision variable equal to one if and only if arc     
is used by vehicle  ,      decision variable giving the loading 
amount of vehicle   after visiting vertex  ,      decision 
variable for the beginning of service time of vehicle   at 
vertex  . 

The mathematical model can be formulated as in [22] as 
follows: 

        ∑ ∑ ∑ (      )                        (1) 

The constraints are  

∑ ∑                                                     (2) 

∑ ∑                                                      (3) 

                                                                              (4) 

                                                                           (5) 

∑ (         )                     *      +               (6) 

∑ (            )                                          (7) 

∑      ∑                                                    (8) 

(      )                            * +          (9) 

                                      (10) 

                                     (11) 

                                       (12) 

        (          )                           (13) 

                                              (14) 

                                                 (15) 

                                            (16) 

                                             (17) 

 

Fig. 1. An Example of the MVPPDP. 

The objective function (1) tries to maximize the total profit 
by subtracting the total travel costs from the total revenues. 
Constraints (2) and (3) mean that each vertex is visited at most 
once. Constraints (4) and (5) mean that the origin depot 
(starting point) cannot be entered, and the destination depot 
(end point) cannot be departed by any vehicle  . Constraint 
(6) means flow conservation. Constraint (7) means that each 
customer pair (pickup customer and delivery customer) has to 
be served by the same vehicle. Constraint (8) means all 
vehicles must start from the depot and return to the depot. 
Constraint (9) means exceeding the vehicle capacity is not 
allowed. Constraint (10) means that the load of a vehicle is 
bounded by   . Constraint (11) means that all the vehicles 
start with empty load. Constraint (12) means that the delivery 
customer cannot be visited before its corresponding pickup 
customer. Constraint (13) means that the earliest time to start 
the service at vertex    is given by the beginning of service 
time at vertex    plus the service time at    and the travel time 
between    and  . Constraint (14) means that the maximum 
time for each vehicle is restricted by  .  Constraint (15) means 
each vehicle starts at the depot at time 0. Finally, decision 
variables are defined by (16) and (17). 
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IV. PROPOSED METHOD 

Most metaheuristic algorithms start solving a problem by 
generating one or more initial solutions and then they improve 
them using some local search method. The type of method 
used in generating the initial solution(s) plays an important 
role in the efficiency and effectiveness of those algorithms, 
regardless of the improvement method used. There are two 
main approaches that can be used to construct initial solutions: 
random and greedy. The random approach is simple, fast, and 
can create diverse solutions. However, the produced random 
solutions maybe of very low quality, which makes the job of 
the improvement procedure harder. In contrast, the greedy 
approach, which takes the objective function into 
consideration while constructing a solution, is often 
complicated and needs more computation time. In addition, 
although it overcomes the other approach with respect to the 
quality of solution, it risks getting stuck in local optima 
mainly due to lack of diversity [24]. To combine the 
advantages of the random and greedy approaches, Greedy-
Randomized (GR) procedures can be used. The main idea 
behind these procedures in general is to select at random one 
of the best (greedy) decisions (instead of the absolute best as 
done in pure greedy methods). This helps in diversifying the 
search and is especially beneficial for use within population-
based metaheuristics. 

In our proposed method, we use a greedy-randomized 
procedure that is based on the well-known GRASP (Greedy 
Randomized Adaptive Search Procedure) to generate initial 
solutions for the MVPPDP. As previously mentioned, the 
GRASP consists of a construction phase (greedy-randomized) 
and an improvement phase (local search). In this paper we 
only utilize the construction phase to generate the initial 
solutions for the MVPPDP. Any local search method (e.g. hill 
climbing, simulated annealing, genetic algorithm, etc.) can be 
used later to improve the constructed solution quality. The 
framework of the greedy randomized procedure is shown in 
Algorithm 1 [24]. We adapted the GR procedure to our 
problem as explained next. 

First, we select seed customers for each route based on a 
greedy approach. Then, we fill up the routes with the rest of 
the customers, based on combining two criteria: greediness 
and randomness. 

Because of the importance of selecting seed customers and 
their clear impact on the performance of the algorithm in 
general, several heuristics have been proposed. The seed 
vertex is usually selected according to a specific criterion, 
often in relation to the depot (e.g., nearest, farthest, related, ..., 
etc.).   In our method, we select the seed customer pairs for 
each route according to a certain measure that we call the 
Customer Benefit (CB). The CB is calculated based on the 
revenue  gained after  delivering  the  demand  to  the  delivery 
customer,  with respect to the distance  between  the  customer 
pair. Using the notations of Section 3, the customer benefit of 
a customer pair (     ) is calculated as shown in Equation 
(18): 

          
      

      
            (18) 

Algorithm 1: The greedy-randomized procedure[24] 

 

Where        is the revenue gained after delivering the 

goods to the delivery customer, and        is the cost of 

travelling from the pickup node to the delivery node. Thus, the 
CB tries to rank customers based on their relative benefit 
versus cost with respect to the operating company. The 
customer pair that has the highest benefit is selected to be a 
seed customer. 

After selecting the seed customer in the route, several 
candidate sub-routes will be generated for each vehicle. The 
following steps will be repeated to fill up each vehicle until 
either the final allowed time of the vehicle has been reached or 
no more customer pairs need to be served.  Firstly, insert all 
customer pairs that are not served yet, where each pair of 
customers is inserted individually into a route in the best 
possible position. That is, the position that leads to the lowest 
possible total distance.  While doing this, in order to achieve 
the precedence constraint, the best position for the delivery 
customer will be selected after adding the pickup customer. 

After that, we calculate what we call the  Insertion Ratio 
(IR) for each candidate pair [40]. For example, suppose we 
have the nodes (           ), where        (pickup) and 
         (delivery), and    represents the depot. Also 
assume that the current route is {        }, where (    ) is 
a seed customer pair, while (    ) is the candidate customer 
pair to be added in the route. After determining the best 
position of (    )  assume that the route will be 
{             }. Thus, the insertion ratio of (    )  is 
computed by dividing its revenue by its insertion cost (in its 
best position) in the route, as shown in Equation 19: 

       
     

(              )     (                  )
         (19) 

Thus, the IR represents the greedy property of selecting the 
next customer to be inserted in the route. Then, all the 
candidate customer pairs will be sorted in descending order 
with respect to their IR values and assigned to the Candidate 
Solution Set (CSS). After this, the first half of the candidate 
solution set is assigned to the Restricted Candidate List (   ), 
so that the opportunity of selecting a good pair of customers 
increases.  Thus, the random property lies in choosing one 
customer pair randomly from the    . The previous process 
will be repeated to add the rest of the un-served pairs of 
customers, while considering the time limit and the vehicle 
capacity constraint. Once the time limit of the vehicle has 
been exhausted, a new route (vehicle) will be initiated. At the 
end, we will have an initial solution for the MVPPDP which 
contains a number of routs equal to the number of vehicles. 

Evaluate the fitne   value  of all candidate element  ; 
𝐑𝐞𝐩𝐞𝐚𝐭 

𝐔𝐧𝐭𝐢𝐥  omplete  olution i  con tructed 

𝑆   *+ ; //Initialize the current  olution to empty   

         on truct  the  e tricted  andidate  i t 𝑅𝐶𝐿 based on the fitness 

values of the candidate element  
    //  elect one element randomly from the 𝑅𝐶𝐿  

       𝑒 =  electAt andom(𝑅𝐶𝐿) ;  

       If 𝑠    𝑒 is feasible then 

       𝑠  𝑠    𝑒 ;  
       Reevaluate the fitness values of candidate elements;  
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To increase the opportunity of getting better solutions, we 
decided to use the concept of the population-based 
metaheuristics, where a number of solutions are generated at 
the same time and then we select the best one according to a 
certain evaluation criterion. Therefore, the previous method of 
generating the initial solution will be repeated several times 
according to the population size to generate a number of 
candidate solutions. The quality of each candidate solution is 
evaluated in terms of the value of the objective function (OF). 
This objective function is defined as maximizing the total 
profit by subtracting the total travel cost from the revenues 
collected, as shown in Equation (1). After that, the best 
solution that has the highest    value is saved in a matrix to 
compare it with other best solutions that are selected from 
different iterations. Finally, we select the best overall solution 
which represents the initial solution for the MVPPDP. 

The outline of the construction phase of our GRASP is 
presented in Algorithm 2, where the meaning of each notation 
is as follows: Pop_Size: the size of the population, Max_Iter: 
maximum number of iterations, Num_Vehicles: number of 
vehicles, CSS: Candidate Solutions Set, RCL: Restricted 
Candidate List,  US: Un-Served pairs of customers and   SM: 
Solutions Matrix that contains the best solutions in the  
population for each iteration. 

V. COMPUTATIONAL EXPERIMENTS 

The computational experiments aim to compare the 
performance of our proposed algorithm with the construction 
heuristics used in [40]: the Greedy Construction Heuristic and  
the Two-Stage Cheapest Insertion Heuristic. Before we 
present the results of the experiments, we describe the dataset 
that was used to test the algorithm and the values chosen for 
each parameter. 

A. Test Instances 

We used the same instances that are proposed in [22] and 
[40]

2
. The data instances are 36 instances, which are classified 

into three groups: small size, which contains 20 and 50 
customers, medium size, which contains 100 and 250 
customers and large size which contains 500 and 1000 
customers. The number of instances in each group is 12 
instances. The customers are set to be pickup customers and 
delivery customers. There is only one central depot, There are 
at most 8 vehicles which are organized as follows: 2 vehicles 
to serve 20 customers, 3 vehicles to serve 50 customers, 4 
vehicles to serve 100 customers, 5 vehicles to serve 250 
customers, 6 vehicles to serve 500 customers and 8 vehicles to 
serve 1000 customers. The capacity of the vehicle is between 
[50, 120]. Each pickup customer has an integer demand value 
between [1, 50], which is transported from a pickup customer 
and delivered to the related delivery customer to get the 
associated revenue.  The revenue amounts are set to be either 
fixed for all customers, proportional to the demands, or 
randomly. Also, the total time limit is set to be either small or 
large, where the range is within [2500, 15000] to generate 
short and long routes. 

                                                           
2 We note that [22] is the published paper of the thesis in [40]. 

B. Parameter Tuning 

Few number of parameters that needs to be tuned is one of 
the reasons that encouraged us to choose the GRASP 
metaheuristic. There are only three parameters: the size of the 
Candidate Solutions Set (CSS), the size of the Restricted 
Candidate List (RCL), and the number of iterations 
(Max_Iter). In our method, we added a fourth parameter 
which is the size of the population (Pop_size); that is the 
number of solutions that were generated using the greedy-
randomized approach, and the best one is selected before 
moving to the next iteration. Empirical experiments were 
performed to select the suitable value for each parameter. Six 
medium-sized data instances have been used to tune the 
parameters. These are the data instances containing     
customers that are served by   vehicles.  All three revenue 
states were considered in the instances namely fixed revenue 
for all customers, proportional revenue to demand and 
randomly selected revenues. Also, each revenue case has been 
tested twice: when the vehicle capacity is    units and the 
total time limit is 6000 to generate a long route, and when the 
vehicle capacity is    and a total time limit is      to 
generate a short route. The details of testing each parameter 
are as follow: 

1) The size of the Restricted Candidate List (RCL): To 

increase the diversity of solutions, half of the solutions that are 

found in the CSS were assigned to the RCL; i.e., if the number 

of solutions in      , then ⌈(  )    solutions are assigned 

to the RCL. This value has been chosen by trial, since 

choosing a smaller size for the RCL resulted in solutions that 

are similar to each other and thus lack diversity. 

2) The number of iterations: Table I shows the objective 

function values after testing six datasets:     customers with 

fixed revenue to generate short route (    -  -S), 100 

customers with fixed revenue to generate long route (   - - 

 ),     customers with proportional revenue to generate short 

route (100-P-S), 100 customers with proportional revenue to 

generate long route (100-P-L), 100 customers with random 

revenue to generate short route (100-R-S), 100 customers with 

random revenue to generate long route (100-R-L). Each data 

instance was tested with different numbers of iterations: 10, 

50,100 and 500. The results of testing show that there is no 

enhancement in the objective function values after 100 

iterations. Thus, the maximum number of iterations was taken 

to be 100. 

3) The size of the population: The same previous dataset 

instances were tested again to select the appropriate number of 

solutions in the population. The population size was increased 

from 10 to    solutions. Table II presents the values of the 

objective function after setting the number of iterations to 

   . The results showed that increasing the population size 

did not lead to an improvement in the objective function 

value. Thus, the population size was taken to be 10. 
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Algorithm 2: The pseudocode of the construction phase of GRASP 

 

TABLE I. RESULTS OF TUNING THE NUMBER ITERATIONS 

Number  of 

Iterations  

Dataset Instances 

100-F-S 100-F-L 100-P-S 100-P-L 100-R-S 100-R-L 

10 12826.14 25948.13 48647.27 80966.13 4336.17 74177.33 

50 14053.64 29000.17 49305.84 80966.13 47310.47 75913.21 

100 14053.64 29000.17 51323.10 80966.13 47310.47 76031.08 

500 14053.64 29000.17 51323.10 80966.13 47310.47 76031.08 

TABLE II. RESULTS OF TUNING THE POPULATION SIZE 

Dataset instances 
Population size 

10 20 

100-F-S 14053.64 14053.64 

100-F-L 29000.17 29000.17 

100-P-S 51323.10 51323.10 

100-P-L 80966.13 80966.13 

100-R-S 47310.47 47310.47 

100-R-L 76031.08 76031.08 

C. Experimental Results 

In this experiment, the proposed algorithm was run 5 times 
for every dataset. The stopping criterion is the number of 
iterations which is 100 for all datasets except the large-sized 
data instances which was set to 20 iterations only, due to time 
limitation. Before presenting the results of our method, we 
describe briefly the main construction heuristics that were 
used in [40], since we are comparing our results with them. 

In the Greedy Construction Heuristic (C1), the customer 
pairs are added sequentially to the route based on the value of 
the Selection Ratio (SR). In each iteration, the SR is calculated 
for all candidate customer pairs (     ) as follows: 

          
      

                     
          (20) 

Where        is a revenue of the candidate pair,      is the 

distance from the last vertex ( ) in the route to the candidate 
pickup customer,        is the distance between the candidate 

customer pair nodes, and        is the distance from the 

candidate delivery customer to the depot. Then, the customer 
pair that has the highest selection ratio is inserted into the 
route. This procedure is repeated until either the allowed time 
is consumed or no more customer pairs need to be served. In 
the C1 heuristic, there is no need to check the precedence and 
capacity constraints, because each delivery customer is added 
directly after the related pickup customer. 

The Two-Stage Cheapest Insertion Heuristic (C2) works 
as follow: In the first stage, select the seed customer pair for 
each route, based on the Idle Distance (ID), which is 
computed for each candidate pair (     ) as follows: 

I                              (21) 

Where      is the distance from the depot to the candidate 

pickup customer, and        is the distance from the candidate 

delivery customer to the depot. The pair with the shortest ID is 
selected to be a seed customer for the route. Then, the routes 
are constructed with the rest of unvisited customers by 
computing the Insertion Ration (IR) for each customer pair as 

For 𝑖=1 to   Max_Iter  

       For 𝑆=1 to Pop_Size 

              For 𝑘=1 to Num_Vehicles  

                 Phase 1: Seed Vertex Selection 

                     Step 1: Compute the Customer Benefit (CB) for all pairs of customers  

                    Step 2: Select the customer pair that has the highest CB and insert it in   
                                   the route as a seed customer 

                 Phase 2: Route Construction 

                    While Maximum Route Time is not violated 

                           Step 3: For each customer pair   𝑈𝑆, insert it in the best position in the route after checking the precedence,  

                           time, and capacity constraints  
                          Step 4: Compute the insertion Ratio (IR) for all candidate customer pairs, based on their best insertion  

                          position calculated in Step 3. 

                          Step 5: Put all the candidate customer pairs in the 𝐶𝑆𝑆 in descending order of IR      

                          Step 6: Assign half of the candidate customer pairs in the 𝐶𝑆𝑆 to the 𝑅𝐶𝐿 

                          Step 7: Pick one customer pair randomly from the 𝑅𝐶𝐿 and insert it in its best position in the route, as  
                          calculated in Step 3. 

                    End While 

              End For 

              Step 8: Compute the objective function for the solution and assign the solution to the 𝑆𝑀 

      End For 

      Step 9: Select the best solution that has the highest objective function in 𝑆𝑀 and assign it to Final-Best-Solutions matrix 

End For 

Step 10: Select the best solution that has the highest objective function in the Final-Best-Solutions matrix to be the initial  solution for the 𝑀𝑉𝑃𝑃𝐷𝑃 
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done in Equation (19). The customer pair with the highest IR 
is inserted in the route with respect to the precedence and 
capacity constraints. The second stage of the algorithm, tries 
to insert all customers that have not been inserted in the first 
stage, due to capacity violation. 

Table III presents the results of constructing initial 
solutions for the MVRPPDP using our GRASP method. The 
results are calculated in terms of the objective function (OF) 
of the solution (i.e., the gained profit), which is equal to total 

revenue – total cost, as previously shown in Equation (1). 
Thus, the larger the OF value, the better is the solution 
obtained. The results of our GRASP were compared with the 
results of C1 and C2. In Table III, the first column presents the 
instance name. The following two columns show the results of 
GRASP in terms of the average and best objective value of 5 
runs respectively. The third and fourth columns represent the 
results of C1 and C2 algorithms in terms of the best objective 
value.  For each group of instances of a particular size, the 
average results are shown in the highlighted row. 

TABLE III. COMPARISON OF THE RESULTS THE GRASP WITH C1 AND C2 IN TERMS OF PROFIT 

Instance Name GRASP (AVG)  GRASP (Best) C1 (Best) C2 (Best) 

20-F-S 18097.3 18097.3 16185.4 21400 

20-F-L 37937.2 37937.3 22006.2 32400.1 

20-P-S 39957.7 39957.7 39646.5 43528 

20-P-L 57763.9 57763.9 54849.9 55775.5 

20-R-S 30039.9 30039.9 22954.4 26884 

20-R-L 42845.9 42845.8 30486.7 41933 

Average_20 37773.65 37773.65 31021.5167 36986.7667 

50-F-S 18396.2 18443.6 15000.5 17958.2 

50-F-L 32686.3 33259.2 34988.2 43008.3 

50-P-S 53631.8 53631.8 53694.8 38796.9 

50-P-L 91164.1 92502.1 99109 62731.2 

50-R-S 24364.4 24364.5 19789.7 24619.2 

50-R-L 52889.2 54712.1 45326.9 51723.3 

Average_50 45522 46152.21667 44651.5167 39806.1833 

100-F-S 13369.3 13749.3 19033.1 28818.1 

100-F-L 27336.9 28692.9 31825.6 55322.2 

100-P-S 51218.1 54475.1 44329.1 46547.4 

100-P-L 80299.3 86141.8 69459.3 79541.3 

100-R-S 46160.4 46450.7 49912,7 70214.6 

100-R-L 76019.9 77136.6 63116.1 91663.1 

Average_100 49067.3167 51107.73333 45552.64 62017.7833 

250-F-S 10831.9 11231.9 27676.1 40906.1 

250-F-L 49193.5 50980.9 44456 67845.1 

250-P-S 33041.9 34606.8 63930 43247.3 

250-P-L 102591 107171.1 112471 94126.8 

250-R-S 40446.5 41914 79486.1 102873 

250-R-L 128304.5 129344.6 130371 143886 

Average_250 60734.8833 62541.55 71898.3667 83647.3833 

500-F-S 21758.3 24012.2 49210 78580.2 

500-F-L 84616.4 85889.1 73299.8 135652 

500-P-S 49864.8 51297.9 124075 84513.6 

500-P-L 138057.2 142740.2 179001 169098 

500-R-S 54859.3 56901.7 108049 116568 

500-R-L 163822.4 166232.5 170205 218965 

Average_500 85496.4 87845.6 117306.633 133896.133 

1000-F-S 9132.4 11045.9 27655.6 66345.3 

1000-F-L 56276.1 58068.2 32078.4 112840 

1000-P-S 134015.9 141167.4 264997 152307 

1000-P-L 325103.1 340418.4 380514 318268 

1000-R-S 99173.9 102051 193390 197083 

1000-R-L 268887.4 271613.1 275805 362266 

Average_1000 148764.8 154060.6667 195740 201518.217 
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D. Results and Discussion 

Observing the results in Table III, the proposed algorithm 
demonstrated good performance on average in solving the 
small and some medium-sized data instances, where we got 
new best solutions for 8 data instances (bold values). Also, we 
got 8 solutions that were better than either C1 or C2 
(underlined values). However, the proposed algorithm was not 
the best one for the large instances on average, but its 
performance was acceptable in some cases where we got two 
solutions that are better than one of the other two heuristics. 
This is probably due to decreasing the number of iterations for 
the large instances due to extensive time consumption. Also, 
we observed that when the GRASP was better than one of the 
other heuristics, its performance was better than C1 for 
instances with fixed and random profits (except 20-P-S). On 
the other hand, it was better than C2 on instances with 
proportional profits to its demand. Overall, we believe that our 
method is comparable with the other two methods and has the 
advantage of being able to construct a number of solutions (a 
population) that are characterized with the greedy-randomized 
feature, rather than just one greedy solution as done in the 
other two construction methods. 

VI. CONCLUSION 

In this paper, the construction phase of a Greedy 
Randomized Adaptive Search Procedure (GRASP) was used 
to build initial solutions for the Multi-Vehicle Profitable 
Pickup and Delivery Problem (MVPPDP). The algorithm uses 
the concept of a Restricted Candidate List (RCL) to combine 
between random and greedy properties, which can help in the 
diversification of the search, and is especially beneficial for 
population-based metaheuristics. The performance of our 
algorithm was compared with two construction heuristics that 
were previously used to build the initial solutions of the 
MVPPDP. The results proved the effectiveness of the 
proposed method on small-medium sized instances, where 
eight new solutions were obtained for the MVPPDP. Also, the 
GRASP method had a better performance than one of the 
other construction heuristics on 11 test instances. 
Nevertheless, the proposed method is not currently able to 
produce good results on large-sized instances (500 and 1000 
customers). This is possibly due to decreasing the number of 
iterations because of time limitations. Future work will try to 
improve the performance of the algorithm by optimizing its 
runtime. In addition, a second phase may be added to try to 
insert un-visited customers to increase the profit of the 
company and improve the quality of the initial solutions. 
Finally, an improvement phase, using a selected population-
based metaheuristic, will be added to improve the initial 
constructed solutions by the GRASP based method. 
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