
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Software Abstractions for Large-Scale Deep
Learning Models in Big Data Analytics

Ayaz H. Khan1, Ali Mustafa Qamar2, Aneeq Yusuf3, Rehanullah Khan4
College of Computing and Information Sciences1,3

Karachi Institute of Economics and Technology, Karachi, Pakistan
College of Computer, Qassim University2,4

Mulaidah, Saudi Arabia

Abstract—The goal of big data analytics is to analyze datasets
with a higher amount of volume, velocity, and variety for
large-scale business intelligence problems. These workloads are
normally processed with the distribution on massively parallel
analytical systems. Deep learning is part of a broader family of
machine learning methods based on learning representations of
data. Deep learning plays a significant role in the information
analysis by adding value to the massive amount of unsupervised
data. A core domain of research is related to the development
of deep learning algorithms for auto-extraction of complex data
formats at a higher level of abstraction using the massive volumes
of data. In this paper, we present the latest research trends in
the development of parallel algorithms, optimization techniques,
tools and libraries related to big data analytics and deep learning
on various parallel architectures. The basic building blocks for
deep learning such as Restricted Boltzmann Machines (RBM)
and Deep Belief Networks (DBN) are identified and analyzed
for parallelization of deep learning models. We proposed a
parallel software API based on PyTorch, Hadoop Distributed File
System (HDFS), Apache Hadoop MapReduce and MapReduce
Job (MRJob) for developing large-scale deep learning models.
We obtained about 5-30% reduction in the execution time of the
deep auto-encoder model even on a single node Hadoop cluster.
Furthermore, the complexity of code development is significantly
reduced to create multi-layer deep learning models.

Keywords—Big data; deep learning; deep auto-encoders; Re-
stricted Boltzmann Machines (RBM)

I. INTRODUCTION

Big volumes of data have been started to accumulate
based on the advancements in sensor technology, the Internet,
social networks, wireless communication, and inexpensive
memory in various formats such as numerical, textual, and
image. Such a high volume of data can be analyzed using
statistical and Computational Intelligence (CI) tools based on
neuro-computing, fuzzy logic, clustering, Bayesian networks,
Principal Component Analysis (PCA), etc. for an efficient
data management by reducing its size and developing non-
parametric models based on extracted information and its
knowledge base [1]. These workloads are normally processed
with a distribution on massively parallel analytical systems.
GPUs (Graphics Processing Units), MICs (Many Integrated
Cores) or FPGAs (Field Programmable Gate Arrays) etc. are
available as co-processors to accelerate the required computa-
tions in various algorithms with the distribution of data among
the processors and co-processors to support bigger workloads.

Deep learning can be considered as an extension to Ma-
chine learning methods for learning data representations [2]. In

the area of image classification, face detection and recognition,
the features of an image can be represented in various ways
based on pixel intensity values, set of edges, specific regional
shapes. Deep learning provides efficient algorithms for unsu-
pervised or semi-supervised feature learning and extraction.
Several deep learning architectures including convolutional
deep neural networks, Recurrent Neural Networks (RNN), and
Deep Belief Networks (DBN) are applicable to the various
fields of computer science such as speech recognition, com-
puter vision, natural language processing, and bioinformatics
to produce state-of-the-art analytical results. Deep learning
is an active research area both in industry and academia to
solve various practical examples such as image and speech
recognition, neural machine translation, traffic management,
and cancer detection. Furthermore, it has been successfully
applied in task classification, object detection, motion model-
ing, dimensionality reduction, and network flow prediction [3].
Various software solutions have been provided in the market
for deep learning using different parallel computing architec-
tures including programming language extensions, libraries,
frameworks.

In order to ease the development of deep learning models
for big data analytics, there is a dire need of a software
API with high level abstractions to create multi-layer deep
learning models with the capability of processing big training
data that is in high volume, velocity and variety. We explored
several parallel algorithms, optimization techniques, tools and
libraries related to big data analytics and deep learning on
various parallel architectures. Based on our exploration and
analysis, we identified the basic building blocks for the paral-
lelization of the deep learning models and proposed a parallel
software API using PyTorch, Hadoop Distributed File System
(HDFS), Apache Hadoop MapReduce (MR) and MapReduce
Job (MRJob) for developing large-scale deep learning models.
We obtained about 5-30% reduction in the execution time of
the deep auto-encoder model even on a single node Hadoop
cluster. Furthermore, the complexity of code development
is significantly reduced to create multi-layer deep learning
models.

The rest of the paper is organized as follows: Section II
presents a summary of the latest research trends in using deep
learning approaches for big data analytics, Section III reviews
the current software tools and libraries in the domain of
deep learning, Section IV provides an in-depth analysis of the
basic building blocks for deep learning in big data analytics,
Section V explains the proposed API for the development

www.ijacsa.thesai.org 557 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

of deep learning models, whereas Section VI presents the
evaluation of the proposed API in terms of performance and its
usage. Lastly, Section VII concludes the paper and highlights
future research directions.

II. LITERATURE REVIEW

Deep learning is a branch of Machine learning based on a
set of algorithms that attempt to model high-level abstractions
in data by using multiple processing layers, with complex
structures or otherwise, composed of multiple non-linear trans-
formations. Deep learning is part of a broader family of
Machine learning methods based on learning representations
of data. An observation (e.g. an image) can be represented
in many ways, such as a vector of intensity values per pixel,
or in a more abstract way as a set of edges, regions of a
particular shape, etc. Some representations are better than
others at simplifying the learning task (e.g., face recognition
or facial expression recognition) from examples. In recent
years, deep learning approaches have gained significant interest
because while processing unstructured data, it doesn’t require
to label everything to discover patterns. It uses big data,
and the computational power of the GPU to gain speed and
accuracy [4]. One of the promises of deep learning is replacing
handcrafted features with efficient algorithms for unsupervised
or semi-supervised feature learning and hierarchical feature ex-
traction. Deep learning can achieve outstanding results in var-
ious fields. However, it requires so significant computational
power that massively parallel processors and/or numerous
computers are often required for practical applications. Deep
learning algorithms are based on distributed representations.
The underlying assumption behind distributed representations
is that the observed data is generated by the interactions of
factors organized in layers. Deep learning adds the assumption
that these layers of factors correspond to various levels of
abstraction or composition. Varying numbers of layers and
layer sizes can be used to provide different amounts of
abstraction. Deep learning exploits this idea of hierarchical
explanatory factors, where more abstract higher levels are
learned from the lower level ones. Deep learning helps to
disentangle these abstractions and pick out which features
are useful for learning. For supervised learning tasks, deep
learning methods obviate feature engineering, by translating
the data into compact intermediate representations akin to
principal components, and derive layered structures which
remove redundancy in the representation. Many deep learning
algorithms are applied to unsupervised learning tasks. This is
an important benefit because unlabeled data is usually more
abundant than labeled data. An example of a deep structure
that can be trained in an unsupervised manner is a Deep
Belief Network (DBN). A DBN is composed of a stack of
Restricted Boltzmann Machines (RBMs). A core component of
the DBN is a greedy, layer-by-layer learning algorithm, which
optimizes the DBN weights at a time complexity linear to
the size and depth of the networks. Separately and with some
surprise, initializing the weights of an Multi-Layer Perceptron
(MLP) with a correspondingly configured DBN often produces
much better results than that with random weights. As such,
MLPs with many hidden layers, or Deep Neural Networks
(DNN), which are learned with unsupervised DBN pre-training
followed by Back-Propagation fine-tuning is sometimes also
called DBNs in the literature [4].

Several technologies and their correlations have been ex-
plored [5] to be useful in big data analytics for future vol-
ume prediction and deep knowledge of data. This helps in
taking proactive and better strategic decisions in the business
community focusing on unstructured data and open source
technologies including Apache Flume, Apache Sqoop, Apache
Pig, Apache Hive, Apache ZooKeeper, Mongo DB, Apache
Cassendra, Apache Hadoop, MapReduce, Apache Splunk and
Apache Spark. An in-depth analysis of different hardware
platforms and related software frameworks suitable for big
data analytics is presented in [6] based on various matrices,
including fault tolerance, scalability, I/O bandwidth require-
ments, distributed and real-time processing. It has been found
that the right choice of the platform should be based on
proper investigation of the application/algorithm needs. The
decision has to be made on the basis of the results’ fre-
quency requirements, the size of data to be processed, and
the number of iterations to build a model. A case study of
various implementations of K-means clustering algorithm has
been presented taking consideration of various algorithmic
and system level issues. The analytical results can be further
strengthened by investigating other algorithms such as decision
trees, nearest neighbors, page ranking, and etc. In order to
develop highly scalable applications, a combination of multiple
platforms can be utilized such as Hadoop as a horizontal
scaling platform and GPUs as a vertical scaling platform to
perform the analysis in real-time. Chen et al. [7] presented a
review of technical challenges and the latest advances in the
related technologies for the four phases of big data analytics
that are data generation, data acquisition, data storage, and
data analysis. Several open problems and future directions have
been discussed in several representative applications such as
enterprise management, Internet of Things (IoT), online social
networks, medical applications, collective intelligence, and
smart grid. An end-to-end big data benchmark, BigBench [8],
has been proposed by addressing the variety, velocity, and
volume aspects of big data systems in the domain of product
retail businesses with physical and online stores. The bench-
mark contains the structured data adopted from the TPC-
DS benchmark, semi-structured data captured from the user
responses on the retailers’ websites, and unstructured data
captured from the online product reviews. The benchmark
has been designed to generate the data upon a set of queries
based on the source of data, types of query processing, and
techniques used in analysis as three data dimensions. The
response time feasibility of BigBench has been evaluated on
Teradata Aster Database with 200 Gigabyte of big data set and
executing queries developed using Teradata Aster SQL-MR.
Further evaluation of the BigBench is planned to be done on
one of the Hadoop eco-systems like HIVE.

Wang [9] proposed a method to process network traffic
streaming data with unknown protocol using neural network
and deep learning approaches. The proposed method can be
applied on feature learning, protocol classification, anomalous
protocol detection and unknown protocol identification. The
method is beneficial in comparison to the traditional meth-
ods that have poor adaptation and are difficult to automate.
Agneeswaran et al. [10] reviewed three generations of tool-
s/paradigms for iterative machine learning algorithms in the
context of big data analytics. The third generation tools/-
paradigms such as Spark and GraphLab were found to be the

www.ijacsa.thesai.org 558 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

most promising in the implementation of the large number of
machine learning algorithms in terms of horizontal scalability.
It has been identified that more sophisticated paradigms such as
Bulk Synchronous Parallel (BSP) based paradigms and graph
processing paradigms need to be considered in the implemen-
tation of a number of machine learning algorithms in addition
to Hadoop’s Map-Reduce paradigm for big data analytics.
Bengio [11] examined the scalability issues of deep learning
algorithms for larger models and datasets to develop more
efficient and powerful inference and sampling procedures with
reduced optimization difficulties. Enhancements in training
deep learning algorithms have been achieved [12] using more
sophisticated optimization methods including Limited memory
BFGS (L-BFGS) and Conjugate Gradient (CG) with linear
search instead of using Stochastic Gradient Descent Methods
(SGDs) as the traditional approach. The experiments have been
performed by considering both algorithmic extensions such as
sparsity regularization and hardware extensions such as GPUs
or Computer Clusters. The use of L-BFGS in convolutional
network model obtained 0.69% set test error on the standard
MNIST dataset which is a state-of-the-art result among other
related algorithms. However, L-BFGS was found to be highly
competitive to SGDs/CG for dimensional problems. Significant
performance improvements of L-BFGS and CG over SGDs
have been observed with the use of sparse auto-encoders
on GPUs. The performance trend is almost linear to the
number of machines in use of locally connected networks and
convolutional networks. Furthermore, it has been found that
Map-Reduce framework can also be utilized in the computation
of gradients using L-BFGS for locally connected networks or
other networks with a relatively small number of parameters.

In terms of statistical analysis, machine learning, pattern
recognition, data fusion, data mining, and numerical analysis,
big data infrastructure and analytics are directly related to the
traditional data sciences [13]. However, deep analysis of big
data requires the use of massively parallel computing concepts
with large numbers of high-end servers. Such an analysis has
been performed on US DoD (Department of Defense) big
data for pattern recognition, anomaly detection and data fusion
using various methods like Lexical Link Analysis (LLA),
System-Self Awareness (SSA), and Collaborative Learning
Agents (CLA) as an unsupervised learning or deep learning.
In order to satisfy the needs of traffic flow prediction in
real-world applications, deep architecture models have been
applied [3] on big traffic data with inherently spatial and
temporal correlations. In this method, feature extraction of
the generic traffic flow has been done using stacked auto-
encoder while training has been performed in a greedy layer-
wise fashion. The performance evaluation has been performed
on PeMS dataset to compare with the BP NN, SVM, and RBF
NN models. The proposed method is found to be superior
than the other competing methods. Further investigation can
be performed using other deep learning algorithms for traffic
flow prediction with the application on different public open
datasets to examine their effectiveness. Deep learning on big
data has been applied [14] for complex pattern extraction,
data tagging, semantic indexing, simplifying discriminative
tasks, and fast information retrieval on an un-labeled and un-
categorized raw dataset. The study highlights the usefulness
of deep learning in solving specific problems of big data
analytics while suggesting improvements in deep learning to

Fig. 1. Tensor Flow Linear Regression Model

overcome the challenges in big data analytics. The work can
be extended to focus on other aspects of big data analytics
that are variety and velocity of data, large-scale models, and
distributed computing.

III. EXISTING SOLUTIONS AND TOOLS

This section reviews mostly used software tools and li-
braries in the domain of deep learning.

A. TensorFlow

TensorFlow (TF) is the most popular deep learning package
on github [15]. TensorFlow is an interface for expressing
machine learning algorithms on heterogeneous distributed sys-
tems [16]. The intent behind its development was to create a
framework that supports scalable machine learning and an easy
to use programming paradigm. Before starting TensorFlow,
Google had used DistBelief as their first-generation machine
learning system. The old generation did not have support for a
large portion of hardware. The second generation of machine
leaning framework, which is TensorFlow, does solve this
problem and added more features. The advance in hardware,
especially in GPU supported deep learning.

Fig. 1 shows a basic example of a linear regression model
that takes a sample of training data and evaluates the model
using a loss function. The loss function calculates the distance
between the provided data and the model. Furthermore, Ten-
sorFlow provides tf.train API, which is an optimizer called
gradient descent to reduce the loss in the model. TensorFlow
operations have both CPU and GPU implementations; if TF
finds a GPU device, then it automatically executes GPU
implementations of the used operation instead of the CPU one.
Moreover, it also provides an API function device to set a
specific device for a certain code block.

B. PyTorch

PyTorch is a deep learning library for Python. It has been
developed by Facebook and is mainly used for natural language
processing. It has two high-level features: tensor computation

www.ijacsa.thesai.org 559 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

that comes with GPU acceleration and deep Artificial Neural
Network (ANN) built with taped-based auto-grad system. In
PyTorch, one can use the old python packages such as Numpy,
cython, and Scipy to maximize the use of PyTorch. It provides
tensors that can execute commands using either GPU or CPU,
and speed up compute by a huge amount.

1) Advantages of using PyTorch:

1) The debugging process is easy, making it easier to
understand and follow the code.

2) It has the same as well as some more features and
layers that happen to be in Torch like (Grus, CONV1,
2, 3D; LSTMCONV 1, 2, 3D; LSTM, Unpool).

3) Could be a Numpy extension To GPUs.
4) It is fast and some consider it the fastest among other

libraries define by run for example dynet and chainer.
5) With PyTorch, one can build a strong network struc-

tured by its computation.
6) In PyTorch, the overheat in the framework is minimal.
7) Making neural network is easy and requires no ex-

tensions.

PyTorch figured out a new way of building neural networks,
using tape recorder and replay it. Other frameworks like Caffe,
Theano, TensorFlow and CNTK use a static view. When they
build a neural network, they have to use the same neural
network and cannot change it; although they can but they
have to start from the scratch. However, in PyTorch, there is a
new way called Reverse-mode auto-differentiation, that allows
the user to change the neural network and to modify without
overheating or lags.

C. Caffe2

Caffe2 is a deep learning framework which is simple and
helps to use the algorithms of new models. Using the GPU
power, we can bring the creation to scale with Caffe2 libraries
that support cross-platform operations. The operators are a
basic computation unit of Caffe2. It is a flexible layers’ version
of Caffe since it comes with more than 400 different operators.

D. Comparison of Deep Learning Frameworks

TensorFlow is a powerful deep learning framework, with a
lot of documentation and is good in visualization. Furthermore,
it has the ability to build a strong model for many platforms.
Therefore, TensorFlow is good in building a model for pro-
duction, used to build models for mobile platforms, and has
a good community support. On the other hand, PyTorch is
relatively a newer framework and is growing up fast. For now,
PyTorch is good for research and building products with the
non-functional requirements, good for testing and debugging.
PyTorch was designed with additional capabilities like the
ability to trace and debug errors, and building a dynamic neural
network. While the other frameworks like Tensorflow, Theano
and Caffe use static neural networks, lack the ability to trace
and debug errors, and may require more time in finding the
errors. In addition, PyTorch is a new framework that happens to
grow fast, and could in the near future use the same advantages
as found in other frameworks, like having its own visualization.
In short, PyTorch is a newer framework, that is more flexible
than its competitors.

Caffe2 supports a large-scale deployment. It brings the
Torch and itself together to support the multi-GPUs as it
provides the same level of support. It can work on both single-
host and multi-host GPUs workstations.

E. Customize Code Optimizations of Deep Learning Algo-
rithms

Olas et al. [17], [18] presented the implementations of
Restricted Boltzmann Machine (RBM) and Deep Belief Net
(DBN) using Intel Xeon Phi CoProcessor (Many Integrated
Core). The algorithms are fully implemented in C++ language
using the OpenMP standard for parallelizing computation. The
transformation of computations was performed in such a way
that efficient implementations of matrix and vector operations
available in the BLAS library can be utilized. For example,
the operation of summing the elements of a matrix is replaced
with a matrix-vector multiplication, where the vector contains
all ones. All the codes are compiled using Intel C++ Compiler
available in Intel Parallel Studio XE 2015 environment. Ad-
ditionally, the Intel Math Kernel Library (MKL) is used for
the efficient implementation of BLAS routines. Furthermore,
in order to generate pseudo-random numbers in particular, the
SIMD-oriented Fast Mersenne Twister pseudo-random number
generator VSL BRNG SFMT19937 is utilized.

IV. BUILDING BLOCKS FOR DEEP LEARNING IN BIG
DATA ANALYTICS

Parallelism has been employed for many years, mainly in
high-performance computing, but interest in it has grown lately
due to the physical constraints preventing frequency scaling.
As power consumption (and consequently generated heat) by
computers has become a concern in recent years, parallel
computing has become the dominant paradigm in computer
architecture [19]. In addition, GPU development during the
last few years has contributed to a growth in the concept
of deep learning. Parallel computing in deep learning in its
natural form would mean improvements in training time from
months to weeks or days. Deep learning has many different
algorithms such as auto-encoders, denoising auto-encoders,
stacked denoising auto-encoders, Restricted Boltzmann Ma-
chines (RBM), Deep Belief Networks (DBN).

A. Restricted Boltzmann Machines (RBMs)

RBM was invented by Geoff Hinton. This algorithm can
automatically find the patterns in data by reconstructing inputs.
It is used in dimensional reduction, classification, regression,
collaborative filtering, feature learning, and topic modeling.
It is increasingly being used in supervised and unsupervised
learning scenarios. The first layer of the RBM is called the
visible or input layer, and the second is the hidden layer
as shown in Fig. 2. Each circle in the graph represents a
neuron-like unit called a node, and the calculations take place
in the nodes. The nodes are connected to each other across
layers, but no two nodes of the same layer are linked. As their
name implies, RBMs are a variant of Boltzmann machines,
with the restriction that their neurons must form a bipartite
graph. By contrast, unrestricted Boltzmann machines may
have connections between hidden units. Therefore, there is
no intra-layer communication. This restriction allows for more
efficient training algorithms than are available for the general

www.ijacsa.thesai.org 560 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Fig. 2. Restricted Boltzmann Machine

class of Boltzmann machines, in particular the gradient-based
contrastive divergence algorithm. Since the inputs from all
visible nodes are being passed to all of the hidden nodes, RBM
can be defined as a symmetrical bipartite graph [20].

1) RBM Implementation Structure: RBM consists of two
steps. Each step has effect of different parameters:

1) n visible: Number of visible units. It is used to train
per one iteration train X (column size)

2) n hidden: Number of hidden units
3) train n: Sets number or iteration number of train X

(row size)

a) Training step (Contrastive Divergence function):
Contrastive divergence is used to calculate the gradient
(the slope representing the relationship between a network’s
weights and its error), without which no learning can occur.
The parameters here are:

1) k: The number of times the contrastive divergence is
run

2) train x: Sample data used for training purpose
3) input[j]: or visible units is a sample from the training

distribution (it’s one row of train x) for the RBM
(vector size is # of n visible)

4) learning rate: Like momentum, affects how much the
neural net adjusts the coefficients on each iteration
as it corrects for errors. This parameter helps to
determine the size of the steps, the net takes down the
gradient towards a local optimum. A large learning
rate will make the net learn fast, and may overshoot
the optimum. A small learning rate will slow down
the learning, which can be inefficient.

5) N : sample row size (# of train N). Samples will be
processed row by row. Each iteration will process the
complete number of column (size is # of n visible)

b) Testing step (Reconstruction): The dependent pa-
rameters here are:

1) test x: Sample data that is used for testing purpose
2) reconstructed x: variable which is used for sigmoid

and the trained data

2) Principal Factor Analysis on RBM: We have applied
Principal Factor Analysis (PFA), a well-known statistical
method for finding the parameters that are affecting the perfor-
mance of any system. For RBM implementation, the following
factors (see Table I for execution times) were analyzed:

1) k: contrastive divergence steps

2) v: the number of visible neurons
3) h: the number of hidden neurons
4) N : training set dimension

Table II shows the ANOVA table as a result of Principal
Factor Analysis of RBM factors. It shows that the factor,
which strongly affects the performance of RBM is k, that
represents the contrastive divergence steps. These steps are
strongly sequential in execution. Therefore, parallelization will
not benefit from this factor because of strong flow dependency
of loop iterations. At the second level, the factor N (training
set dimensions) is showing significant variations in execution
time of RBM. Since the input samples (N ) are processed in-
dependently in RBM storing the resulting weights on different
indices, therefore, it is a good candidate for parallelization
so as to gain significant performance improvement of deep
learning models.

B. Deep Belief Nets (DBNs)

A Deep Belief Network (DBN) is a type of deep neu-
ral network, composed of multiple layers of latent variables
(hidden units), with connections between the layers but not
between units within each layer. As what has been introduced
before, the most important use of RBM is as learning modules
that are composed to form deep belief nets. RBMs are shallow,
two-layer neural networks that constitute the building blocks of
deep belief networks (see Fig. 3). It can be formed by stacking
RBMs and optionally fine-tuning the resulting deep network
with gradient descent and back-propagation. Therefore, DBN
can be defined as a stack of Restricted Boltzmann machines
(RBM). Each RBM layer communicates with both the previous
and subsequent layers. The nodes of any single layer don’t
communicate with each other laterally. This stack of RBMs
might end with a Softmax1 layer to create a classifier, or it may
simply help cluster unlabeled data in an unsupervised learning
scenario. When trained on a set of examples in an unsupervised
way, a DBN can learn to probabilistically reconstruct its inputs.
The layers then act as feature detectors on inputs. After this
learning step, a DBN can be further trained in a supervised way
to perform classification. With the exception of the first and
final layers, each layer in a deep-belief network has a double
role: it serves as the hidden layer to the nodes that come before
it, and as the input (or visible) layer to the nodes that come
after. The reason of using DBN is to recognize, cluster and
generate images, video sequences and motion-capture data.
A continuous deep-belief network is simply an extension of
a deep-belief network that accepts a continuum of decimals,
rather than binary data [21].

MNIST is a good place to begin exploring image recog-
nition and DBNs. The first step is to take an image from the
dataset and to convert its pixels from continuous gray scale to
binary. Typically, every gray-scale pixel with a value higher
than 35 becomes a 1, while the rest are set to 0. The MNIST
dataset iterator class performs this operation [21], [22].

1Softmax is a function used as the output layer of a neural network that
classifies input. It converts vectors into class probabilities. It normalizes the
vector of scores by first exponentiating and then dividing by a constant.

www.ijacsa.thesai.org 561 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

TABLE I. RBM EXECUTION TIME (MSEC) WITH DIFFERENT PARAMETERS

v → 6 12 24
h h h

k N 3 6 12 3 6 12 3 6 12

1
1000 1.58 2.48 4.41 2.47 3.88 6.73 4.36 6.70 11.53
2000 3.13 5.01 8.72 4.96 7.82 13.48 8.87 13.52 22.96
3000 4.67 7.51 13.01 7.49 11.68 20.34 13.19 20.08 34.18

5
1000 4.76 7.11 11.94 8.01 11.51 18.46 10.85 14.73 22.59
2000 9.45 14.20 23.88 15.87 22.98 29.17 21.77 31.07 44.91
3000 14.24 21.33 35.72 23.91 34.69 40.10 32.80 46.56 67.24

10
1000 6.72 9.92 15.93 11.33 15.77 24.22 20.51 27.34 40.34
2000 13.57 19.69 31.95 22.52 31.30 48.29 40.84 54.77 80.88
3000 20.14 29.49 47.81 33.86 47.15 72.48 61.63 81.63 121.31

TABLE II. RBM PRINCIPAL FACTOR ANALYSIS - ANOVA TABLE

Main Effects % Variations
k 41.65
v 17.60
N 25.83
h 15.07

Fig. 3. Deep Belief Network

V. PROPOSED SOFTWARE ABSTRACTIONS FOR DEEP
LEARNING MODELS

Based on our analysis of deep learning algorithms like
RBM and DBN in Section IV-A2, it has been found that the
performance of the algorithms is highly affected by the itera-
tions on visible and hidden nodes which are strongly dependent
on each other and are not suitable for parallel implementations.
The only effective parallelization in these algorithms is to
distribute the input samples among several workers (processes
or threads) to obtain a significant speedup of deep learning
model execution. Furthermore, there are several frameworks
and available libraries that provide efficient implementation
of these algorithms. In order to utilize these frameworks and
libraries for developing large-scale deep learning models for
big data analytics, we need to extend these tools to execute on
multiple computing nodes where each node has a portion of
input samples and runs the model in parallel. At the end, the
final output of the learning process needs to be accumulated at
the single (master) node. This requires an in-depth knowledge
of writing parallel programs and concepts of data distribution.
In order to ease the development of deep learning models for
big data analytics, we propose a parallel software API as an
extension of PyTorch with HDFS and MapReduce frameworks.
The following sub-sections explain the tools used in the API,
it’s process flow, usage and functions.

A. Used Tools

a) PyTorch: is a scientific computing library, which is
developed as a GPU-enabled alternative for Numpy. It is a
deep-learning platform that provides both speed and flexibility.
Much like other deep-learning libraries, PyTorch makes use of
Tensors for storing data and training of neural networks [23].
In addition to this, PyTorch makes it fairly simple to create
computational graphs, an important aspect of neural networks.
Furthermore, the PyTorch library comes with an autograd
function, so as to automate the process of calculating the
gradient descent, whilst training a network. It is important to
note here that loading data into PyTorch is a difficult process.
The data needs to be converted into a form that can be read by
the library’s DataLoader class. Moreover, the CUDA library
also needs to be installed and enabled in PyTorch for GPU
computations.

b) Hadoop: is an open-source and Java-based frame-
work, which allows distributed processing of datasets, across
a cluster of connected computers [24]. The core components of
the framework include Hadoop Common, Hadoop Distributed
File System (HDFS), Hadoop YARN and Hadoop MapReduce.
In the following process, HDFS and MapReduce would be
of key importance. One of the main reasons for Hadoop’s
popularity is its adherence to the principle that hardware
failures of individual machines, within a cluster, should be
handled automatically by the framework.

c) MRJob: is a module developed by Yelp, to create
Hadoop MapReduce jobs in Python, instead of the conven-
tional Java code [25]. As compared to other MapReduce
libraries for Python, MRJob allows the users to keep the
mappers and reducers, both, in a single class. Moreover, it
allows users to define a multi-step mapper and switch input
and output formats, with a single line of code.

B. API Process Flow

In order to develop a distributed neural network API, we
constructed a simulation of a Restricted Boltzmann Machine,
the most basic kind of neural network. Although the entire
process was developed and tested using the MNIST dataset,
the configuration of the network has been kept dynamic, so
that the users of the API can alter the configurations as per
their needs. It should be noted here that the API makes use of
PyTorch and MRJob at the backend.

The API makes use of three modules, namely the Neural
Network Configuration (NNC) module, MapReduce Config-
uration (MRC) module and the Network Definition (ND)
module. The NNC module comprises of three classes, the

www.ijacsa.thesai.org 562 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Fig. 4. Code Example for Model Configuration of 784 → 500 → 100 →
10

net class, the data load class and a ToTensor class, whereas
the MRC module comprises of the MR dist class and the
ND module comprises of RBM class. It should be noted here
that the net class inherits from PyTorch’s torch.nn.module and
overrides the feed-forward function.

Since everything has been well-defined and properly im-
plemented throughout the API, the users just need to interact
with the ND and MRC modules. The users need to create an
object of the rbm class, to set the parameters for the network
to follow. This includes the learning rate, the momentum and
the batch size, respectively. Each of the three parameters need
to be passed to the constructor of the class object. This object
should be then passed to the newnet variable of the MR dist
class.

This would then be followed by defining the layers of the
network, which can be done by calling the create net function
of the rbm class object, the number of layers and the list
containing the number of nodes for each layer. This all should
be passed as arguments to the function. The output of this
function should be passed to the net variable of the MR dist
class.

It should be noted here that create net function creates a
new list, which contains the nodes of the network in linear
configuration. Similarly, Xavier weights are specified for each
layer, with the relu function being set as the default gain
function. Furthermore, the feed forward function makes use of
the logarithmic softmax function, as the default feed forward
function.

The users then need to call the run function of the MR dist
class, which executes the distributed training of the RBM.
Following the training, the users would need to combine
the output from multiple reducers, for which they can call
the combine weights function of the rbm class object. The
variable weights from the MR dist class should be passed to
the function as an argument. The user can then call the set w
function of the rbm class object, passing the output of the last
function and the weights to be applied as arguments. This will
create a network that has the trained weights and is ready to
be used.

Note: The aforementioned process has been defined for a
network of just 4 layers: 1 output, 2 hidden and 1 input layer.
Subsequent hidden layers, if needed, can be added easily. For
example, Fig. 4 shows the code for a configuration of 784 →
500 → 100 → 10.

In order to test the accuracy, the users would need to first
call the data load function of the rbm object and pass the path
of the test data file as an argument. The output of this function
should be saved in a variable. Finally, the users would just need
to call the test function of the rbm object, passing the loaded
data variable and the network as arguments to the function.

The results of the test would then be printed as output on the
user screen.

The addition of a data load class and a ToTensor class, to
the NNC module was necessary, so as to ensure that all data
passed into the network is in a consistent and specified format.
As such, the data being passed to the API needs to be in CSV
format and should contain a label column and adjoining value
columns. The reasons to choose this format, as the default data
format for the API include:

• The fact that most of the data available for training
models can easily be found in CSV formats.

• It is easy to convert data from different sources to a
CSV format.

• Hadoop reads a file line by line and does not split the
data from the middle of a line.

The data loader object can be created by passing the
absolute path of the file, as an argument to the class object.
Additional data can also be passed to the object, as well as
any transformations that need to be applied to the data. It
should be noted here that the data loader class inherits from
PyTorch’s torch.utils.data.Dataset. Moreover, to make individ-
ual instances of the data fetchable, as label and corresponding
value, the getitem function of the parent class is over-
ridden. In addition to this, the ToTensor class is used as a
transformation mechanism to convert all of the data which has
been passed to a tensor for GPU computations.

Similarly, the MR Dist class inherits from the MRJob class,
from the MRJob module and over-rides the reducer and mapper
functions. It is important to note here that since training
and running the network requires multiple steps, a multi-step
mapper was defined in the class. There are basically three steps
involved as part of the mapper: the data splitting step, the data
collection, loading and transformation step. Each of these three
steps are defined as a separate function in MR Dist.

This is followed by a reducer function, which basically
trains networks on the split data and then collects the weights
of the trained networks. As such, the reducer and the steps
functions of the parent class are over-ridden, in the MR Dist
class. The user just needs to initiate an object of this class in
the main program and MRJob would take care of the rest.

C. API Usage

In order to use the API, the user would have to follow the
following steps (see Fig. 5):

1) Make sure that all of the data is in a CSV format,
with a label’s section and a values’ section.

2) Create an object of the rbm class, from the ND mod-
ule, passing the learn rate (type float), momentum
(type float) and batch size (type integer) as arguments.

3) Set the newnet variable in the MR dist class equal to
the newly created rbm object.

4) Create a neural network by calling the create net
function of the newly created rbm object and passing
the number of nodes (nodes, of type list) and layers
(num layers, of type integer) in the arguments.

5) Set the net variable in the MR dist class equal to the
output of the previous function.

www.ijacsa.thesai.org 563 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Fig. 5. Proposed API Usage Example.

6) Call the run function from the MR dist class to begin
training.

7) Call the fetch weights function of the trained rbm
object, to fetch the newly defined weights and store
them in a variable.

8) Call the combine weights function from the rbm
object, passing the weights variable from the MR dist
class, as an argument.

9) Keep the data in your HDFS directory.
10) Run your Python script in Hadoop streaming,

by typing ’python3 path to python script
path to data file -r hadoop > path to output file’
in the terminal.

Once the script has finished running, the final network
would be saved in the specified output directory and can be
later viewed and used for future work.

D. API Functions

a) Net. init (self, num layers, nodes): This is basi-
cally the network initialization function and is used to create
the neural network that would be later trained on some data.
The argument num layers identifies how many layers the RBM
would have and what is the size of the nodes list. The nodes
list in turn inputs how many nodes each of the layers is
supposed to have. Once an object of this class is created, this
function is called and a neural network, having the specified
configuration, is created. The network is also assigned Xavier
Uniform weights and the gain function for the entire network
is set to the Relu gain function.

b) Net.forward(self, x): This function overrides the de-
fault feed-forward function of the torch.nn.module class and
returns the logarithmic softmax of the gain values, for the
entire network. The function works by passing the training
values, iteratively through the individual layers of the network
and adjusts the weights, as needed.

c) Data load. init (self, file, direct, transform): This
is the object initialization function for the data load class. It
takes as arguments the path of the CSV file to be read for the
data, the path of any additional directories to use and the list
of transformations to apply. The function then reads the CSV
file and splits it into two variables: X and Y . The variables
contain the training data and the corresponding label of the
data respectively. It should be noted here that the first index of
the CSV file is considered to be the label, while the remaining
columns are classified as training data.

d) Data load. len (self): This function returns the
number of data points present in the specified dataset.

TABLE III. HADOOP CLUSTER CONFIGURATIONS

Component/Configuration Description/Value
Processor Intel(R) Core(TM) i5-7300HQ @ 2.5 and 2.5 GHz
Memory 8 GB
Hard Disk 1 TB
Yarn CPU Cores 4
Yarn Memory 10240 MB
Scheduler Max Memory 8192 MB
Scheduler Min Memory 512 MB
Yarn Virtual Memory Check Disabled
MapReduce CPU Cores 4
MapReduce Memory 4096 MB
Mapper Memory 2048 MB
Reducer Memory 2048

Fig. 6. Performance comparison of Deep Autoencoder using Proposed API

e) Data load. getitem (self, index): The function
works to fetch a data point from an index, specified by the
user, from the supplied data. The data is first selected from
the variables X and Y and the list of specified transformations
are applied on X . The updated label and data is then returned
as a single tuple, representing the data and label, in respective
order.

f) ToTensor. call (self, sample): This function is ini-
tialized as soon as the class is called. The function takes a list
of data as an argument and transforms it to a tensor, which is
then passed through the neural network.

VI. API EVALUATIONS IN TERMS OF PERFORMANCE AND
USAGE

In order to evaluate the performance of our proposed
software API, we configured a single-node Hadoop cluster in
a workstation with the configurations as shown in Table III.

Fig. 6 shows the execution time in seconds for both sequen-
tial (in PyTorch) and parallel implementations of deep auto-
encoder on MNIST dataset using the proposed software API
with different number of input images for model training. The
obtained results show significant improvement in performance
(about 58%) for an input size of 5000 images while the
improvement percentages are decreasing as the input size
increases such that the performance improvement is only about
8% for an input size of 60000 images. The reason for this
behavior is heavy read operations from permanent storage
and extensive memory usage to store the input dataset into
memory for processing. Therefore, if we extend the cluster
configurations to have multiple data nodes then the input
dataset will be distributed among several data nodes and the

www.ijacsa.thesai.org 564 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

Fig. 7. Projected Speedup based on Parallel Time Estimation

training will be performed on each partition of the data in
parallel. This would give more speedups as we increase the
number of data nodes in the cluster. Fig. 7 shows the projected
speedup estimating the reduction of execution time of parallel
implementation based on the size of the data partition that each
node will contain for processing.

Furthermore, the complexity of code development is sig-
nificantly reduced to create multi-layer deep learning models.
This is achieved by using a list of visible and hidden neurons
provided by the user and Net. init function of the proposed
API will generate the required PyTorch code to add layers into
the model.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a software API for fast develop-
ment of large-scale deep learning models for big data analytics.
The idea was to analyze the datasets with a higher amount of
volume, velocity, and variety. The API proposal is on the basis
of our exploration of the latest trends in the development of
parallel algorithms, optimization techniques, tools and libraries
related to big data analytics and deep learning on various paral-
lel architectures. Initially, we assumed the need of parallelizing
the deep learning algorithms as basic building blocks for the
parallel software API. However, with the statistical analysis of
a deep learning algorithm (RBM), we found that the factors
affecting the most on the performance of these algorithms are
highly sequential in nature and parallelizing using these factors
will not be beneficial because of strong flow dependencies
in the code. Furthermore, there are several frameworks and
available libraries that provide efficient implementations of
these algorithms. Therefore, there is a need to extend these
frameworks to do the model execution on multiple computing
nodes, where each node has a portion of input samples and runs
the model in parallel. Hence, in order to ease the development
of deep learning models for big data analytics, we propose
a parallel software API as an extension of PyTorch with
HDFS and MapReduce frameworks. We obtained significant
improvements in the deep learning models using the proposed
API in reduction of the execution time and code complexity.
We have evaluated the API by implementing a deep auto-
encoder using MNIST dataset on a single node Hadoop cluster.
In future, we plan to setup a multinode Hadoop cluster and run
the implementation with various number of data nodes.

ACKNOWLEDGMENT

This work is supported by the Deanship of Scientific
Research at Qassim University under the project no. 1374-
coc-2016-1-12-S.

REFERENCES

[1] B. K. Tannahill and M. Jamshidi, “Big data analytic paradigms-from
PCA to deep learning,” in AAAI Spring Symposium - Technical Report,
vol. SS-14-04, 2014, pp. 84–90.

[2] X.-W. Chen and X. Lin, “Big Data Deep Learning: Challenges and
Perspectives,” IEEE Access, vol. 2, pp. 514–525, 2014.

[3] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-y. Wang, “Traffic Flow Prediction
With Big Data : A Deep Learning Approach,” Intelligent Transportation
Systems, IEEE Transactions on, vol. 16, no. 2, pp. 865–873, 2015.

[4] L. Deng and D. Yu, Deep Learning: Methods and Applications. NOW
Publishers, May 2014.

[5] J. Zakir, T. Seymour, and K. Berg, “Big Data Analytics,” Issues in
Information Systems, vol. 16, no. 2, pp. 81–90, 2015.

[6] D. Singh and C. K. Reddy, “A survey on platforms for big data
analytics,” Journal of Big Data, vol. 2, no. 1, p. 8, 2014.

[7] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” in Mobile Networks
and Applications, vol. 19, no. 2, 2014, pp. 171–209.

[8] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-
A. Jacobsen, “BigBench,” in Proceedings of the 2013 international
conference on Management of data - SIGMOD ’13. New York, New
York, USA: ACM Press, 2013, pp. 1197–1208.

[9] Z. Wang, “The Applications of Deep Learning on Traffic Identification,”
Black Hat USA, 2015.

[10] V. S. Agneeswaran, P. Tonpay, and J. Tiwary, “Paradigms for Realizing
Machine Learning Algorithms,” Big Data, vol. 1, no. 4, pp. 207–214,
2013.

[11] Y. Bengio, “Deep learning of representations: Looking forward,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7978
LNAI, 2013, pp. 1–37.

[12] Q. V. Le, A. Coates, B. Prochnow, and A. Y. Ng, “On Optimization
Methods for Deep Learning,” Proceedings of The 28th International
Conference on Machine Learning (ICML), pp. 265–272, 2011.

[13] Y. Zhao, D. J. MacKinnon, and S. P. Gallup, “Big Data and Deep
Learning for Understanding DoD Data,” CrossTalk, vol. 28, no. 4, pp.
4–11, 2015.

[14] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya,
R. Wald, and E. Muharemagic, “Deep learning applications and chal-
lenges in big data analytics,” Journal of Big Data, vol. 2, no. 1, p. 1,
2015.

[15] E. B. Yoav Shoham, Raymond Perrault and J. Clark, “The ai index
2017 annual report,” Stanford, Review Report, 2017.

[16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system
for large-scale machine learning,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), 2016,
pp. 265–283. [Online]. Available: https://www.usenix.org/system/files/
conference/osdi16/osdi16-abadi.pdf

[17] T. Olas, W. K. Mleczko, R. K. Nowicki, and R. Wyrzykowski, Adap-
tation of Deep Belief Networks to Modern Multicore Architectures.
Cham: Springer International Publishing, 2016, pp. 459–472.

[18] T. Olas, W. K. Mleczko, R. K. Nowicki, R. Wyrzykowski, and
A. Krzyzak, Adaptation of RBM Learning for Intel MIC Architecture.
Cham: Springer International Publishing, 2015, pp. 90–101.

[19] B. Barney, “Introduction to parallel computing,” https://computing.llnl.
gov/tutorials/parallel comp/#Whatis, (Accessed on 01/31/2019).

[20] “A beginner’s tutorial for restricted boltzmann machines - deeplearn-
ing4j: Open-source, distributed deep learning for the jvm,” https:
//jrmerwin.github.io/deeplearning4j-docs/restrictedboltzmannmachine,
(Accessed on 12/31/2018).

www.ijacsa.thesai.org 565 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 4, 2019

[21] “Deep-belief networks in java - deeplearning4j: Open-source, dis-
tributed deep learning for the jvm,” https://mgubaidullin.github.io/
deeplearning4j-docs/, (Accessed on 12/31/2018).

[22] “Deep learning tutorials — deeplearning 0.1 documentation,” http://
www.deeplearning.net/tutorial/, (Accessed on 12/31/2018).

[23] “What is Pytorch?” https://pytorch.org/tutorials/beginner/blitz/tensor
tutorial.html#sphx-glr-beginner-blitz-tensor-tutorial-py, (Accessed on

03/30/2019).

[24] S. P. Bappalige, “An Introduction to Apache Hadoop for big
data,” https://opensource.com/life/14/8/intro-apache-hadoop-big-data,
(Accessed on 03/30/2019).

[25] Yelp and Contributors, “Why mrjob?” https://mrjob.readthedocs.io/en/
latest/guides/why-mrjob.html#overview, (Accessed on 03/30/2019).

www.ijacsa.thesai.org 566 | P a g e


