
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

5 | P a g e

www.ijacsa.thesai.org

High-Speed FPGA-based of the Particle Swarm

Optimization using HLS Tool

Ali Al Bataineh
1
, Devinder Kaur

3

Department of Electrical Engineering and Computer Science

University of Toledo Ohio

USA

Amin Jarrah
2

Department of Computer Engineering Hijjawi

Faculty for Engineering Technology

Yarmouk University, Irbid, Jordan

Abstract—The Particle Swarm Optimization (PSO) is a

heuristic search method inspired by different biological

populations on their swarming or collaborative behavior. This

novel work has implemented PSO for the Travelling Salesman

Problem (TSP) in high-level synthesis to reduce the computational

time latency. The high-level synthesis design generates an

estimation of the hardware resources needed to implement the

PSO algorithm for TSP on FPGA. The targeted FPGA of this

algorithm is the Xilinx Zynq family. The algorithm has been

implemented for getting the best route between 5 given cities with

given distances. The research has used 7 number of particles for a

different number of iterations for generating the best route

between those 5 cities. The overall latency has been reduced due to

the applied optimization techniques. This paper also implemented

and parallelized the same algorithm on CPU Intel I7 Processor;

the result shows the FPGA implementation gives better results

than CPU on the comparison of performance.

Keywords—FPGA; High Level Synthesis; Particle Swarm

Optimization; Travelling Salesman Problem (TSP)

I. INTRODUCTION

Particle Swarm Optimization (PSO) is an algorithm which
is been adapted from the unpredictable flight of the bird’s flock.
This algorithm was proposed by Eberhart and Kennedy in
1995. This algorithm is also called as population-based
stochastic optimization technique [1]. It uses a model inspired
from flying birds in the flock or flock of fish. In the flock, bird
or fish (called particle) will search and identify the whole space
guided by both its previous best position (pbest) and the best
position of the swarm (gbest) or global best position [2]. PSO is
applied for multiple fields including scheduling applications,
for finding best routes or planning routes and the optimization
problems [3-4].

Qang et al. [3] have implemented PSO for job scheduling
application. They encoded each particle with a natural number
vector and have developed an own approach to move particles
in the solution space. They also compared the genetic algorithm
(GA) with the PSO for job scheduling application and they
found that PSO is very competitive with the GA.

The PSO algorithm with simulated annealing is
implemented for optimization of the TSP problem is done by
fang et al. [4]. This implementation uses simulated annealing
(SA) method for slow down the degeneration of the swarm and
increase the swarm diversity. They compared the PSO with SA,
basic Genetic Algorithm (GA) and two other algorithms for

solving TSP problem in which the PSO with SA gives the
superior results than the other methods.

The embedded method of PSO and the SA gives the faster
solution than the PSO method in the small and medium-size
problem. The SA algorithm is capable to search on a subspace
of the whole search space by means of individual particle that
result in faster solution and accurate [5].

Hybrid PSO with SA gives the better performance than the
adaptive particle swarm optimization and the genetic chaos
optimization algorithm [6]. The combination of PSO and SA
can narrow down and speed up the field of the search. This
strength of the PSO with SA can also optimize the TSP problem
with the better search result and speed up.

Hassan et al. [7] have done the comparison of Genetic
Algorithm (GA) and the PSO in terms of its effectiveness for
finding the global optimal solution and computational
efficiency. This research has done the comparison by
implementing statistical analysis and formal hypothesis testing.

The goal of this research is to develop and optimize the
Travelling Salesman Problem (TSP) on FPGA using High
Level Synthesis. Different optimization techniques will be
applied such as loop unrolling, loop pipelining, dataflow, loop
merging and others. This will help in finding the best route in a
high speed.

II. TRAVELLING SALESMAN PROBLEM

Travelling Salesman Problem (TSP) is a problem of finding
the best route for traveling between multiple cities. In the TSP,
one salesman wants to visit n cities, the objective of TSP is to
identify the shortest Hamilton cycle through which the
salesman can visit each city only once and finally return to the
starting position or city. The TSP problem is solved using
different algorithms as Ant Colony Optimization, Genetic
Algorithms, Neural Network, and others [1].

For solving the TSP, the Ant System (AS) [8] and the
Particle Swarm Optimization (PSO) [9] is the preferred method
due to its optimized solution for the TSP problem. The first
implementation of PSO for solving TSP is done by Maurice
Clerc in 2000 [9]. At that implementation, results show that
PSO was feasible but not very efficient for solving the TSP
PSO and AS are implemented for TSP problem for the
surveillance mission by Barry R. Secrest [10]. The work is on
the planning the best route for the surveillance mission with

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

6 | P a g e

www.ijacsa.thesai.org

different types of aircraft. This implementation is targeted for
the Mission Route Planning (MRP) for the Unmanned Air
Vehicle (UAV) [10].

General description of TSP can be done as: particles have
to identify the shortest path that covers all cities along. Let G=
(V;E) be a graph where V is a set of vertices and E is a set of
edges. Let C=(cij), which is the distance or cost matrix
associated with E. The particles need to identify the minimum
cost path or Hamilton cycle between the cities [11].

III. PARTICLE SWARM OPTIMIZATION

PSO algorithm is inspired from flocks of birds, schools of
fish and herds of animals to adapt their environment, find rich
source of food and secure themselves from predators by the
information sharing approach. Therefore, the PSO algorithm
mimics the social behavior of natural organisms, which
consists of action of individual member and the effect of other
individuals within the group [7]. Each particle in PSO is
considered [12],

 to have specific position and a velocity;

 to knows its own position and the value associates with
it;

 to knows the best position it has ever achieved, and the
value associated with it; and

 knows its neighbors, their best positions and their
values.

PSO algorithm gives high performance for different search
and pathfinding problems. Therefore, it has been implemented
for solving and optimized a wide range of problems. For the
optimization on a solution with PSO, the computation cost and
the precision are considered as the main variable.

PSO algorithm use Eq. (1) and (2) to calculate the new
velocity and position at each iteration:

vi(t+1) = w vi(t) + c1(pi(t) – xi(t)) + c2 (g(t) – xi(t)) (1)

where:

w: real value coefficient (inertia).

c1, c2: real value coefficients (the personal influence and the

global influence factors).

vi(t): current velocity of particle i.

vi(t+1): next velocity of particle i.

xi(t): current position of particle i.

pi(t): personal best known position of particle i.

g(t): global best known position of the whole swarm.

xi (t+1) = xi (t) + vi(t+1) (2)

where:

xi(t) : current position of particle i.

xi(t+1) : next position of particle i.

vi(t+1) : next velocity of particle i.

The pseudocode of PSO is showed as follows [2],

 is the fitness function for estimating the
quality of the solution. is the particle local best position
and the is the global best position of the entire flock. The
update step is performed by Eq. 3.

 (

)

 (3)

where i is the number of particle and d is the number of
dimensions, w is inertia weight and it decide how much the
pre-velocity will affect the new one. c1 and c2 are constant
values, which are also called as learning factors. These constant
values decide the degree of affection of and .
 denotes to a random number between 0 and 1 [2].

The particles fly towards a new position based on Eq. (4).
PSO algorithm is implanted for a certain number of iteration
until the stopping criteria will give the solution that lies in the
global best.

 (4)

IV. HIGH LEVEL SYNTHESIS

High Level Synthesis (HLS) is the methodology of
implementing algorithm on high-level language and targeting
the algorithm on the hardware or called Field Programmable
Gate Array (FPGA). High-level synthesis program allows
writing the algorithms on the high-level language as C/C++ and
OpenCL. HLS tool converts the algorithm from this high-level
language (C/C++/OpenCL) to the Hardware Description
Language (HDL) level [13].

Xilinx has a high-level synthesis tool called VIVADO HLS,
which synthesize and converts algorithm written in
C/C++/OpenCL into VHDL/Verilog and System C [13].
VIVADO HLS has a number of built-in functions and libraries
for video processing, math, linear algebra, digital signal
processing and IP (Intellectual Property) Design [13].

Fig. 1 shows the HLS design flow, with the VIVADO HLS
we can write out the algorithm on C, C++ or System C or
OpenCL which will converted by HLS into
VHDL/Verilog/System C or IP format. The HLS tool can also
export the design into other formats also which include System
Generator, P-Core or XPS format [13].

𝑓𝑜𝑟 𝑖 0; 𝑖 < 𝑠𝑤𝑎𝑟𝑚 𝑠𝑖𝑧𝑒; 𝑖

 𝑤 𝑖𝑙𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 {

𝑖𝑓(𝑓 𝑥𝑖 > 𝑓 𝑝𝑏𝑒𝑠𝑡𝑖) 𝑝𝑏𝑒𝑠𝑡𝑖 𝑥𝑖 ;

𝑖𝑓(𝑓 𝑥𝑖 > 𝑓 𝑔𝑏𝑒𝑠𝑡𝑖) 𝑝𝑔𝑒𝑠𝑡𝑖 𝑥𝑖;

Initializing the whole swarm randomly

Evaluate 𝑓 𝑥𝑖

𝑓𝑜𝑟 𝑖 0; 𝑖 < 𝑠𝑤𝑎𝑟𝑚 𝑠𝑖𝑧𝑒; 𝑖 {

Update 𝑥𝑖 , 𝑣𝑖
Evaluate 𝑓 𝑥𝑖 }}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

7 | P a g e

www.ijacsa.thesai.org

Fig. 1. High Level Synthesis Design Flow.

In HLS, there are many optimization strategies for
optimizing the latency and resources. One of the main
strategies for optimization of latency and resource consumption
is pragma directives. These pragma directives instruct the
compiler for performing the specific operation while
compilation [14]. In this PSO implementation, different
optimization techniques are incorporated such as loop
pipelining, loop unrolling, dataflow, loop merging and others.

V. HARDWARE PLATFORM

Our PSO implementation is done for targeting the Xilinx
FPGA hardware called ZedBoard which is Zynq 7000 family of
FPGA. This ZedBoard has xc7z020clg484-1 FPGA device.
The Zynq 7000 architecture consists of Processing System
(PS), which is programmable dual-core ARM Cortex A9
Processor and Programmable Logic (PL), which is the 7 series
Xilinx FPGA Core with resources as LUT, FIFO, BRAM, DSP
and IO’s [15]. This Zynq has following resources on the PL
section, 53200 logic implementable block called, look up table
(LUT), 106400 Flip-Flop (FF), 220 DSP blocks and 280 Block
RAM [16].

VI. PSO ANALYSIS AND OPTIMIZATION

The goal of this research is on solving the simple traveling
salesman problem (TSP) with the PSO in High Level Synthesis,
HLS allows writing an algorithm on C/C++ or OpenCL
language. For the TSP problem, there is predefined number of
cities with the predefined distance between those cities. The
PSO algorithm is used to solve the TSP problem to find the
shortest path between cities so that each city must visited only
once. For the calculation of the shortest path between the cities,
we have taken the 5 number of cities, which is represented in
Fig. 2.

Fig. 2. Traveling Salesman Problem with 5 Cities and Distances.

For the random number generation on HLS Catalin
Baetoniu [17] has stated the one of the best methods that can
generate the true random number in high speed in Xilinx
FPGA. Linear Feedback Shift Register (LFSR) is another
method of random number generation that uses the shift
register to take input as the function from the previous shift
register. LFSR method has least feedback than the counters, so
it can also be implemented as the fast counter. Eq. (5)
represents the mod-2 polynomial function as the feedback to
the input to the LFSR [18]:

 (5)

LFSR method is used in our research for generating random
number; this random number is used by the particles for
selection of cities from the given 5 cities.

The PSO algorithm is used for getting the best and shortest
path between cities for the Traveling Salesman Problem (TSP).
The PSO algorithm can be represented on flowchart, which is
depicted in Fig. 3.

We use pipelining technique in the initialization stage,
which will help in concurrent operations inside the loop and so
increasing the throughput of executing the algorithm and
reducing the latency.

At the beginning, the personal best position and fitness of
the particle are the current position and fitness of it. Then, the
personal best position of this particle is determined by
comparing the previous position with the current position. The
global best position depends on the function of fitness we
choose. If this function aims to find the minimum value and
choosing it to be the best choice, then the minimum value of
personal best array will be the global best one. The pseudo code
of this calculation is shown as follows:

C, C++, System C

VIVADO HLS

VHDL, Verilog,

System C

Constraint, Directives

RTL Export

IP-XACT Sys-Gen P-Core/XPS

13

9

8

11

14

2

1

3 5

4

10

15

16

14

12

for i = 1 to number_of_particles do

if fitness [i] ≤ personal_best [i] then

update personal_best_position [i]

if personal_best [i] ≤ global_best [i]

then
update global_best_position [i]

repeat

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

8 | P a g e

www.ijacsa.thesai.org

Fig. 3. Algorithm of Particle Swarm Optimization.

We use pipelining and loop unrolling which will result in
creating multiple independent operations. This technique will
reduce the latency and improve the throughput of the algorithm.
In addition, we use pipelining technique in this stage.

Position and velocity of the particle will be updated every
iteration. The new values will become the present position and
present velocity in the next iteration. The pseudo code for this
updating is shown as follows:

In the global best update, we use pipelining technique in
inner loop, which led to increase throughput and decrease
execution time. We use pipelining and loop unrolling
techniques in this loop, which led to enhance the final results.

The mathematical model of particles motion described in
Eq. (1) and (2) forms the velocity equation by sum of three
parts. The first part is parallel to the previous velocity and
equals to WVi(t); called Inertia component. The second part is
parallel to the vector connecting Xi to Pi and equal to
C1(Pi(t)-Xi(t)); called Cognitive Component. The third part is
parallel to the vector connecting Xi to G(t) and equal to
C2(G(t)-Xi(t)); called Social Component. The three parts of Eq.
(1) combined to update velocity vector to new one and this
update will cause the particle position to be updated to the new
position in the problem search space as in Eq. (2). The main
stages in PSO algorithm are problem definition, initialization,
and core work of PSO.

Problem Definition: in this stage the optimization problem
will be define to solve it by PSO and we define a function of X
which return the solved values of the problem, which called the
cost value. We also define the numbers of variables that exit in
the problem, and the ranges of these variables must be
determined. The size of matrix that that will be used of these
variables should also be defined, and the parameters of PSO
like number of iteration, swarm size and the values of W, C1
and C2 determine at this stage.

Initialization: In this stage, a group of steps must be taken
place to start PSO like create the initialization positions of
particles. Then, evaluate them and initialize personal based and
global based values of particles, and other initialization tasks
needed to run PSO in right ways as shown in Fig. 4.

In this stage the information and data for all particles stored
in array of structures. Every swarm particle represented by one
structure, all needed field for these particles must be stored in
these structures, like positions, velocities, cost values, and
personal best position. The particles positions with random
values and with zero’s velocity values should be initialized.
Then, we evaluated the cost values of the particles with its
positions and saved it in cost fields. After that, we update the
personal best position and save it, the global best initialize
firstly to the some value that far from the request solution then
it replaced by the best particle personal value.

PSO core work: this stage represents the main loop or work
of the PSO algorithm as shown in Fig. 5. For every iteration, the
particles new velocities using Eq. (1) is calculated and its new
positions using Eq. (2) and update its cost values. A comparison
of the current particles position and cost values to its personal
best ones that stored in memory is also performed. if the new
values better than the personal best values we update the
personal best values with the new current values, after that we
compare the particle best values with the global best values and
replace the global best value with the personal best value if it
better than it.

Start

Initialization of Positions with Random values

Initialization of Velocities with Zero s values

Calculate Fitness Values

Update Personal Best with Fitness Value

Initialize Global Best with far value

Fig. 4. Initialization of the PSO Algorithm.

Initialize Parameters: number of

particles, initial velocity, inertia and

distance between cities

Calculate the personal best route
(Pbest) for each particle

Evaluate the Route of all particles

Generating Particle Population

Calculate the global best route

(Gbest) of the population

Results

Update velocity
and position of

particle

Stopping

Criteria

is meet?

Yes

No

for i = 1 to number_of_particles do

update velocity and position of particle i

until stopping criterion

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

9 | P a g e

www.ijacsa.thesai.org

Calculate New Velocities using eq 1

Calculate New Positions using eq 2

Update Fitness values

Fitness Better than
Personal Best ?

Replace Personal Best with Fitness value

For each
Particle in

Swarm

Personal Best Better
than Global Best ?

Replace Global Best with Personal Best value

Yes

Yes

Fig. 5. Core Work of the PSO Algorithm.

VII. RESULTS

We have implemented the PSO algorithm for TSP problem
in C language in the VIVADO HLS tool. We also have
implemented the same algorithm on the Code:Block Compiler.
The design is simulated and tested on the HLS as well as on
Code Block environment. On the testing of the PSO for TSP
with 5 cities with defined distances is explained above. We
have run the test for iteration =10 with the number of
particles=7. The best path identified for the TSP is 1-2-5-3-4-1
with the total distance of 52. This best path in terms of distance
is shown in following Fig. 6.

Fig. 6. Minimum Cost Path Obtained from the PSO Algorithm, Path

1-2-5-3-4-1.

We have compared the latency and resource utilization of
the PSO for TSP with different scenarios. This PSO for TSP on
VIVADO HLS algorithm is targeted for the Xilinx Zynq FPGA
having the FPGA device of xc7z020clg484-1.

For the optimization of latency and resource, we have
implemented the pragma directives on the HLS. We have tested
the PSO for TSP algorithm by changing the number of
iterations and placing the number of particles fixed as 7.

Table I is the resource utilization table while implementing
the PSO for TSP on VIVADO HLS. The resource utilization of
the implementation is shown in number and percentage. The
implementation consumes 6% of BRAM_18K, 12% of
DSP48E, 9% of FF and 35% of LUT of the targeted Zynq
device.

Table II shows the comparison of latency with respect to the
number of iteration and particles while implementing the PSO
for TSP on HLS. This comparison is without the optimization
with a pragma. In this table, the number of particles is placed
constant and the number of iterations is varied from 10 to 100.

The latency of implementation with the number of iteration
-10 and particles=7 is smallest then the other implementation.
While increasing the iteration as the usual the latency has
increased.

Table III shows the latency of the implementation with the
utilization of pragma directives for the optimization. This
optimization shows the latency of implementation with a
different number of iteration and the constant number of
particles. While comparing Table II and III, the optimization
methodology reduces the overall latency than the without
optimization. While the number of iterations =100 and the
number of particles=7, the latency with optimization is 1.8
times less than the without optimization on HLS
implementation.

TABLE I. RESOURCE UTILIZATION OF PSO FOR TSP WITH OPTIMIZATION

AND FLOAT DATA TYPE AT ITERATION=10 AND NUMBER OF PARTICLES=7

Resources
Available

Resources

Utilization by float

data type

Utilization by float

datatype (%)

BRAM_18K 280 19 6

DSP48E 220 28 12

FF 106400 10026 9

LUT 53200 18937 35

TABLE II. COMPARISON OF MAXIMUM LATENCY WITH RESPECT TO THE

DIFFERENT NUMBER OF PARTICLES AND ITERATION WITH TARGETED

CLOCK=10NS AND WITHOUT OPTIMIZATION

Iteration No.(i)
Number of

Particles (a)

Latency

(max.)

Time (in

Second)

10 7 844124 0.00844124

20 7 960584 0.00960584

30 7 1077044 0.01077044

40 7 1193504 0.01193504

50 7 1309964 0.01309964

100 7 1892264 0.01892264

13

9

8

11

14

2

1

3 5

4

10

15

16

14

12

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

10 | P a g e

www.ijacsa.thesai.org

TABLE III. COMPARISON OF MAXIMUM LATENCY WITH RESPECT TO THE

DIFFERENT NUMBER OF PARTICLES AND ITERATION WITH TARGETED

CLOCK=10NS AND WITH OPTIMIZATION

Iteration No.(i)
Number of

Particles (a)

Latency

(max.)

Time (in

Second)

10 7 792924 0.00782924

20 7 808584 0.00808584

30 7 834244 0.00834244

40 7 859904 0.00859904

50 7 885564 0.00885564

100 7 1013864 0.01013864

Table IV is the table for resource utilization of resources
with the pragma directives for the optimization of resources
and latency. The BRAM and DSP is constant while varying the
number of iteration and making fixed the number of particles.
While the number of FF and LUT has increased respectively
when increasing the number of iterations from 10 to 100. The
resource utilization is increased because of while the number of
iteration is increased, the number of FF and LUT needed for
processing arraySubtraction_float(), arrayAddition_float() and
multiplyArrayWithScalar().

Table V shows the latency and the best path identified by
the PSO for TSP on the Intel 6700HQ Processor and
Code::Block Compiler. This Intel x86 processor has 3.50 GHz
of frequency, 4 cores and 16GB RAM with Windows 10
Operating System.

TABLE IV. RESOURCE UTILIZATION REPORT WITH RESPECT TO THE

NUMBER OF ITERATION AND PARTICLES AND WITH OPTIMIZATION

Iteration

No.(i)

Number of

Particles (a)
BRAM_18K DSP48E FF LUT

10 7 19 28 10026 18937

20 7 19 28 10496 21190

30 7 19 28 10966 23300

40 7 19 28 11436 24826

50 7 19 28 11906 26296

100 7 19 28 14256 33790

TABLE V. RESULT WHILE RUNNING PSO WITH DIFFERENT NUMBER OF

ITERATION AND PARTICLES ON X86 PC [INTEL I7 6700HQ PROCESSOR

Iteration

No.(i)

Number of

Particles (a)

Identified best

route

Minimum

cost-based

distance

Total time

spent (sec)

10 7 0-1-4-2-3-0 52 0.001

20 7 0-1-4-2-3-0 52 0.001

30 7 0-1-4-2-3-0 52 0.002

40 7 0-1-4-2-3-0 52 0.002

50 7 0-1-4-2-3-0 52 0.002

100 7 0-1-4-2-3-0 52 0.002

We have exported the HLS implementation of PSO as the
IP format to the VIVADO program. Then we have integrated
our PSO IP with other necessary blocks for implementing on
the Zynq FPGA board. The interconnection of PSO IP with
other blocks is done for instructing the PSO IP with the number
of iteration and number of particles from the Zynq Processing
System. From this design, Zynq PS can accept the instruction of
number of iteration and particles from the UART terminal and
then the PS configures the information to the PSO IP. The PSO
IP run the information of iteration and number of particles and
then reply back the result to the PS.

VIII. CONCLUSION

In this paper, the Particle Swarm Optimization algorithm
has been implemented on the HLS methodology. This work has
implemented PSO for traveling salesman problem (TSP) in the
C programming language. The number of cities is 5 and the
number of iteration and particles are varied. The HLS algorithm
also been optimized with the pragma directives. While
optimizing the algorithm the number of resources needed has
been increased because of the latency optimization, we used the
LOOP_FLATTEN, LOOP_UNROLL and PIPELINE pragma
directives. Moreover, the VIVADO block design has been
implemented and the processor configuration is implemented.

REFERENCES

[1] L. Diosan and M. Oltean, "Evolving the Structure of the Particle Swarm
Optimization Algorithms," in Evolutionary Computation in
Combinatorial Optimization-EvoCOP, Lecture Notes in Computer
Science-LNCS, Heidelberg, Springer-Verlag, 2006, pp. 25-36.

[2] W.-h. Zhong, J. Zhang and W.-n. Chen, "A novel discrete particle swarm
optimization to solve traveling salesman problem," presented at IEEE
Congress on Evolutionary Computation, Singapore, September 25-28,
2007.

[3] Q. Kang, H. He, H. Wang and C. Jiang, "A Novel Discrete Particle
Swarm Optimization Algorithm for Job Scheduling in Grids," at Fourth
International Conference on Natural Computation, Jinan, China, October
18-20, 2008.

[4] L. Fang, P. Chen and S. Liu, "Particle swarm optimization with simulated
annealing for TSP,” proceeding of International Conference on Artificial
Intelligence, Knowledge Engineering and Data Bases, Corfu Island, pp
206-210, vol.6, 2007.

[5] G.H. Shakuri , K. Shojaee and H. Zahedi, "An Effective Particle Swarm
Optimization Algorithm Embedded in SA to solve the Traveling
Salesman Problem," proceeding of Chinese Control and Decision
Conference (CCDC 2009), pp 5581-5586, 2009.

[6] X.-H. Wanf and J.-J. Li, "Hybrid Particle Swarm Optimization with
Simulated Annealing," Proceedings of the Third International Conference
on Machine Learning and Cybernetics, Shanghai, pp. 2402-2405, vol. 3,
2004

[7] R. Hassan, B. Cohanim, O. d. Weck and G. Venter, "A Comparision of
Particle Swarm Optimization and the Genetic Algorithm," American
Institute of Aeronautics and Astronautics, Austin, TX, April 18-21, 2004.

[8] M. Dorigo and T. Stützle, Ant Colony Optimization, 1st ed. London, U.K:
MIT Press, 2004, ch.3, pp.65-81.

[9] M. Clerc, Particle Swarm Optimization, 1st ed. London, U.K: ISTE, 2006,
pp.172.

[10] B. R. Secrest, "Travelling Salesman Problem for Surveillance Mission
using Particle Swarm Optimization”, M.S Thesis, Dept. of the air force,
Air Force Institute of Technology, Air University, Ohio, 2001.

[11] X. Yan, C. Zhang, W. Luo, W. Li, W. Chen and H. Liu, "Solve Traveling
Salesman Problem Using Particle Swarm Optimization Algorithm,"
International Journal of Computer Science, vol. 9, no. 6, pp. 264-271,
2012.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 5, 2019

11 | P a g e

www.ijacsa.thesai.org

[12] E. F. G. Goldbarg, G. R. de Souza and M. C. Goldbarg, "Particle Swarm
for the Traveling Salesman Problem," EvoCOP 2006: Evolutionary
Computation in Combinatorial Optimization, vol. 3906, pp. 99-110,
April, 2006.

[13] Vivado Design Suite (High Level Synthesis)-UG902, Xilinx, Inc., 2017,
pp. 5-14.

[14] Vivado HLS Optimization Methodology Guide-UG1270, Xilinx, Inc.,
2017, pp. 9-32.

[15] Zynq-7000 All Programmable SoC, Technical Reference Manual
(UG585), Xilinx, Inc., 2017, pp.26-40.

[16] ZedBoard hardware user guide, Avnet, Inc.,2012, pp. 3-29.

[17] C. Baetoniu, "High Speed True Random Number Generators in Xilinx
FPGAs," Xilinx, Inc., San Jose, CA, 2004.

[18] Mentor Graphics Corporation, High-Level Synthesis-Blue Book, Mentor
Graphics Corporation, 2010, pp. 142-143.

