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Abstract—The Particle Swarm Optimization (PSO) is a 

heuristic search method inspired by different biological 

populations on their swarming or collaborative behavior. This 

novel work has implemented PSO for the Travelling Salesman 

Problem (TSP) in high-level synthesis to reduce the computational 

time latency. The high-level synthesis design generates an 

estimation of the hardware resources needed to implement the 

PSO algorithm for TSP on FPGA. The targeted FPGA of this 

algorithm is the Xilinx Zynq family. The algorithm has been 

implemented for getting the best route between 5 given cities with 

given distances. The research has used 7 number of particles for a 

different number of iterations for generating the best route 

between those 5 cities. The overall latency has been reduced due to 

the applied optimization techniques. This paper also implemented 

and parallelized the same algorithm on CPU Intel I7 Processor; 

the result shows the FPGA implementation gives better results 

than CPU on the comparison of performance. 

Keywords—FPGA; High Level Synthesis; Particle Swarm 

Optimization; Travelling Salesman Problem (TSP) 

I. INTRODUCTION 

Particle Swarm Optimization (PSO) is an algorithm which 
is been adapted from the unpredictable flight of the bird’s flock. 
This algorithm was proposed by Eberhart and Kennedy in 
1995. This algorithm is also called as population-based 
stochastic optimization technique [1]. It uses a model inspired 
from flying birds in the flock or flock of fish. In the flock, bird 
or fish (called particle) will search and identify the whole space 
guided by both its previous best position (pbest) and the best 
position of the swarm (gbest) or global best position [2]. PSO is 
applied for multiple fields including scheduling applications, 
for finding best routes or planning routes and the optimization 
problems [3-4]. 

Qang et al. [3] have implemented PSO for job scheduling 
application. They encoded each particle with a natural number 
vector and have developed an own approach to move particles 
in the solution space. They also compared the genetic algorithm 
(GA) with the PSO for job scheduling application and they 
found that PSO is very competitive with the GA. 

The PSO algorithm with simulated annealing is 
implemented for optimization of the TSP problem is done by 
fang et al. [4]. This implementation uses simulated annealing 
(SA) method for slow down the degeneration of the swarm and 
increase the swarm diversity. They compared the PSO with SA, 
basic Genetic Algorithm (GA) and two other algorithms for 

solving TSP problem in which the PSO with SA gives the 
superior results than the other methods. 

The embedded method of PSO and the SA gives the faster 
solution than the PSO method in the small and medium-size 
problem. The SA algorithm is capable to search on a subspace 
of the whole search space by means of individual particle that 
result in faster solution and accurate [5]. 

Hybrid PSO with SA gives the better performance than the 
adaptive particle swarm optimization and the genetic chaos 
optimization algorithm [6]. The combination of PSO and SA 
can narrow down and speed up the field of the search. This 
strength of the PSO with SA can also optimize the TSP problem 
with the better search result and speed up. 

Hassan et al. [7] have done the comparison of Genetic 
Algorithm (GA) and the PSO in terms of its effectiveness for 
finding the global optimal solution and computational 
efficiency. This research has done the comparison by 
implementing statistical analysis and formal hypothesis testing. 

The goal of this research is to develop and optimize the 
Travelling Salesman Problem (TSP) on FPGA using High 
Level Synthesis. Different optimization techniques will be 
applied such as loop unrolling, loop pipelining, dataflow, loop 
merging and others. This will help in finding the best route in a 
high speed. 

II. TRAVELLING SALESMAN PROBLEM 

Travelling Salesman Problem (TSP) is a problem of finding 
the best route for traveling between multiple cities. In the TSP, 
one salesman wants to visit n cities, the objective of TSP is to 
identify the shortest Hamilton cycle through which the 
salesman can visit each city only once and finally return to the 
starting position or city. The TSP problem is solved using 
different algorithms as Ant Colony Optimization, Genetic 
Algorithms, Neural Network, and others [1]. 

For solving the TSP, the Ant System (AS) [8] and the 
Particle Swarm Optimization (PSO) [9] is the preferred method 
due to its optimized solution for the TSP problem. The first 
implementation of PSO for solving TSP is done by Maurice 
Clerc in 2000 [9]. At that implementation, results show that 
PSO was feasible but not very efficient for solving the TSP 
PSO and AS are implemented for TSP problem for the 
surveillance mission by Barry R. Secrest [10]. The work is on 
the planning the best route for the surveillance mission with 
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different types of aircraft. This implementation is targeted for 
the Mission Route Planning (MRP) for the Unmanned Air 
Vehicle (UAV) [10]. 

General description of TSP can be done as:  particles have 
to identify the shortest path that covers all cities along. Let G= 
(V;E) be a graph where V is a set of vertices and E is a set of 
edges. Let C=(cij), which is the distance or cost matrix 
associated with E. The particles need to identify the minimum 
cost path or Hamilton cycle between the cities [11]. 

III. PARTICLE SWARM OPTIMIZATION 

PSO algorithm is inspired from flocks of birds, schools of 
fish and herds of animals to adapt their environment, find rich 
source of food and secure themselves from predators by the 
information sharing approach. Therefore, the PSO algorithm 
mimics the social behavior of natural organisms, which 
consists of action of individual member and the effect of other 
individuals within the group [7]. Each particle in PSO is 
considered [12], 

 to have specific position and a velocity; 

 to knows its own position and the value associates with 
it; 

 to knows the best position it has ever achieved, and the 
value associated with it; and 

 knows its neighbors, their best positions and their 
values. 

PSO algorithm gives high performance for different search 
and pathfinding problems. Therefore, it has been implemented 
for solving and optimized a wide range of problems. For the 
optimization on a solution with PSO, the computation cost and 
the precision are considered as the main variable. 

PSO algorithm use Eq. (1) and (2) to calculate the new 
velocity and position at each iteration: 

vi(t+1) = w vi(t) + c1(pi(t) – xi(t)) + c2 (g(t) – xi(t))          (1) 

where: 

w: real value coefficient (inertia). 

c1, c2: real value coefficients (the personal influence and the 

global influence factors). 

vi(t): current velocity of particle i. 

vi(t+1): next velocity of particle i. 

xi(t): current position of particle i. 

pi(t): personal best known position of particle i. 

g(t): global best known position of the whole swarm. 

xi (t+1) = xi (t) + vi(t+1)                                            (2) 

where: 

xi(t) : current position of particle i. 

xi(t+1) : next position of particle i. 

vi(t+1) : next velocity of particle i. 

The pseudocode of PSO is showed as follows [2], 

 

            is the fitness function for estimating the 
quality of the solution.       is the particle local best position 
and the       is the global best position of the entire flock. The 
update step is performed by Eq. 3. 
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                           (3) 

where i is the number of particle and d is the number of 
dimensions, w is inertia weight and it decide how much the 
pre-velocity will affect the new one. c1 and c2 are constant 
values, which are also called as learning factors. These constant 
values decide the degree of affection of       and     . 
       denotes to a random number between 0 and 1 [2]. 

The particles fly towards a new position based on Eq. (4). 
PSO algorithm is implanted for a certain number of iteration 
until the stopping criteria will give the solution that lies in the 
global best. 

   
       

     
                                           (4) 

IV. HIGH LEVEL SYNTHESIS 

High Level Synthesis (HLS) is the methodology of 
implementing algorithm on high-level language and targeting 
the algorithm on the hardware or called Field Programmable 
Gate Array (FPGA). High-level synthesis program allows 
writing the algorithms on the high-level language as C/C++ and 
OpenCL. HLS tool converts the algorithm from this high-level 
language (C/C++/OpenCL) to the Hardware Description 
Language (HDL) level [13]. 

Xilinx has a high-level synthesis tool called VIVADO HLS, 
which synthesize and converts algorithm written in 
C/C++/OpenCL into VHDL/Verilog and System C [13]. 
VIVADO HLS has a number of built-in functions and libraries 
for video processing, math, linear algebra, digital signal 
processing and IP (Intellectual Property) Design [13]. 

Fig. 1 shows the HLS design flow, with the VIVADO HLS 
we can write out the algorithm on C, C++ or System C or 
OpenCL which will converted by HLS into 
VHDL/Verilog/System C or IP format. The HLS tool can also 
export the design into other formats also which include System 
Generator, P-Core or XPS format [13]. 

𝑓𝑜𝑟 𝑖  0; 𝑖 < 𝑠𝑤𝑎𝑟𝑚 𝑠𝑖𝑧𝑒; 𝑖     

 𝑤 𝑖𝑙𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 { 

𝑖𝑓(𝑓 𝑥𝑖 > 𝑓 𝑝𝑏𝑒𝑠𝑡𝑖 ) 𝑝𝑏𝑒𝑠𝑡𝑖  𝑥𝑖 ; 

𝑖𝑓(𝑓 𝑥𝑖 > 𝑓 𝑔𝑏𝑒𝑠𝑡𝑖 ) 𝑝𝑔𝑒𝑠𝑡𝑖  𝑥𝑖; 

Initializing the whole swarm randomly 

Evaluate 𝑓 𝑥𝑖  

𝑓𝑜𝑟 𝑖  0; 𝑖 < 𝑠𝑤𝑎𝑟𝑚 𝑠𝑖𝑧𝑒; 𝑖    { 

Update  𝑥𝑖 , 𝑣𝑖  
Evaluate 𝑓 𝑥𝑖 }} 
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Fig. 1. High Level Synthesis Design Flow. 

In HLS, there are many optimization strategies for 
optimizing the latency and resources. One of the main 
strategies for optimization of latency and resource consumption 
is pragma directives. These pragma directives instruct the 
compiler for performing the specific operation while 
compilation [14]. In this PSO implementation, different 
optimization techniques are incorporated such as loop 
pipelining, loop unrolling, dataflow, loop merging and others. 

V. HARDWARE PLATFORM 

Our PSO implementation is done for targeting the Xilinx 
FPGA hardware called ZedBoard which is Zynq 7000 family of 
FPGA. This ZedBoard has xc7z020clg484-1 FPGA device. 
The Zynq 7000 architecture consists of Processing System 
(PS), which is programmable dual-core ARM Cortex A9 
Processor and Programmable Logic (PL), which is the 7 series 
Xilinx FPGA Core with resources as LUT, FIFO, BRAM, DSP 
and IO’s [15]. This Zynq has following resources on the PL 
section, 53200 logic implementable block called, look up table 
(LUT), 106400 Flip-Flop (FF), 220 DSP blocks and 280 Block 
RAM [16]. 

VI. PSO ANALYSIS AND OPTIMIZATION 

The goal of this research is on solving the simple traveling 
salesman problem (TSP) with the PSO in High Level Synthesis, 
HLS allows writing an algorithm on C/C++ or OpenCL 
language. For the TSP problem, there is predefined number of 
cities with the predefined distance between those cities. The 
PSO algorithm is used to solve the TSP problem to find the 
shortest path between cities so that each city must visited only 
once. For the calculation of the shortest path between the cities, 
we have taken the 5 number of cities, which is represented in 
Fig. 2. 

 

Fig. 2. Traveling Salesman Problem with 5 Cities and Distances. 

For the random number generation on HLS Catalin 
Baetoniu [17] has stated the one of the best methods that can 
generate the true random number in high speed in Xilinx 
FPGA. Linear Feedback Shift Register (LFSR) is another 
method of random number generation that uses the shift 
register to take input as the function from the previous shift 
register. LFSR method has least feedback than the counters, so 
it can also be implemented as the fast counter. Eq. (5) 
represents the mod-2 polynomial function as the feedback to 
the input to the LFSR [18]: 

                                                   (5) 

LFSR method is used in our research for generating random 
number; this random number is used by the particles for 
selection of cities from the given 5 cities. 

The PSO algorithm is used for getting the best and shortest 
path between cities for the Traveling Salesman Problem (TSP). 
The PSO algorithm can be represented on flowchart, which is 
depicted in Fig. 3. 

We use pipelining technique in the initialization stage, 
which will help in concurrent operations inside the loop and so 
increasing the throughput of executing the algorithm and 
reducing the latency. 

At the beginning, the personal best position and fitness of 
the particle are the current position and fitness of it. Then, the 
personal best position of this particle is determined by 
comparing the previous position with the current position. The 
global best position depends on the function of fitness we 
choose. If this function aims to find the minimum value and 
choosing it to be the best choice, then the minimum value of 
personal best array will be the global best one. The pseudo code 
of this calculation is shown as follows: 

 

C, C++, System C 

VIVADO HLS 

VHDL, Verilog, 

System C 

Constraint, Directives 

RTL Export 

IP-XACT Sys-Gen P-Core/XPS 
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for i = 1 to number_of_particles do 

if fitness [i] ≤ personal_best [i] then 

update personal_best_position [i] 

if personal_best [i] ≤ global_best [i] 

then 
update global_best_position [i] 

repeat 
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Fig. 3. Algorithm of Particle Swarm Optimization. 

We use pipelining and loop unrolling which will result in 
creating multiple independent operations. This technique will 
reduce the latency and improve the throughput of the algorithm. 
In addition, we use pipelining technique in this stage. 

Position and velocity of the particle will be updated every 
iteration. The new values will become the present position and 
present velocity in the next iteration. The pseudo code for this 
updating is shown as follows: 

 

In the global best update, we use pipelining technique in 
inner loop, which led to increase throughput and decrease 
execution time. We use pipelining and loop unrolling 
techniques in this loop, which led to enhance the final results. 

The mathematical model of particles motion described in 
Eq. (1) and (2) forms the velocity equation by sum of three 
parts. The first part is parallel to the previous velocity and 
equals to WVi(t); called Inertia component. The second part is 
parallel to the vector connecting Xi to Pi and equal to 
C1(Pi(t)-Xi(t)); called Cognitive Component. The third part is 
parallel to the vector connecting Xi to G(t) and equal to 
C2(G(t)-Xi(t)); called Social Component. The three parts of Eq. 
(1) combined to update velocity vector to new one and this 
update will cause the particle position to be updated to the new 
position in the problem search space as in Eq. (2). The main 
stages in PSO algorithm are problem definition, initialization, 
and core work of PSO. 

Problem Definition: in this stage the optimization problem 
will be define to solve it by PSO and we define a function of X 
which return the solved values of the problem, which called the 
cost value. We also define the numbers of variables that exit in 
the problem, and the ranges of these variables must be 
determined. The size of matrix that that will be used of these 
variables should also be defined, and the parameters of PSO 
like number of iteration, swarm size and the values of W, C1 
and C2 determine at this stage. 

Initialization: In this stage, a group of steps must be taken 
place to start PSO like create the initialization positions of 
particles. Then, evaluate them and initialize personal based and 
global based values of particles, and other initialization tasks 
needed to run PSO in right ways as shown in Fig. 4. 

In this stage the information and data for all particles stored 
in array of structures. Every swarm particle represented by one 
structure, all needed field for these particles must be stored in 
these structures, like positions, velocities, cost values, and 
personal best position. The particles positions with random 
values and with zero’s velocity values should be initialized. 
Then, we evaluated the cost values of the particles with its 
positions and saved it in cost fields. After that, we update the 
personal best position and save it, the global best initialize 
firstly to the some value that far from the request solution then 
it replaced by the best particle personal value. 

PSO core work: this stage represents the main loop or work 
of the PSO algorithm as shown in Fig. 5. For every iteration, the 
particles new velocities using Eq. (1) is calculated and its new 
positions using Eq. (2) and update its cost values. A comparison 
of the current particles position and cost values to its personal 
best ones that stored in memory is also performed. if the new 
values better than the personal best values we update the 
personal best values with the new current values, after that we 
compare the particle best values with the global best values and 
replace the global best value with the personal best value if it 
better than it. 

Start

Initialization of Positions with Random values

Initialization of Velocities with Zero s values

Calculate Fitness Values

Update Personal Best with Fitness Value

Initialize Global Best with far value 

 

Fig. 4. Initialization of the PSO Algorithm. 
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update velocity and position of particle i 

until stopping criterion 
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Calculate New Velocities using eq 1

Calculate New Positions using eq 2

Update Fitness values

Fitness Better than 
Personal Best ?

Replace Personal Best with Fitness value

For each 
Particle in 

Swarm

Personal Best Better 
than Global Best ?

Replace Global Best with Personal Best value

Yes

Yes

 

Fig. 5. Core Work of the PSO Algorithm. 

VII. RESULTS 

We have implemented the PSO algorithm for TSP problem 
in C language in the VIVADO HLS tool. We also have 
implemented the same algorithm on the Code:Block Compiler. 
The design is simulated and tested on the HLS as well as on 
Code Block environment. On the testing of the PSO for TSP 
with 5 cities with defined distances is explained above. We 
have run the test for iteration =10 with the number of 
particles=7. The best path identified for the TSP is 1-2-5-3-4-1 
with the total distance of 52. This best path in terms of distance 
is shown in following Fig. 6. 

 

Fig. 6. Minimum Cost Path Obtained from the PSO Algorithm, Path 

1-2-5-3-4-1. 

We have compared the latency and resource utilization of 
the PSO for TSP with different scenarios. This PSO for TSP on 
VIVADO HLS algorithm is targeted for the Xilinx Zynq FPGA 
having the FPGA device of xc7z020clg484-1. 

For the optimization of latency and resource, we have 
implemented the pragma directives on the HLS. We have tested 
the PSO for TSP algorithm by changing the number of 
iterations and placing the number of particles fixed as 7. 

Table I is the resource utilization table while implementing 
the PSO for TSP on VIVADO HLS. The resource utilization of 
the implementation is shown in number and percentage. The 
implementation consumes 6% of BRAM_18K, 12% of 
DSP48E, 9% of FF and 35% of LUT of the targeted Zynq 
device. 

Table II shows the comparison of latency with respect to the 
number of iteration and particles while implementing the PSO 
for TSP on HLS. This comparison is without the optimization 
with a pragma. In this table, the number of particles is placed 
constant and the number of iterations is varied from 10 to 100. 

The latency of implementation with the number of iteration 
-10 and particles=7 is smallest then the other implementation. 
While increasing the iteration as the usual the latency has 
increased. 

Table III shows the latency of the implementation with the 
utilization of pragma directives for the optimization. This 
optimization shows the latency of implementation with a 
different number of iteration and the constant number of 
particles. While comparing Table II and III, the optimization 
methodology reduces the overall latency than the without 
optimization. While the number of iterations =100 and the 
number of particles=7, the latency with optimization is 1.8 
times less than the without optimization on HLS 
implementation. 

TABLE I. RESOURCE UTILIZATION OF PSO FOR TSP WITH OPTIMIZATION 

AND FLOAT DATA TYPE AT ITERATION=10 AND NUMBER OF PARTICLES=7 

Resources 
Available 

Resources 

Utilization by float 

data type 

Utilization by float 

datatype (%) 

BRAM_18K 280 19 6 

DSP48E 220 28 12 

FF 106400 10026 9 

LUT 53200 18937 35 

TABLE II. COMPARISON OF MAXIMUM LATENCY WITH RESPECT TO THE 

DIFFERENT NUMBER OF PARTICLES AND ITERATION WITH TARGETED 

CLOCK=10NS AND WITHOUT OPTIMIZATION 

Iteration No.(i) 
Number of 

Particles (a) 

Latency 

(max.) 

Time (in 

Second) 

10 7 844124 0.00844124 

20 7 960584 0.00960584 

30 7 1077044 0.01077044 

40 7 1193504 0.01193504 

50 7 1309964 0.01309964 

100 7 1892264 0.01892264 
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TABLE III. COMPARISON OF MAXIMUM LATENCY WITH RESPECT TO THE 

DIFFERENT NUMBER OF PARTICLES AND ITERATION WITH TARGETED 

CLOCK=10NS AND WITH OPTIMIZATION 

Iteration No.(i) 
Number of 

Particles (a) 

Latency 

(max.) 

Time (in 

Second) 

10 7 792924 0.00782924 

20 7 808584 0.00808584 

30 7 834244 0.00834244 

40 7 859904 0.00859904 

50 7 885564 0.00885564 

100 7 1013864 0.01013864 

Table IV is the table for resource utilization of resources 
with the pragma directives for the optimization of resources 
and latency. The BRAM and DSP is constant while varying the 
number of iteration and making fixed the number of particles. 
While the number of FF and LUT has increased respectively 
when increasing the number of iterations from 10 to 100. The 
resource utilization is increased because of while the number of 
iteration is increased, the number of FF and LUT needed for 
processing arraySubtraction_float(), arrayAddition_float() and 
multiplyArrayWithScalar(). 

Table V shows the latency and the best path identified by 
the PSO for TSP on the Intel 6700HQ Processor and 
Code::Block Compiler. This Intel x86 processor has 3.50 GHz 
of frequency, 4 cores and 16GB RAM with Windows 10 
Operating System. 

TABLE IV. RESOURCE UTILIZATION REPORT  WITH RESPECT TO THE 

NUMBER OF ITERATION AND PARTICLES AND WITH OPTIMIZATION 

Iteration 

No.(i) 

Number of 

Particles (a) 
BRAM_18K DSP48E FF LUT 

10 7 19 28 10026 18937 

20 7 19 28 10496 21190 

30 7 19 28 10966 23300 

40 7 19 28 11436 24826 

50 7 19 28 11906 26296 

100 7 19 28 14256 33790 

TABLE V. RESULT WHILE RUNNING PSO WITH DIFFERENT NUMBER OF 

ITERATION AND PARTICLES ON X86 PC [ INTEL I7 6700HQ PROCESSOR 

Iteration 

No.(i) 

Number of 

Particles (a) 

Identified best 

route 

Minimum 

cost-based 

distance 

Total time 

spent (sec) 

10 7 0-1-4-2-3-0 52 0.001 

20 7 0-1-4-2-3-0 52 0.001 

30 7 0-1-4-2-3-0 52 0.002 

40 7 0-1-4-2-3-0 52 0.002 

50 7 0-1-4-2-3-0 52 0.002 

100 7 0-1-4-2-3-0 52 0.002 

We have exported the HLS implementation of PSO as the 
IP format to the VIVADO program. Then we have integrated 
our PSO IP with other necessary blocks for implementing on 
the Zynq FPGA board. The interconnection of PSO IP with 
other blocks is done for instructing the PSO IP with the number 
of iteration and number of particles from the Zynq Processing 
System. From this design, Zynq PS can accept the instruction of 
number of iteration and particles from the UART terminal and 
then the PS configures the information to the PSO IP. The PSO 
IP run the information of iteration and number of particles and 
then reply back the result to the PS. 

VIII. CONCLUSION 

In this paper, the Particle Swarm Optimization algorithm 
has been implemented on the HLS methodology. This work has 
implemented PSO for traveling salesman problem (TSP) in the 
C programming language. The number of cities is 5 and the 
number of iteration and particles are varied. The HLS algorithm 
also been optimized with the pragma directives. While 
optimizing the algorithm the number of resources needed has 
been increased because of the latency optimization, we used the 
LOOP_FLATTEN, LOOP_UNROLL and PIPELINE pragma 
directives. Moreover, the VIVADO block design has been 
implemented and the processor configuration is implemented. 
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