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Abstract—Speckle noise in ultrasound (US) medical images is 

the prime factor that undermines its full utilization. This noise is 

added by the constructive / destructive interference of sound 

waves travelling through hard- and soft-tissues of a patient. It is 

therefore generally accepted that the noise is unavoidable. As an 

alternate researchers have proposed several algorithms to 

somewhat undermine the effect of speckle noise. The discrete 

wavelet transform (DWT) has been used by several researchers. 

However, the performance of only a few transforms has been 

demonstrated. This paper provides a comparison of several 

DWT. The algorithm comprises of a pre-processing stage using 

Wiener filter, and a post-processing stage using Median filter. 

The processed image is compared with the original image on four 

metrics: two are based on full-reference (FR) image quality 

assessment (IQA), and the remaining two are based on no-

reference (NR) IQA metrics. The FR-IQA are peak signal-to-

noise ratio (PSNR) and mean structurally similarity index 

measure (MSSIM). The two NR-IQA techniques are blind 

pseudo-reference image (BPRI), and blind multiple pseudo-

reference images (BMPRI).  It has been demonstrated that some 

of these wavelet transforms outperform others by a significant 

margin. 

Keywords—Discrete wavelet transform; image quality 

assessment; ultrasound medical image 

I. INTRODUCTION 

An ultrasound (US) medical image helps in an early 
diagnosis of kidney stones. These stones cause severe pain in 
situations where they become large or block the flow of urine. 
In rare situations, a small stone is stuck in the ureter. The 
ureter is a small tube connecting kidney and bladder. As per 
statistics, 1 in 11 persons in USA suffer from kidney stones 
[1]. An early treatment can save someone from severe pain, 
cost and medical complexities. The US imaging is quick, non-
invasive, cost effective, and has no known side effects to the 
best of our knowledge. The medical complexities involving 
kidney stones are considered high-risk illnesses. These are life 
threatening if left untreated for a long time. 

The size and location of kidney stone is also important.  A 
patient may experience no symptom at all to severe, 
incapacitating pain in the loin requiring urgent treatment. At 
times the patient is complaining burning sensation during 

passage of urine, blood, or small stone debris in their urine. 
Stones can block the main outflow of urine from the kidney 
leading to irreversible kidney damage, disturbances in the 
biochemical balance of the body and eventually death. Thus a 
safe, economical and rapid imaging technique requiring no 
prior preparation is invaluable in saving many lives.  

The practical issue of speckle noise is not new. This has 
been addressed by several researchers, some as early as 1980‟s. 
Jain had initially approximated the speckle noise as 
multiplicative [2]. He suggested to apply homomorphic filter. 
The pre- and post-processing were performed using Wiener, 
and the Median filter, respectively. Chien-Min used Bayesian 
approach for removing the speckle noise [3]. Perona and 
Malik introduced an edge preserving approach of anisotropic 
diffusion (AD) in [4]. The AD filter was subsequently used by 
several researchers for speckle noise reduction [5]-[8]. The 
estimation of signal and noise using Kuan‟s filter has been 
used for speckle reduction anisotropic diffusion (SRAD) in [5]. 
SRAD using filtering across image contours and principle 
curvature directions are given in [6]. The probabilistic model-
based SRAD is discussed in [7]. A comparison of SRAD and 
several other schemes are presented in [8].  

The introduction of wavelets during the early 90‟s resulted 
in several papers on speckle noise. Mallat introduced 
multichannel decomposition of images using wavelet 
transform in [9]. The wavelet theory for image coding was 
developed in [10]. The application of wavelet packets was 
presented in [11]. The Bayesian maximum a posteriori (MAP) 
estimator based design were illustrated in [12]-[13]. The 
rational-dilation wavelet transform (RADWT) and non-linear 
bilateral filter based approaches were proposed in [14]. The 
genetic algorithm based solution was introduced in [15]. A 
quantum-inspired de-speckling method was discussed in [16]. 
The wavelet and fuzzy theory based approach is given in [17]. 

During the last two decades, several new wavelets have 
been derived. These wavelets offer numerous benefits. Some 
of them are preferred over the others in terms of number of 
stages, linearity, ease of use, etc. The performance of Symlet 
wavelets has been discussed in [18]. A comparison of five 
wavelets Haar, Daubechies, Symlet, Coiflet and biorthogonal 
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wavelets for removing the speckle noise has been given in 
[19]. The applications of various wavelets for identification of 
bone fracture has been discussed in [20]. A comparative study 
of Birge-Massart strategy for setting a threshold for image 
compression is given in [21]. The identification and 
classification of colonic polyps using wavelets transforms has 
been demonstrated in [22]. 

This paper compares the performance of seven wavelets 
for reducing the speckle noise in US medical images. The 
selected discrete wavelets are Haar, Daubechies, Symlet, 
Coiflet, biorthogonal, reverse biorthogonal, and discrete 
Mayer wavelets. The pre- and post-processing is performed by 
using Weiner and Median filters, respectively. The 
introduction is followed by evaluation criteria in Section 2. 
The description of selected discrete wavelet transforms is 
given in Section 3. The performances of these wavelets are 
given in simulations in Section 4. Section 5 concludes this 
paper. 

II. EVALUATION CRITERIA 

There are generally two ways of image quality assessment 
(IQA). The first approach compares the results with the 
original image. This is termed as full-reference (FR) IQA [23]. 
The second approach is more recent in which the assumption 
is that no reference image is available. This is referred to as 
blind or no-reference (NR) IQA [24]-[25]. In case of an US 
image, a truly clean image without speckle noise is not really 
available. In this regard, the NR-IQA seems to be a better 
metrics for US images. 

A. Full-Reference IQA (FR-IQA) 

The performance of various wavelets is tested using two 
FR-IQA. The first is based on peak signal to noise ratio 
(PSNR) and the second is mean structurally similarity index 
measure (MSSIM). The mean square error (MSE) is used as a 
criterion for comparing the original image with the processed 
image as given by 
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where,     is the pixel value of the original image and   ̂   

is the estimated value of    . The image row and column 

numbers are given by M, and N, respectively. The peak 
signal-to-noise ratio in decibels PSNRdB is found by using, 
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The superscript B is the number of bits in a pixel. The 
value of B is taken as 8, resulting in 256 grey shades. Each 
pixel value therefore varies in the range of 0-255.  

The structurally similarity index measure (SSIM) was 
proposed in 2004 [23]. It compares the mean and variance of 
two images. The two images are considered by x and y. The 
SSIM is given as, 
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where       are the average of images x and y, 

respectively.   
           

  are the variances of images x, and y, 

respectively.  1 = (𝑘1𝐿)
2
,  2 = (𝑘2𝐿)

2
 are two variables to 

stabilize the division with weak denominator. L is the dynamic 
range of the pixel value 255. The k1 and k2 are equal to 0.01 
and 0.03 (taken by default), respectively. Another single 
parameter used for images is MSSIM given as [23]. 
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The SSIM is the similarity index calculated over a small 
region of an image. The MSSIM is the mean value of SSIM 
across all windows. The MATLAB code for MSSIM is 
available in [26].  

B. No-Reference IQA (NR-IQA) 

The no-reference (NR) IQA assumes that a clean image is 
not available, and the image quality is assessed based on the 
available noisy image. In this paper two NR-IQA techniques 
are used to test the quality of US images. Both the techniques 
are essentially based on the use of a pseudo-reference image 
(PRI). A PRI is generated from the distorted image. In the 
absence of a clean image, the PRI is used as a reference image 
for the targeted US image quality assessment. 

The first NR assessment technique is blind PRI (BPRI) 
[24]. This technique measures the image quality in terms of 
block effects, sharpness, and noise. The block effect is found 
by using pseudo structure similarity (PSS) index.  The local 
binary pattern (LBP) is used for sharpness, and noise 
measurement. The PRI-based sharpness and noise is used to 
derive the local structure similarity (LSS) index. The second 
NR assessment technique is multiple PRI (MPRI) [25]. In this 
technique, the image is distorted with an aggregation of four 
types of distortions, based on JPEG compression, JPEG2000 
compression, Gaussian blur (GB), and white Gaussian noise 
(WGN). 

III. WAVELET SELECTION 

The Fourier and Laplace transforms have been used 
extensively for extracting the significant frequency 
components of a noisy image. These transforms perform very 
well by translating the time domain signal into frequency 
domain. The main limitation of these transforms is that the 
local information is lost. In an analogue or digital signal 
transmission system, the location of noise is generally not very 
critical. This is different in image processing, where the 
perceived quality of an image depends on the location of noise. 
As an example, the loss of signal at the edges of an image can 
be acceptable, but the loss of fine details at the centre of an 
image, or around the critical regions is quite unacceptable. A 
significant advantage of wavelet transform over the previously 
available transforms is that the wavelet not only translates 
time-domain into frequency-domain, it also preserves the 
physical location of noise present in an image. This advantage 
has no parallel in the other transforms. 

During the last two decades, several wavelets have been 
derived with different set of properties. Before proceeding on 
wavelets, it is important to review few basics of wavelet 
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transforms. An image decomposed by wavelet has two 
functions. These are scaling function and wavelet function,   
sometimes refer to as the mother wavelet, and the father 
wavelet. The scaling component gives lower frequency 
components corresponding to variations in the grey shades. 
The wavelet function gives high frequency components like 
edges. The scaling function,      and the wavelet function, 
     are given by, 

      ∑    √         

 

      ∑    √ 

 

        
 (5) 

The       and      are low-pass and high-pass filters, 
respectively. The n is the periodic shift that implements the 
filter coefficient index. Both filters are related by, 

                    (6) 

where N is the number of vanishing moments. A wavelet 
with N vanishing moment has at least a polynomial of order 
N-1. The vanishing moments represent level of 
differentiability of a function. A wavelet with vanishing 
moment N is defined as multi-scale differential of order N. 
This, in essence, defines the local irregularity of a signal. A 
smaller value of N is therefore preferred over the larger values. 
An N vanishing moment corresponds to 2N taps in the filter 
bank. The filter is implemented as a finite-impulse response 
(FIR) filter. A smaller value of N, therefore, corresponds to a 
shorter filter with less number of taps. 

TABLE I. WAVELETS USED FOR US IMAGE ANALYSIS 

S. No. 
Wavelet 

Families  
MATLAB Functions 

1  Haar  Haar  Haar  

2  Daubechies  dbN  

db2, db3, db4, db5, db6, db7, 
db8, db9, db10, db11, db12, 

db13, db14, db15, db16, db17, 

db18, db19, db20, db21, db22, 
db23, db24, db25, db26  

3  Symlet  symN  

sym1, sym2, sym3, sym4, 

sym5, sym6, sym7, sym8, 

sym9, sym10  

4  Coiflet  coifN  coif1, coif2, coif3, coif4, coif5  

5  Biorthogonal  bior Nr.Nd  

bior1.1, bior2.2, bior3.1, 

bior3.3, bior4.4, bior5.5, 
bior6.8  

6  
Reverse  

Biorthogonal  
rbio Nr.Nd  

rbio1.1, rbio2.2, rbio3.1, 
rbio3.3, rbio4.4  

7  
Discrete  

Meyer  
dmey  dmey  

Haar wavelet is the oldest and the simplest of all wavelets. 
This is the only orthogonal wavelet having linear phase. Haar 
wavelet decomposes the discrete signal into two sub-signals of 
half its length. One sub-signal provide the trend, while the 
second sub-signal gives difference or fluctuations. The main 
advantage of Haar wavelet is that it is fast, memory efficient, 
and conceptually simple to implement. 

The biorthogonal wavelets have linear phase. These filters 
have a pair of scaling functions and an associated scaling 
filters used for analysis and synthesis. The analysis and 
synthesis filters can be designed to have different order of 
vanishing moments. It is possible to have greater number of 
vanishing moments for sparse representation analysis and a 
smoother wavelet for reconstruction. In MATLAB notation, 
the biorthogonal wavelets are designated as „biorNr.Nd‟. 
Similarly, the reverse biorthogonal wavelets are represented as 
„rbioNr.Nd‟. The „Nr‟ represents the effective number of 
reconstruction filter, and the „Nd‟ represents effective number 
of decomposition filters. Table I gives several choices of „Nr‟ 

and „Nd‟. 

The Daubechies wavelet has several versions represented 
by vanishing moments, N. In Symlet wavelet, the value of „N‟ 
varies from 1 to 10. The Coiflet wavelet has 5 variations 
represented by the value of „N‟ that equals 1 to 5. In all the 
above wavelets, the number of taps in synthesis and analysis 
filters are same. The discrete Meyer wavelet has a single 
transform. A comprehensive mathematical analysis of wavelet 
theory is given in [27]. 

The Haar and Daubechies wavelets are orthogonal 
wavelets, while biorthogonal and reverse biorthogonal 
wavelets are biorthogonal in nature. The discrete Meyer 
wavelet is simply a discrete version of the continuous Meyer 
wavelet. A compactly supported wavelet function restricts 
itself to within certain limits and as a consequence the signal 
is also restricted to within some limits. The Haar, Daubechies, 
and reverse orthogonal wavelets have compactly supported 
functions. Both the Daubechies and reverse biorthogonal 
wavelets show an arbitrary number of vanishing moments. All 
the selected wavelets have finite impulse response (FIR). The 
FIR has an advantage of having only a few non-zero 
coefficients. 

IV. SIMULATIONS 

The algorithm is tested on six US medical images of 
abnormal kidneys with stones. These images are downloaded 
from the US imaging database [28]. The database comprises 
of large collection of US images that are categorized as fetal, 
kidney, renal calculi, appendix, urinary bladder, liver, spleen, 
chest and vascular system. The images in each category 
consists of high resolution samples. The low resolution images 
are good for fast processing; however, they are not appropriate 
as the fine details are lost. Also, the outcome may have little 
practical value. The high-resolution images provide enough 
details but they require more processing power as well as time. 
If these images are being used during an operation, then the 
speed of processing needs to be sufficiently higher to give 
real-life response to the ongoing activities, like surgery and 
other diagnostic treatments.  
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Fig 1. Flow diagram of US image processing. 

The selected kidney images are US images of patients 
complaining about minor to severe pain in the left region of 
their abdomen. All samples are for male patients. The initial 
diagnosis recommended US imaging for further treatment. 
The US images clearly showed stones, but the number of 
stones, and their sizes are not clearly identified as the images 
contain significant amount of speckle noise. The stones are 
more identifiable if they are either in larger size or present 
close enough to form a larger area in concerned region. 
Unfortunately, in most cases the kidney stones have relatively 
smaller sizes, and they are scattered across the whole active 
region of a kidney. In US images, kidney stones usually 
appear in „white‟ or lighter grey shades. A distinct feature of 
the stones is that they always have a long „shadow‟ that 
originates from the stone, and spreads out towards the outer 
edge of the kidney. These shadows are quite visible in most of 
the US images; however, in few cases the shadow is much 
lighter and may be overlooked. Image enhancement helps in 
improving the visibility of these shadows in such situations. In 
general, there are two primary objectives. The first is to reduce 
the speckle noise. The second is to improve the contrast level 
of regions containing significant amount of information like 
stones. 

Fig. 1 gives various steps involving US medical image 
processing. These are pre-processing, filtering, and post-
processing. In pre-processing, Wiener filter helps in 
smoothing the image. This has been demonstrated that 
although this causes sharp edges to be slightly smoothed out, 
but as a result the overall visibility improves. The pre-
processing is followed by filtering, using several discrete 
wavelet transforms. The selected transforms are Haar, 
Daubechies, Symlet, Coiflet, biorthogonal, reverse 
biorthogonal, and discrete Meyer wavelets. The Haar and 
discrete Meyer wavelets are distinct in nature. The remaining 
have several combinations. A list of selected wavelets is given 
in Table I. The post-processing is based on Median filter that 
helps in restoring the sharp edges. The window size used in 
the Wiener filter is (3 x 3) pixels. It has been observed that 
this is a preferred window size than the larger window size of 
(5 x 5), or (7 x 7) pixels. The two-dimensional Median filter is 
applied using (5 x 5) pixel window. The subjective tests have 
supported the use of (5 x 5) pixel windows against the 
possible (3 x 3) pixel or (7 x 7) pixel windows. 

The processing of wavelet is performed only at the first 
level of decomposition. The coefficients in the horizontal, 
vertical, and the diagonal directions are filtered using a hard-
limiter as, 

        {
        | |    
         | |   

 (7) 

where   is the threshold. The value of    in the horizontal, 
vertical, and the diagonal directions are selected as 200. This 
high value of threshold essentially removes most of the effects 
present in the above three directions. The low resolution 
coefficient cut-off is dynamically calculated by taking the 
mean pixel value of the selected image. It has been observed 
that a higher threshold value of low resolution coefficients 
result in severe quality degradation. 

The qualitative analysis of the above algorithms is tested 
on six US images of various granularity levels. The 
unprocessed, original images are given in the left column of 
Fig. 4. The location of stones and their shadows are marked 
with arrows on original images. The processed images are 
given on the right side. The histogram of original and the 
processed images are given on right side of the successive 
image. A quick comparison of the results reveal that a 
significant amount of speckle noise has been removed. At the 
same time, the contrast of the images has also improved. The 
histogram of all images show that the lower pixel values 
(darker grey) have been filtered out. The grey shades at higher 
values (lighter grey) have smoothed out, but the general shape 
has remained same. This has resulted in making the shadow 
region more prominent. The shadows in original images as 
shown in Fig. 4(a)-(e) are quite visible. These have become 
clearer in the processed images given on the right side. The 
shadows in Fig. 4(b), and f are not very clear in the original 
images, but they have become quite visible in the processed 
images. 

The quantitative analysis of the images are given in 
Table II through Table V. As mentioned earlier, the 
performance of various wavelet transforms are analyzed on 
four criterions broadly categorized as FR-IQA, and NR-IQA. 
The FR-IQA techniques are PSNR, and MSSIM, while the 
NR-IQA techniques are BPRI, and BMPRI. The PSNR and 
MSSIM metrics are given in Table II and Table III, 
respectively. The PSNR is given in decibels (dB), while the 
similarity index using MSSIM is given in a value between 0 
and 1. A value closer to 1 corresponds to a higher similarity 
across images. It is clear that the PSNR value depends on 
image contents. This is the reason that the PSNR of six 
selected images varies. However, the PSNR of any one image 
processed through a wavelet has smaller variation in terms of 
decibels (dB). This is also observed that a higher value of 
MSSIM corresponds to a higher value of PSNR. The metrics of 
BPRI, and BMPRI techniques are given in Table IV and 
Table V, respectively. The BPRI index is in the range of 0 to 1, 
while the BMPRI is in the range of 20 to 60. 
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TABLE II. PEAK SIGNAL-TO-NOISE RATIO (PSNR) 

MATLAB 

function  
(a) (b) (c) (d) (e) (f) 

MATLAB 

function  
(a) (b) (c) (d) (e) (f) 

haar  31.55 27.12 23.72 26.41 28.33 29.71 sym1 31.55 27.12 23.72 26.41 28.33 29.71 

db2  32.16 28.07 24.05 27.35 28.80 30.08 sym2 32.16 28.07 24.05 27.35 28.80 30.08 

db3  32.26 28.33 24.16 27.65 29.15 30.37 sym3 32.26 28.33 24.16 27.65 29.15 30.37 

db4  32.23 28.24 24.14 27.47 29.11 30.39 sym4 32.23 28.36 24.19 27.55 29.05 30.28 

db5  32.31 28.43 24.21 27.52 29.20 30.48 sym5 32.25 28.26 24.19 27.20 28.91 30.24 

db6  32.40 28.60 24.26 27.71 29.21 30.49 sym6 32.27 28.47 24.22 27.61 29.12 30.34 

db7  32.40 28.42 24.23 27.44 29.10 30.38 sym7 32.37 28.54 24.26 27.73 29.23 30.47 

db8  32.32 28.39 24.23 27.35 29.06 30.37 sym8 32.29 28.55 24.24 27.63 29.14 30.37 

db9  32.40 28.56 24.28 27.65 29.17 30.46 sym9 32.27 28.45 24.25 27.35 28.98 30.34 

db10  32.44 28.62 24.29 27.67 29.24 30.53 sym10 32.31 28.58 24.25 27.64 29.14 30.39 

db11  32.46 28.58 24.28 27.59 29.24 30.52 coif1 32.19 28.09 24.06 27.49 28.97 30.18 

db12  32.40 28.57 24.28 27.53 29.22 30.52 coif2 32.24 28.46 24.20 27.69 29.12 30.34 

db13  32.42 28.65 24.28 27.45 29.26 30.53 coif3 32.26 28.56 24.23 27.73 29.15 30.38 

db14  32.50 28.66 24.29 27.49 29.21 30.51 coif4 32.27 28.60 24.25 27.75 29.16 30.40 

db15  32.51 28.61 24.28 27.45 29.17 30.47 coif5 32.28 28.62 24.25 27.75 29.17 30.41 

db16  32.47 28.60 24.29 27.51 29.18 30.47 bior1.1 31.55 27.12 23.72 26.41 28.33 29.71 

db17  32.42 28.58 24.30 27.62 29.24 30.50 bior2.2 32.20 28.12 24.11 27.55 29.05 30.28 

db18  32.47 28.66 24.29 27.57 29.29 30.52 bior3.1 32.41 28.32 24.18 27.38 29.25 30.54 

db19  32.51 28.66 24.29 27.55 29.29 30.54 bior3.3 32.43 28.39 24.23 27.51 29.28 30.59 

db20  32.51 28.68 24.30 27.61 29.29 30.57 bior4.4 32.17 28.50 24.20 27.73 29.10 30.32 

db21  32.46 28.70 24.30 27.60 29.24 30.56 bior5.5 32.12 28.60 24.23 27.61 29.07 30.30 

db22  32.46 28.66 24.29 27.47 29.20 30.55 bior6.8 32.27 28.59 24.25 27.77 29.17 30.41 

db23  32.51 28.67 24.30 27.45 29.19 30.51 rbio1.1 31.55 27.12 23.72 26.41 28.33 29.71 

db24  32.54 28.67 24.32 27.51 29.22 30.52 rbio2.2 32.20 27.88 23.94 26.99 28.86 30.06 

db25  32.50 28.65 24.31 27.59 29.25 30.54 rbio3.1 31.91 28.96 24.02 26.65 28.91 30.22 

db26  32.48 28.65 24.30 27.52 29.27 30.54 rbio3.3 31.97 28.72 23.85 26.37 28.75 30.13 

  

      

rbio4.4 32.30 28.37 24.17 27.65 29.14 30.34 

              dmey 32.29 28.67 24.27 27.74 29.17 30.43 
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TABLE III. MEAN STRUCTURALLY SIMILARITY INDEX MEASURE (MSSIM) 

MATLAB 

function  
(a) (b) (c) (d) (e) (f) 

MATLAB 

function  
(a) (b) (c) (d) (e) (f) 

haar  0.932 0.842 0.727 0.911 0.861 0.792 sym1 0.932 0.842 0.727 0.911 0.861 0.792 

db2  0.935 0.853 0.752 0.919 0.874 0.805 sym2 0.935 0.853 0.752 0.919 0.874 0.805 

db3  0.936 0.855 0.764 0.923 0.880 0.810 sym3 0.936 0.855 0.764 0.923 0.880 0.810 

db4  0.936 0.855 0.766 0.922 0.882 0.811 sym4 0.936 0.855 0.763 0.924 0.881 0.811 

db5  0.936 0.856 0.768 0.923 0.883 0.814 sym5 0.936 0.855 0.760 0.925 0.880 0.811 

db6  0.937 0.857 0.769 0.925 0.925 0.815 sym6 0.936 0.856 0.766 0.926 0.882 0.812 

db7  0.937 0.857 0.764 0.925 0.884 0.815 sym7 0.937 0.857 0.770 0.926 0.883 0.814 

db8  0.936 0.857 0.764 0.925 0.883 0.813 sym8 0.936 0.857 0.767 0.926 0.882 0.813 

db9  0.937 0.858 0.768 0.927 0.885 0.816 sym9 0.936 0.856 0.764 0.926 0.881 0.813 

db10  0.937 0.859 0.772 0.926 0.886 0.818 sym10 0.936 0.857 0.767 0.926 0.883 0.813 

db11  0.937 0.859 0.773 0.926 0.886 0.818 coif1 0.935 0.853 0.756 0.920 0.876 0.807 

db12  0.937 0.858 0.772 0.926 0.885 0.817 coif2 0.936 0.856 0.766 0.925 0.881 0.812 

db13  0.937 0.858 0.771 0.926 0.886 0.817 coif3 0.936 0.856 0.768 0.926 0.882 0.813 

db14  0.938 0.859 0.769 0.926 0.887 0.818 coif4 0.936 0.857 0.768 0.927 0.882 0.813 

db15  0.938 0.859 0.767 0.926 0.887 0.818 coif5 0.936 0.857 0.769 0.927 0.883 0.814 

db16  0.937 0.859 0.769 0.927 0.886 0.817 bior1.1 0.932 0.842 0.727 0.911 0.861 0.792 

db17  0.938 0.859 0.772 0.926 0.886 0.818 bior2.2 0.935 0.854 0.761 0.922 0.879 0.810 

db18  0.938 0.860 0.772 0.926 0.888 0.819 bior3.1 0.937 0.857 0.767 0.921 0.884 0.818 

db19  0.938 0.860 0.773 0.926 0.888 0.819 bior3.3 0.937 0.858 0.772 0.924 0.887 0.821 

db20  0.938 0.860 0.773 0.927 0.887 0.819 bior4.4 0.935 0.855 0.766 0.925 0.880 0.811 

db21  0.938 0.860 0.772 0.926 0.887 0.819 bior5.5 0.936 0.855 0.765 0.924 0.879 0.809 

db22  0.938 0.860 0.770 0.926 0.887 0.820 bior6.8 0.936 0.857 0.769 0.927 0.882 0.813 

db23  0.938 0.860 0.769 0.927 0.888 0.820 rbio1.1 0.932 0.842 0.727 0.911 0.861 0.792 

db24  0.938 0.860 0.771 0.926 0.888 0.820 rbio2.2 0.935 0.851 0.746 0.914 0.871 0.801 

db25  0.938 0.860 0.773 0.926 0.888 0.820 rbio3.1 0.935 0.855 0.776 0.923 0.884 0.813 

db26  0.938 0.860 0.773 0.926 0.888 0.820 rbio3.3 0.935 0.853 0.755 0.912 0.874 0.804 

  

      

rbio4.4 0.936 0.856 0.765 0.924 0.882 0.812 

              dmey 0.936 0.857 0.769 0.927 0.883 0.814 
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TABLE IV. BLIND PSEUDO-REFERENCE IMAGE (BPRI) METRICS 

MATLAB 

function  
(a) (b) (c) (d) (e) (f) 

MATLAB 

function  
(a) (b) (c) (d) (e) (f) 

haar  0.058 0.034 0.033 0.046 0.040 0.033 sym1 0.058 0.034 0.033 0.046 0.040 0.033 

db2  0.119 0.065 0.072 0.088 0.079 0.069 sym2 0.119 0.065 0.072 0.088 0.079 0.069 

db3  0.125 0.069 0.077 0.091 0.084 0.072 sym3 0.125 0.069 0.077 0.091 0.084 0.072 

db4  0.125 0.069 0.076 0.090 0.083 0.072 sym4 0.122 0.068 0.076 0.091 0.083 0.071 

db5  0.126 0.070 0.077 0.091 0.084 0.073 sym5 0.125 0.069 0.076 0.091 0.083 0.073 

db6  0.129 0.071 0.079 0.091 0.087 0.074 sym6 0.124 0.069 0.077 0.091 0.084 0.072 

db7  0.124 0.070 0.075 0.089 0.083 0.073 sym7 0.128 0.071 0.079 0.093 0.086 0.075 

db8  0.125 0.069 0.074 0.088 0.084 0.074 sym8 0.126 0.070 0.077 0.092 0.084 0.072 

db9  0.127 0.071 0.078 0.088 0.085 0.073 sym9 0.127 0.070 0.077 0.091 0.085 0.074 

db10  0.126 0.070 0.078 0.088 0.084 0.074 sym10 0.127 0.070 0.078 0.092 0.085 0.073 

db11  0.126 0.070 0.076 0.088 0.085 0.073 coif1 0.115 0.064 0.073 0.087 0.077 0.066 

db12  0.126 0.070 0.077 0.088 0.084 0.073 coif2 0.126 0.069 0.079 0.096 0.085 0.072 

db13  0.125 0.069 0.076 0.088 0.084 0.071 coif3 0.128 0.070 0.080 0.095 0.086 0.074 

db14  0.124 0.070 0.075 0.087 0.083 0.073 coif4 0.127 0.070 0.078 0.092 0.085 0.073 

db15  0.125 0.070 0.076 0.088 0.085 0.074 coif5 0.126 0.070 0.077 0.090 0.084 0.073 

db16  0.126 0.070 0.077 0.086 0.085 0.073 bior1.1 0.058 0.034 0.033 0.046 0.040 0.033 

db17  0.123 0.070 0.076 0.085 0.084 0.072 bior2.2 0.118 0.064 0.074 0.088 0.078 0.066 

db18  0.124 0.069 0.076 0.086 0.083 0.073 bior3.1 0.125 0.069 0.079 0.092 0.084 0.073 

db19  0.125 0.070 0.077 0.088 0.085 0.073 bior3.3 0.124 0.069 0.077 0.090 0.083 0.072 

db20  0.126 0.070 0.076 0.088 0.085 0.073 bior4.4 0.117 0.065 0.074 0.089 0.080 0.068 

db21  0.123 0.069 0.076 0.085 0.082 0.072 bior5.5 0.121 0.067 0.076 0.090 0.082 0.071 

db22  0.122 0.069 0.075 0.086 0.083 0.073 bior6.8 0.124 0.069 0.078 0.091 0.084 0.072 

db23  0.125 0.070 0.077 0.088 0.085 0.073 rbio1.1 0.058 0.034 0.033 0.046 0.040 0.033 

db24  0.125 0.070 0.077 0.085 0.085 0.073 rbio2.2 0.115 0.064 0.071 0.086 0.077 0.066 

db25  0.123 0.069 0.076 0.085 0.084 0.072 rbio3.1 0.074 0.045 0.037 0.051 0.047 0.042 

db26  0.122 0.069 0.075 0.085 0.083 0.073 rbio3.3 0.119 0.066 0.065 0.087 0.076 0.066 

  

      

rbio4.4 0.124 0.069 0.077 0.092 0.083 0.072 

              dmey 0.125 0.069 0.075 0.087 0.082 0.072 
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TABLE V. BLIND MULTIPLE PSEUDO-REFERENCE IMAGE (BMPRI) METRICS 

MATLAB 

function 
(a) (b) (c) (d) (e) (f) 

MATLAB 

function 
(a) (b) (c) (d) (e) (f) 

haar  27.94 11.58 9.83 18.31 15.13 11.35 sym1 27.94 11.58 9.83 18.31 15.13 11.35 

db2  54.17 31.68 36.29 40.57 38.55 32.92 sym2 54.17 31.68 36.29 40.57 38.55 32.92 

db3  56.59 32.64 38.95 42.97 40.34 36.78 sym3 56.59 32.64 38.95 42.97 40.34 36.78 

db4  56.82 32.75 39.37 42.84 39.26 35.94 sym4 55.97 32.25 38.52 42.66 40.96 34.50 

db5  57.33 33.57 38.76 43.05 41.77 36.79 sym5 56.77 33.24 39.95 44.06 41.70 35.59 

db6  58.52 34.21 39.68 42.57 43.30 37.96 sym6 56.63 32.49 39.74 42.51 41.19 34.89 

db7  57.61 33.83 38.68 42.69 41.21 36.58 sym7 58.40 34.02 41.18 44.39 41.78 38.13 

db8  56.92 33.27 38.67 42.55 42.15 36.72 sym8 57.22 33.23 39.27 42.71 41.63 35.81 

db9  58.25 34.19 40.97 42.95 43.25 37.61 sym9 57.53 33.67 39.94 43.92 42.54 35.98 

db10  58.45 34.27 40.11 43.04 42.60 38.17 sym10 57.64 33.97 39.59 43.72 42.11 36.31 

db11  58.46 33.72 40.00 43.93 42.71 37.73 coif1 53.33 31.74 36.13 40.42 37.10 31.68 

db12  57.65 33.30 39.30 41.94 42.34 37.11 coif2 56.89 32.54 39.78 43.06 41.39 35.39 

db13  57.52 32.91 40.45 42.80 42.81 37.13 coif3 57.23 33.61 40.11 44.28 42.03 36.23 

db14  57.86 34.69 39.73 42.49 42.33 37.25 coif4 57.10 33.23 39.56 44.45 42.10 36.23 

db15  58.09 34.44 39.33 43.75 43.85 37.70 coif5 57.14 33.67 40.02 42.97 41.99 35.86 

db16  58.00 34.16 39.93 42.42 42.99 37.32 bior1.1 27.94 11.58 9.83 18.31 15.13 11.35 

db17  58.00 34.16 39.93 42.42 42.99 37.32 bior2.2 54.13 30.58 36.31 40.22 38.91 31.55 

db18  58.09 34.33 39.50 43.40 43.56 37.90 bior3.1 56.84 32.81 39.24 42.77 40.60 37.49 

db19  58.47 34.23 40.54 44.28 43.25 37.26 bior3.3 56.78 33.19 38.90 42.52 41.50 36.72 

db20  58.27 34.30 39.78 43.16 43.42 38.03 bior4.4 54.13 30.24 36.76 40.84 39.69 32.88 

db21  57.39 33.77 39.66 41.94 43.01 37.19 bior5.5 55.58 31.59 38.85 42.15 39.98 34.32 

db22  57.59 34.38 39.53 43.13 43.47 37.49 bior6.8 56.84 32.63 39.82 43.40 41.83 35.56 

db23  58.22 35.89 40.55 43.49 43.36 37.13 rbio1.1 27.94 11.58 9.83 18.31 15.13 11.35 

db24  57.90 35.58 40.64 42.61 43.28 37.29 rbio2.2 53.64 31.46 35.34 39.66 37.88 31.54 

db25  57.39 35.47 40.17 42.92 43.65 37.57 rbio3.1 39.60 17.96 13.35 21.94 18.29 16.14 

db26  57.99 35.16 40.73 43.09 43.21 37.71 rbio3.3 55.31 29.48 32.05 42.12 35.63 32.70 

  
      

rbio4.4 56.81 33.20 38.78 42.71 41.61 34.39 

              dmey 56.85 33.07 39.27 43.37 41.97 36.34 

 

Fig 2. PSNR value of Haar and Daubechies wavelet transforms. 

 
Fig 3. PSNR of Symlet, Coiflet, biorthogonal, reverse biorthogonal, and 

Meyer wavelets. 
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Original Image Histogram - Original Image Processed Image Histogram - Processed Image 

 
 

 
 

(a) Daubechies 24, PSNR: 32.54, MSSIM: 0.938, BPRI: 0.125, BMPRI: 57.90, size: 1125 x 1327 pixels 

    
(b) Reverse biorthogonal 3.1, PSNR: 28.96, MSSIM: 0.855, BPRI: 0.045, BMPRI: 17.96, size: 781 x 1001 pixels 

    
(c) Daubechies 24, PSNR: 24.32, MSSIM: 0.771, BPRI: 0.077, BMPRI: 40.64, size: 479 x 624 pixels 

    
(d) Biorthogonal 6.8, PSNR: 27.77, MSSIM: 0.927, BPRI: 0.091, BMPRI: 43.4, size: 505 x 672 pixels 

    
(e) Daubechies 20, PSNR: 29.29, MSSIM: 0.887, BPRI: 0.085, BMPRI: 43.42, size: 467 x 636 pixels 

    
(f) Biorthogonal 3.3, PSNR: 30.59, MSSIM: 0.821, BPRI: 0.072, BMPRI: 26.72, size: 472 x 635 pixels 

Fig 4. (a-f) Original and Processed image along with their histograms processed through selected wavelet transforms. 

The highest PSNR in each of the six images is marked 
with bold letters. These correspond to Daubechies 24, reverse 
biorthogonal 3.1, Daubechies 24, biorthogonal 6.8, 
Daubechies 20, and biorthogonal 3.3 for successive images of 
Fig. 4(a)-(f). The specific wavelet is mentioned against each 
image in Fig. 4. The corresponding value of MSSIM, BPRI, 

and BMPRI are also highlighted with bold letters. The 
histograms of processed images are given on the right side in 
Fig. 4. It has been observed that the response to Haar wavelet, 
Symlet 1 wavelet, and the biorthogonal1.1 wavelet is same. 
Similarly, the performance of Daubechies 2, and Daubechies 3 
are exactly same as Symlet 2 and Symlet 3, respectively. The 
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mean PSNR of six images is plotted in Fig. 2 and Fig. 3. The 
standard deviation of these images is also plotted along with 
the mean values in Fig. 2 and Fig. 3. The graphs in Fig. 2 
corresponds to the Haar wavelet, and Daubechies wavelets. 
The mean value of the remaining wavelets is given Fig. 3. 
From Fig. 2, it is clear that variations among the values of   
Daubechies wavelets are within 1 dB value, but there is a 
definite increasing trend of PSNR as the value of N is 
increased from Daubechies 2 to Daubechies 20, and then it 
decreases slightly afterwards. This is understandable as with 
more number of taps, the amount of information increases 
until N becomes equal to 20, and then it slightly reduce as the 
undesired signal is possibly added in the extracted information. 

The mean value of MSSIM is given in Table III. It is clear 
that the similarity index increases at the higher values of N. 
The mean values of BPRI, and BMPRI are given in Table IV, 
and Table V, respectively. The peak index values of BPRI and 
BMPRI for each image is encircled. It is clear that Daubechies 
6 out performs in four out of six images. In the remaining two 
images, the value of Daubechies 6 closely follows two other 
wavelets Symlet 7, and Coiflet 2. The BPRI index of image (c) 
is same for Daubechies 6 and Symlet 7.  The maximum value 
of BMPRI is not consistent, as the peak values of six images 
correspond to six different wavelets. The possible reason is 
that BMPRI compares the original image with a noisy image 
that has been generated by the aggregation of several noisy 
version of the original image. The image content has a larger 
role in generating the reference image, and therefore the 
response to various wavelets does not generate consistent 
results. 

V. CONCLUSIONS 

This paper reviews the performance of seven discrete 
wavelet transforms in reducing the effect of speckle noise of 
the US medical images. The complete analysis is based on 
pre-processing, filtering, and post-processing. The pre-
processing involves the application of Wiener filter, followed 
by filtering using seven discrete wavelet transforms. The 
selected wavelet transforms are Haar, Daubechies, Symlet, 
Coiflet, biorthogonal, reverse biorthogonal, and discrete 
Meyer wavelets. The post-processing involves the application 
of Median filter. The simulation results are based on US 
images of kidney that have previously been diagnosed for 
stones. The performance of various wavelets is compared 
using four metrics. Two are based on full-reference (FR) 
image quality assessment (IQA), and the remaining two are 
based on no-reference (NR) IQA. The two FR-IQA techniques 
are PSNR, and MSSIM, while the two NR-IQA techniques are 
blind pseudo-reference image (BPRI), and blind multiple PRI 
(BMPRI) metrics. The images with the highest PSNR are 
identified, and the other metrics of these images are marked. 
The output of the selected images with the highest PSNR, 
along with their histograms, are reproduced for comparison. 
The qualitative and quantitative analysis clearly show 
significant improvement in the processed images. In this paper 
only the first level of wavelet decomposition is considered. An 
extension of this work by considering multilevel wavelet 
decomposition has strong potential for better results. It would 
be interesting to see the effect of using one wavelet function 

for first level and another wavelet function for the second 
level. 
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