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Abstract—Millions of compounds which exist in huge datasets 

are represented using Simplified Molecular-Input Line- Entry 

System (SMILES) representation. Fragmenting SMILES strings 

into overlapping substrings of a defined size called LINGO 

Profiles avoids the otherwise time-consuming conversion process. 

One drawback of this process is the generation of numerous 

identical LINGO Profiles. Introduced by Kristensen et al, the 

inverted indexing approach represents a modification intended to 

deal with the large number of molecules residing in the database. 

Implementing this technique effectively reduced the storage 

space requirement of the dataset by half, while also achieving 

significant speedup and a favourable accuracy value when 

performing similarity searching. This report presents an in-depth 

analysis of results, with conclusions about the effectiveness of the 

working prototype for this study. 
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I. INTRODUCTION 

Rapid advances in technology over the past few years have 
allowed for many virtual screening experiments to be 
conducted extensively [1]. In ligand-based screening, large 
chemical databases consisting of small molecules are 
effectively screened by a query molecule as to identify 
molecules with similar biological activity, applying the well-
known similarity principle that “structurally similar molecules 
are likely to have similar properties” [2,3,4,5,6]. The query 
structure itself normally exhibits a potentially useful level of 
biological activity and might be, for example, a competitor‟s 
compound or a structurally novel hit from an initial high-
throughput screening (HTS) experiment [7]. Both the query 
and database molecules are characterized by descriptors. 

Simplified Molecular-Input Line-Entry System (SMILES) 
is a type of 1D representation [8] which represents molecular 
structures in strings format [9,10]. The SMILES specialized 
algorithm known as LINGO [11] is introduced in the field as it 
delivers a required level of simplicity for retrieving the 
molecules from database. LINGO representation avoids the 
necessity for producing an explicit model of the chemical 
structure in the form of either a graph or a 3D structure because 
it generates the representation of a molecule directly from 
canonical SMILES [12]. 

The continuing rise in the number of compounds to be 
processed is one of the common challenges which have to be 
confronted in this field, in terms of the accompanying demand 

for higher processing power and storage costs [13]. Small 
libraries can take up to 10^5 compounds, while commercially 
available datasets have approximately (2 x 10^7 compounds) in 
their libraries [14]. Many research studies have been conducted 
to address this problem by developing a coherent technique to 
store the compounds, but this has been limited only to 
compounds represented in 2D fingerprints [15]. This situation 
has, consequently, led to the necessity of introducing a data 
structure efficient enough to store the compounds represented 
in LINGO Profiles. An inverted index is a type of index data 
structure which is commonly used to encode data in string 
format [16 ,17, 18]. It allows for term-based searches to be 
more effective [19,20]. This study seeks to ascertain whether 
the introduction of inverted indices actually achieves any 
reduction in storage and processing costs when performing 
similarity searching. Therefore, the rest of the paper is 
organised as follows: Section II presents several related studies 
pertaining to similarity searching methods. Next, Section III 
elaborates the research methodology in terms of 
implementation and experimental design, while Section IV 
discusses the analyses outcomes. Lastly, this paper ends with a 
conclusion depicted in Section V. 

II. BACKGROUND REVIEW 

The search for compounds similar to a given target ligand 
structure and compounds with defined biophysical profiles are 
two main important principles in modern drug discovery 
process [21]. Both tasks make use of molecular descriptors 
with different complexity (atomic, topographic, sub structural 
fingerprints, 3D, biophysical properties, etc.) leading to 
different representations of the same molecule [22]. In general, 
structural representation, also known as molecular descriptor is 
used in describing the characteristics of compounds [23]. 

Ozturk and co-workers [24] used a state-of-the-art 
algorithm; the Weighted Nearest Neighbor-Gaussian 
Interaction Profile (WNN-GIP) with which to evaluate the 
performance between 1D SMILES representation and 2D 
representation-based descriptors in the protein-drug interaction 
task. Their investigation successfully demonstrated that 
SMILES-based methods [25] of molecular similarity 
comparison perform as well as 2D-based methods. Moreover, 
SMILES-based kernels were found to be computationally 
faster and more flexible than their 2D competitors. 

In a different experiment, comparisons were examined 
between 2D fingerprints such as Daylight, MOLPRINT 2D, 
MACCS, and Open Babel with 3D shape-based methods, 
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typically SHAEP, PARAFIT and ROCS, in order to measure 
the efficiency of the similarity searching method across a range 
of virtual screening methods [26]. Results showed in the past 
[26][27] that 3D shape-based methods could not perform as 
well as a simple fingerprint similarity search, in spite of giving 
conformational information (i.e. shape information) and atomic 
coordinates of a compound. 

Most previous drug-target interaction prediction tasks 
involving LINGO have utilized the Tanimoto coefficient. Vidal 
and colleagues [28] used a bioisostere dataset to compute 
intermolecular similarity between bioisosteric molecules and 
some randomly sampled pairs of molecules using an integral 
Tanimoto coefficient. The average similarities (LINGOsim) 
obtained effectively demonstrated that important information 
about a molecule is stored in LINGO Profiles. On the other 
hand, LINGO-DOSM, introduced by Hentabli et al [29], 
outperformed other descriptors such as EPFP4, GRFP, 
MACCS etc. LINGO-DOSM is the integral set derived from a 
given DOSM string. DOSM allows rigorous structure 
specification by implementing a small and natural grammar. 
The positive performance of LINGO-DOSM is not only 
limited to the top 5% for MDDR but it also gives best results 
for the top-1% for MDDR. This is mainly due to limiting the 
selection of LINGO length to just four characters. Finally, 
using the Briem and Lessel benchmark, Andrew and colleagues 
concluded that LINGO generated from isomeric SMILES can 
offer better retrieval rates, compared to non-isomeric SMILES. 
In addition, when LINGO was compared with more complex 
approaches (Daylight fingerprint) [25], it managed to identify 
active compounds better for two activity classes (ACE and 
TXA2). 

The effectiveness of LINGO in predicting the 
property/activity of one molecule compared with another 
molecule similar to it, however, has a limitation [30]. This 
technique is associated with the length of the substrings 
obtained from the fragmentation of a canonical SMILES string, 
requiring the manipulation of the string and meaning that the 
processing cost will increase linearly along with the SMILES 
length [28]. Since search efficiency is progressively more vital 
with the ongoing expansion of these databases, scalability 
problems naturally arise when virtual compounds or recently 
synthesized compounds are added accordingly [31]. A variety 
of data structures and algorithms were consequently introduced 
throughout the years to accelerate this process by reducing the 
search, i.e. by rapidly eliminating the molecules that are not 
homogenous to the query, without computing their similarity to 
the query [32]. 

Imran and co-workers [33] presented a new algorithm 
known as the SIML (“Single-Instruction, Multiple-LINGO”) to 
measure the similarity between molecules. Each multiset in a 
molecule is represented in 32-bit integers and it is stored in a 
sorted vector of 4-Lingos (represented as integers). A new 
algorithm, (1), was derived based on the vector representation 
of the multisets. This sparse vector algorithm speeds up the 

computation involved, as for every Tanimoto calculation only 
the intersection size 〈A, B〉 needs to be calculated. 

    
〈   〉

〈   〉 〈   〉 〈   〉
             (1) 

Outside the field of cheminformatics, numerous 
information retrieval communities in general have been 
conducting experiments for decades on searching text in large 
datasets [34]. State-of-the-art algorithms from general 
information retrieval, known as inverted indices, are 
considered applicable for use in cheminformatics, as both 
domains arrived at the same similarity measure and 
representation [35] independently from one another. Features 
are associated with each respective list of documents contained 
in a given database, as shown in Fig. 1. 

The features-documents association guarantees the 
reduction of the similarity computations between database 
molecules and the query as it removes database molecules 
which are irrelevant to the desired list. This approach can also 
be applied directly to SMILES string representations for 
molecules. 

Kristensen et al. [36] proposed performing a similarity 
search between a target and database compounds represented 
using LINGO multisets by representing the database as 
inverted indices. The idea was to keep the LINGO multisets as 
a vector, where every cell in the vector is assigned to hold one 
of the LINGO identifiers (ID) from the verbose representation. 
Unlike SIML which uses two arrays to represent a LINGO 
multiset, verbose representation utilizes only an array to store 
the whole multisets including duplicate LINGO represented 
using multiple different IDs as shown in panel (a) of Fig. 2. 

 

Fig. 1. Molecules Represented in Fingerprint Format are Stored in Inverted 

Index Data Structure. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 5, 2019 

30 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 2.  (a) Each LINGO is Associated with their Respective IDs. (b) 

LINGO and their Reference to their Original SMILES String in Inverted 

Indices Representation. 

Input from panel (a) is used to create inverted indices 
(panel (b)) listing all the multisets associated with a given ID. 
Similarities are computed based on the value stored in the 
counting vector after the inverted indices are traversed. This 
strategy, however, led to a drawback as multiple occurrences of 
the similar LINGO in a compound will consume more storage 
space. It is certainly not feasible for huge datasets (e.g. 
ChEMBL). In addition, the construction of the inverted indices 
necessitates a search of the largest ID in the dataset. These 
situations will cause the increase in the processing time and 
consume high amount of resources, when performing similarity 
searching process. Besides, Kristensen work is only practical 
for chemical dataset such as Maybridge and ZINC. 

Instead of finding a new method for indexing a database, a 
small modification of the inverted indexing scheme introduced 
by Kristensen et al. [36] is proposed in this study. Verbose 
representation is eliminated by the introduction of a pattern 
matching approach to resolve a query. This modification is 
made to increase the available storage space and to minimize 
the time taken to search a LINGO. A brief explanation of how 
the indexing method for this study was implemented is 
discussed in the following section. 

III. METHODOLOGY 

The work was conducted purely on the 102,540 MDDR 
dataset compounds, where searches were focused only on 
selected structures from eleven activity classes. The first 
experiment of this study aimed at measuring the recall values 
obtained by LINGO Profiles on MDDR dataset, comparing it 
with various other fingerprints. The second experiment of this 
study intended to perform similarity searching based on the 
proposed indexing method, which as discussed earlier in the 
literature. The time taken and the storage consumption for both 
experiments were to be computed along before presenting a 
full discussion of these results in the next section. 

A. Performing Similarity Searching in Sequential Manner 

A q-LINGO is a q-character string which may include 
letters, numbers, and symbols such as “(“,”)”, “[“, “]”, “#”, etc. 
and which is obtained by stepwise fragmentation of a canonical 
SMILES molecular representation [28]. Before the LINGOs 
are created from a compound, the compound ring numbers 
must be substituted for “0”. If atoms such as “Cl” and “Br” are 
present, they will be replaced by “L” and “R”, respectively. 
Raw MDDR Dataset (file A) stores all possible LINGOs for 
similarity searching after it is being fragmented and modified 
from the original MDDR dataset. It is attached together with its 
respective ID in sequential manner. Fig. 3 shows the whole 
process in generating LINGO Profiles. 

Using the raw MDDR dataset (file A), to obtain LINGO for 
our query string (compound A) and a MDDR database 
compound (compound B), the ID of the compounds was 
compared with file A. Next, the LINGOsim function was used 
to calculate the similarities between the two compounds. Based 
on a comparison of the LINGOs of the two compounds, A 
(query compound) and B (MDDR database compound) any 
intermolecular similarities were computed using the integral 
Tanimoto coefficient. NAi represents the number of LINGOs of 
type (i) in compound A, while NBi represents the number of 
LINGOs of type (i) in compound B, and (l) is the number of 
LINGOs contained in either compound A or B. 

B. Performing Similairty Searching using Proposed Indexing 

Scheme 

Two columns existed in this inverted indexing scheme 
(“Word” and “Documents”) allow the query to perform 
similarity searching via random access [37]. “Word” column in 
Table I can be referred to as the unique LINGO Profiles 
obtained from the MDDR dataset and the “Document” column 
signify the compound IDs which contains the respective 
LINGO [37]. 

From the list (file A) generated earlier, it is possible to map 
the LINGO and IDs into the indexing scheme. 409,752,8 
LINGO Profiles contained in file A are compared with each 
other and if two or more identical LINGO Profiles is found, 
then their respective ID are appended together with the LINGO 
Profile in the list. In the end, the indexed database would only 
have 4054 unique LINGO Profiles. Fig. 4 summarizes the 
whole process. 
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Fig. 3. Modifying and Fragmenting LINGO Profiles from MDDR Dataset. 

 

Fig. 4. Comparing LINGO Profiles and Eliminating Redundant LINGO 

Profiles on file a; as to Generate Indexed Dataset. 

Calculating similarity values using our proposed method 
differed from the conventional method because it was based on 
a pattern-matching technique. Whenever the LINGOs in the 
query compound were found in the indexed database, the IDs 
in the “Document” column were retrieved and the frequency of 
occurrence is accumulated and calculated accordingly. The 
ranked list obtained were then sorted in a descending order to 
calculate the recall values. The whole process is illustrated in 
Fig. 5. 

Table II shows the activity classes which were used in both 
experiments. Activity classes that were used in the experiments 
are slightly different in nature. The diversity was determined 

using the main pairwise Tanimoto similarity (MPS) and it is 
included in Table I. Structurally homogenous classes such as 
Renin and ATI has high MPS value as compared to COX and 
PKC which have low MPS value since they are structurally 
diverse. 

TABLE I. STRUCTURE OF AN INVERTED INDEXING SCHEME 

Word Documents 

Cow Document 1, Document 4, Document 6, Document 9, Document 15 

The Document 2, Document 5, Document 8 

Hello Document 12 

Cat Document 7 

TABLE II. ACCURACY COMPARISON BETWEEN LINGO AND OTHER 

DESCRIPTORS (TOP :ACTIVES RETRIEVED; BOTTOM :  RECALL) 

Activity Classes 

Number of 

Active 

Structures 

Pairwise 

Similarity 

(Mean) 
Most 

Homogenous 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Most 
Heterogenous 

Renin inhibitors 1130 0.290 

Angiotensin II ATI 

antagonists 
943 0.229 

HIV Protease 

inhibitors 
750 0.198 

Thrombin inhibitors 803 0.180 

Substance P inhibitors 1246 0.149 

5HT3 antagonists 752 0.140 

D2 antagonists 395 0.138 

5HT1A agonists 827 0.133 

5HT reuptake 

inhibitors 
359 0.122 

Protein Kinase C 
inhibitors 

453 0.120 

Cyclooxygenase 

Inhibitors 
636 0.108 

 

Fig. 5. Process Involved when Performing Similarity Searching using the Proposed Methodology. 
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IV.  RESULTS AND DISCUSSION 

This section is divided into two sub-sections: A and B. 
Section A basically confirms Vidal‟s work via replication and 
compares performance to other fingerprints. Section B 
discusses the performance of the proposed method regarding 
time and storage consumption when benchmarked with the 
conventional method. 

A. Comparing Accuracy between LINGO Profiles and 

Various different Fingerprints 

The performance of the similarity searching process can be 
evaluated based on its effectiveness. Effectiveness includes the 
calculation of the recall value in every single search. The recall 
value, R is calculated by dividing the number of actives 
retrieved at the end of the process, n, by the number of 
compounds that available in the activity class, N, as shown in 
(2). In other words, recall can be defined as the percentage of 
the active molecules, which is gained from the cut-off point in 
the ranked list. Some of the cut-off points that have been 
widely used are at 1% and 5%. In this experiment, we only use 
1% cut-off. The recall value gained indicated the probability of 
structures that are showing positive to the target. Thus, the 
higher the recall value gained, the higher the number of 
structures that react positively towards the target, which 
implies the accuracy of the method. Units 

   
 

 
                (2) 

The performance of similarity searches using LINGOs was 
compared with the performance of similarity searching using 
various fingerprints obtained from the work of Malim [23]. A 
total of 110 searches were performed using 10 queries from 11 
activity classes. These searches were executed in accordance to 
Fig. 6. Table III presents the average results of the number of 
actives retrieved and recall values. 

From Table III, the superior performance of ECFP4 is 
evident in comparison with other fingerprints and LINGO 
Profiles, except for two activity classes where LINGOs 
outperform ECFP4. However, it was observed that the 

performance of LINGO was comparable with other fingerprints 
such as MDL, Daylight, and Unity in general. A closer analysis 
of the difference in the accuracy between both descriptors 
(ECFP4 and LINGO) reveals that ECFP4 outperformed 
LINGO only by a small average difference of 2.975%. Renin 
recorded the highest difference between both methods at 
9.13 %, while the lowest difference value was observed in the 
Thrombin activity class, which favors LINGO Profiles at 
0.41%. 

TABLE III. ACCURACY COMPARISON BETWEEN LINGO AND OTHER 

DESCRIPTORS (TOP: ACTIVES RETRIEVED; BOTTOM:  RECALL) 

Activity Classes Descriptors 

 Unity LINGO Daylight ECFP4 MDL 

5HT1A 
56 

6.79 

64 

7.77 

59 

7.15 
81 

9.79 

53 

6.46 

5HT3 
59 

7.83 

68 

9.10 

63 

8.30 
89 

11.89 

49 

6.55 

5HTReuptake 
21 
5.86 

20 
5.82 

19 
5.40 

24 

6.83 

20 
5.58 

AT1 
90 

9.49 

154 

16.36 

99 

10.54 
236 

25.02 

114 

12.10 

COX 
15 

2.41 

14 

2.34 

21 

3.22 
28 

4.45 

15 

2.48 

D2 
19 
4.74 

22 
5.70 

22 
5.63 

27 

6.86 

17 
4.33 

HIVP 
46 

6.19 

51 

6.88 

37 

4.90 
87 

11.57 

44 

5.83 

PKC 
21 

4.57 

28 

6.23 

22 

4.88 
35 

7.79 

17 

3.75 

Renin 
167 
14.76 

316 
28.02 

133 
11.76 

420 

37.15 

126 
11.11 

SubP 
70 

5.61 
120 

9.7 

57 

4.53 
120 

9.7 

37 

2.92 

Thrombin 
54 

6.69 
60 

7.45 

33 

4.07 

57 

7.04 
60 

7.45 

 

 

Fig. 6. Process Involved when Performing Similarity Searching using Tanimoto Coefficient. 
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This being the case, according to the work of Hert [38], the 
nature of the defined activity classes themselves may affect the 
performance of similarity searches, as more actives may be 
retrieved in homogenous activity classes, compared to 
heterogenous ones. Homogenous classes consist of compounds 
which are less diverse, as opposed to classes with fewer 
common fragments shared between their compounds, which 
are described as heterogeneous classes. It can, therefore, be 
concluded that LINGO works better in homogenous classes as 
compared to heterogeneous classes. A higher number of active 
compounds are retrieved in activity classes such as Renin and 
AT1, in contrast to heterogeneous classes such as COX and 
5HT Reuptake. The outcome of this experiment is, then, in 
agreement with Hert‟s findings. 

Based on the results of this study, it can be summarized that 
LINGOs may act as an effective alternative to ECFP4 and 
other fingerprints when performing similarity searching, since 
this method offers the capability of obtaining a high-accuracy 
value for a variety of activity classes. It should be noted, 
however, that the superiority of ECFP4 is widely-known, due 
to its ability to encode as much structural information as 
possible when representing the compounds. LINGO profiles, in 
contrast, only allow for the strings to be observed by shifting 
one position at a time. 

B. Analyzing the Performance of the Proposed Method in 

Terms of Time Taken and Storage Consumption 

1) Time complexity: Measuring the time taken for both 

methods is a very labour-intensive process, as it depends on 

the compiler and the type of computer or speed of the 

processor. For this research, the in-built time libraries in 

JAVA were used to determine the time taken. The timer was 

started before importing the input file and ended after the 

search was completed. The elapsed time was measured in 

milliseconds and for ease of reading it was then converted to 

hours. 

Performing similarity searching using the proposed method 
is 782 times faster than the same using the conventional 
method. Achieving such an increase in speed was due to 
several reasons. Firstly, the indexed database which was 
created based on a raw MDDR dataset, contained fewer entries 
than the raw MDDR dataset itself. There was a total of 4053 
unique LINGO Profiles in the indexed database as compared to 
a total of 4097258 LINGO Profiles which were generated in 
the raw MDDR dataset. With the reduction of the file size, time 
taken for a query compound to perform similarity searching 
using an indexed database would be reduced accordingly as 
now it only has smaller number of entries to browse through, in 
contrast to similarity searching performed on a raw MDDR 
dataset which requires a query compound to scan through the 
whole file to search for a LINGO Profile. The reduction in the 
file size, will be described in the next section. 

2) Storage complexity: Storage complexity is determined 

by considering the maximum amount of capacity needed by 

the secondary storage to store the raw MDDR dataset and the 

indexed database. The measurement unit used in this study 

was Megabytes (MB) (1,000,000 bytes in decimal notation). 

Specifically, there were no tools, libraries or applications used 

to measure the size of both files, as the sizes of the files were 

printed automatically by the operating system (OS) after the 

implementation process. The file size of the indexed database 

is smaller than the raw MDDR dataset. The reduction by 

almost half of the file size was achieved through the 

implementation of the inverted indexing technique, which 

yields a smaller number of entries in the file. The Raw MDDR 

dataset contained 4097528 entries, as each entry consisted of a 

LINGO Profile and its respective index number, as can be 

seen in Fig. 7. 

Each entry here can be referred to as a string and each 
character within it has a size of a byte (8 bits), as the nature of 
JAVA language which encodes the strings in UTF-8 format. 
The '8' in UTF-8 means it uses 8-bit blocks to represent a 
character. The number of blocks needed to represent a 
character varies from 1 to 4. Theoretically, one string in a raw 
MDDR dataset might have a size which falls between 10-11 
bytes. Multiplying the size of a string with the number of 
entries in the raw MDDR dataset and dividing it with the total 
number of bits in 1 Mb (8000000) will give an approximately 
similar result. Therefore, having a large number of entries will 
lead to a larger file size. 

As reducing the number of entries is the only way to reduce 
the size of the file, a compact indexed database comprised of 
only 4054 entries was constructed for this study. In terms of the 
number of entries, it can clearly be seen that there is a massive 
reduction, compared with the raw MDDR dataset. In spite of 
using the raw MDDR dataset to create the indexed database, all 
the necessary information was addressed appropriately and the 
similarity searching process was fully accomplished on this 
one file. 

The underlying process involved in the reduction in the 
number of entries in the indexed database is explained by the 
removal of duplicate LINGO Profiles and the mapping of the 
same index number which belongs to a particular LINGO 
Profile. The structure of an entry in the indexed database is 
shown in Fig. 8. 

It can be seen that one LINGO Profile “sits” together with 
its respective index number on a single line. In contrast to raw 
MDDR dataset, each entry may be duplicating a portion of the 
same information (the index number or LINGO Profile) from 
the previous or the next entry of the file. This situation can be 
observed in the Fig. 9. 

 

Fig. 7. Mapping of LINGO Profile with its Respective Index Number. 

 

Fig. 8. The Structure of an Entry in the Indexed Database. 
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Fig. 9. Structure of the Entries in the Raw MDDR Dataset. 

V. CONCLUSIONS 

The inverted indexing scheme has been highlighted in this 
study as there are several limitations when performing 
similarity searching using LINGO Profiles. The large raw 
MDDR dataset which is used in the conventional method to 
calculate the similarities requires a huge storage capacity, 
while at the same time increasing the time taken for one query 
compound to complete the whole process. The proposed 
method solves this problem by eliminating the redundant 
LINGO Profiles and multiple occurrences of the same index 
number. Despite this elimination, the important information 
associated with the compounds are preserved accordingly. In 
short, the proposed method makes it possible to process a huge 
dataset without the help of specialized hardware. In future, this 
scheme can be used to index a larger chemical database like 
ChEMBL which consist of more than 1 million compounds 
data. 
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