
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

188 | P a g e

www.ijacsa.thesai.org

An Aspect Oriented Programming Framework to

Support Transparent Runtime Monitoring of

Applications

Abdullah O. AL-Zaghameem

Department of Computer and Information Technology

Faculty of Science, Tafila Technical University, Tafila, Jordan

Abstract—Monitoring the runtime state and behavior of

applications is very important to evaluate the performance of

these applications and to inspect their behavior. In case of legacy

applications that have been developed without monitoring

capabilities, there is a real challenge to accomplish runtime state

monitoring. This research redefines runtime monitoring concept,

and then presents an Aspect Oriented Programming (AOP)

framework to equip applications with the capabilities to monitor

their runtime state transparently. The framework, called RM

Framework, supports three monitoring modes; Invasive-mode,

Controlled-mode/(Functionality and Attribute), and Controlled-

mode/Selective. The framework is applied on a Java application

as a case study. The results show smooth integration between

application and runtime monitoring capabilities without affecting

the target application consistency.

Keywords—Runtime state monitoring; application behavior;

aspect oriented programming technique; statistical analysis;

bytecode transformation

I. INTRODUCTION

Runtime monitoring has been defined in [1] as “the act of
observing an executing system in order to learn something
about its dynamic behavior”. In this research, runtime
monitoring, as a term, will be used to point out the state of
executing application at a specific moment or during a period
of time. The runtime state of an application includes
information about components, amount of data processed
during execution, and resource consumption; like CPU time
and memory. Monitoring the runtime state of applications has
several benefits like understanding and analyzing of software
behavior [2, 3], detection of performance problems and
bottlenecks [4-6], and building applications’ execution history
and datasets [7].

Monitoring the runtime state of legacy applications is a
very challenging mission. From one side, the source code of
these applications most probably is unavailable, which makes it
hard to perform white-box monitoring. From the other, a
modular and systematic mechanism is required to perform
smooth monitoring without violating the functionality and
structure consistency of application. In this context, the Aspect
Oriented Programming (AOP) [8] is vital and efficient
technique. Because its capability to intersect the execution of

application at several points, the behavior and runtime state of
that application could be inspected. In this research, the
runtime state monitoring is presented as an AOP aspect, and a
framework is developed to serve monitoring the runtime state
of applications developed using Java™ programming
language. The research is partially guided by the fundamentals
of runtime monitoring presented in [3].

The paper is organized as follows: Section 2 discusses the
runtime state of object-oriented applications and redefines the
term “runtime state monitoring”. In Section 3, the term
“Runtime Monitoring Aspect” is introduced, and a framework
called Runtime Monitoring Framework is presented in
Section 4. The section presents the details of framework.
Section 5 applies RM framework on application as a case
study. Section 6 discusses some related works. Finally,
Section 7 concludes research results and lists some limitations.

II. RUNTIME STATE OF OBJECT-ORIENTED APPLICATIONS

The “runtime state” points out the statistical and behavioral
measurements of software execution at a given point of time,
or during a period of time. As for statistical measurements,
countable amounts of data (e.g. counters, data sizes, etc) during
application execution need to be recorded and stored for further
analysis. Collecting data will help answering questions like
“How many times ..?” and “How much data ..?” For behavioral
measurements, collecting specific data and observing links
between components could facilitate the description of
application behavior.

Inspecting runtime state of applications assists monitoring
their performance, detecting any possible structural
deformations or functional bottlenecks, and establishing
execution history and test cases. In order to enable applications
to record runtime state measurements, either they had been
programmed to do so, or they should be modified and provided
with the capabilities to record runtime state measurements. A
real challenge arises for the second case; especially for legacy
applications which their source code is missing. Providing
these applications with the capability to record runtime state
requires injecting the necessary monitoring code; taking into
account not to violate application structure or functionality
consistency.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

189 | P a g e

www.ijacsa.thesai.org

III. RUNTIME MONITORING ASPECT

To emphasize the runtime state concept and highlight its
importance to software applications, the term “Runtime
Monitoring” will be introduced as an AOP Aspect. The aspect
represents the process of recording runtime state
measurements. Fig. 1 illustrates a pseudo code for the Runtime
Monitoring Aspect (RMA). As shown in the figure, the aspect
defines four pointcuts that determine the locations (join points
(JPs)) at application code where runtime state measurements
need to be recorded. The first location is just before any
method call. In RMA definition, JP1 represents this case. JP1
aims to collect information about the called method and the
arguments passed to it to calculate the amount of data flow.

The second location is when a call to the method is
completed. Information about the returned value(s) could be
recorded. JP2 represents this case, where ret identifier points to
the value returned after executing method m. In addition,
recording successful execution of methods, as well as failed
executions, is important to observe application behavior. The
third important part in code that affects the runtime state of
application is when new objects are instantiated. Collecting
information about objects’ creation is not only important for
statistical analysis, but also for monitoring application behavior
and resources consumption. For this purpose, JP3 represents
this concern.

In object oriented software, it is important to monitor the
access of object’s fields (or attributes). In order to monitor
fields’ access operations, type of access (either read or write)
and the points in code at which a specific field is accessed need
to be determined. For this purpose, JP4 in RMA inspects the
occurrence of access operations and their types.

The definition of RMA listed in Fig. 1 is a generic case of
interception. In other words, it defines how to apply runtime
state monitoring overall the application functionality and
behavior. For more applicability options of RMA, we suggest
applying the following monitoring modes:

1) The invasive mode: In this mode (the default) all

application components are put to monitoring. The mode

represents the comprehensive monitoring if all functionalities

are to be monitored.

2) The controlled mode: In this mode, we can monitor

partial parts of runtime state. In this case, more concentration is

oriented toward specific functionalities. In practice, this mode

could be divided further into the following sub-modes:

a) The Functionality Mode: In which only objects’

methods are monitored for the sake of recording statistical data

about application behavior and data flow.

b) The Attribute Mode: This mode targets the monitoring

of object’s fields. It records measurements about fields’ access

operations. This mode can help tracking the access of objects’

fields and how their values changed over runtime.

c) The Selective Mode: This mode could be considered

as a custom mode. It supports the monitoring of the access of

specific fields, and the execution of specific methods. This

specialized mode provides the flexibility to monitor complex

and large-scale applications as individual parts.

Fig. 1. Runtime Monitoring Aspect (RMA)–A Pseudo Code.

IV. RM FRAMEWORK (RMF)

In this research, the static bytecode transformation
approach is used to realize the RMA concepts. The static
bytecode transformation performs the necessary bytecode
modifications on the target software to produce a new version
of that software by injecting the RMA mechanism. In this
section, a detailed description of the realization of RMA as a
framework will be presented.

A. Framework General Overview

Fig. 2 illustrates the general structure of RM Framework.
The framework works at two main phases where a set of
operations are performed. At the first one, called static phase,
the target application (i.e. the software to be monitored) is
given as input to the RMA Injection Unit (see Fig. 2), which
performs three main operations:

Fig. 2. The Structure of Runtime Monitoring (RM) Framework.

RMA Injection Unit

Structure Profiler

DB

Static Bytecode Transformer

SBWeaver

Framework Utility

Application
(Java Classes or JAR Files)

Transformed Application

S
ta

ti
c

P
h

a
se

R

u
n

ti
m

e
P

h
a
se

Execution

Environment

JVM
Measuremen
ts

ORU

Classes,
Methods,
and Fields

Aspect Runtime_Monitoring_Aspect

{

JP1: before *.call(m, args) updateRuntimeState(m, args);

JP2: after *.call(m, ret) updateRuntimeState(m, ret);

JP3: after newobj updateRuntimeState(obj);

JP4: on field access f updateRuntimeState(acc, f);

 Advice1: updateRuntimeState(Method m, Args[]) { .. }

 Advice2: updateRuntimeState(Method m, Object ret) { .. }

 Advice3: updateRuntimeState(Object obj) { .. }

 Advice4: updateRuntimeState(AccessType acc, Field f) { .. }

}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

190 | P a g e

www.ijacsa.thesai.org

1) Analyzing the input software: At this point, the

bytecode of the target software is inspected and analyzed. In

other words, the structural units of the software (i.e. Java

classes) are enclosed, and for each recognized class the

member methods, member attributes (fields), and class

constructors are inspected. The “Structure Profiler” is

responsible of building a structure database for the entire

software. This step is very important as it gives a road map that

assists describing software classes, and helps manipulating

classes easily. A full application profile is generated and stored

in the database as a result.

2) Once the structural database of the software is built:

The bytecode of software classes is then transformed. The

“SBWeaver” transforms software classes and, for each class, it

injects the necessary code required to realize the RMA at the

specific join-points.

3) To facilitate gathering the measurements of runtime

state: The framework utility code is added to the transformed

application. The utility code serves mainly connection to

database.

The output of static phase is a transformed version of the
original application. In this context, it is important to assure the
consistency of application structure and functionality
transformation. This is to say, application should perform what
it has been developed for without knowing it has been
transformed.

The second phase is the runtime phase. The transformed
application is executed, as normal, on top of its executing
environment. During execution, the environment will gather
and store the measurements of application runtime state in
database.

B. SBWeaver

The SBWeaver is the centric component in RM framework.
It performs code transformation. It follows the algorithm
depicted in the pseudo code of Fig. 3.

As this research targets Java applications, the Byte Code
Engineering Library (BCEL) [9] is used. BCEL is an open
source framework for Java bytecode transformation. The RM
framework uses BCEL version 6.2.

Fig. 3. A Pseudo Code of SB Weaver at the Invasive-Mode.

Fig. 4. The RMA Framework in Action.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

191 | P a g e

www.ijacsa.thesai.org

The SBWeaver needs to know only where application
classes reside. The BCEL is used to facilitate inspection of
Java bytecode instructions in easy and powerful way.
Therefore, the SBWeaver can traverse, for example, all access
operations of specific fields. In Fig. 3, the SBWeaver
enumerates the access operations on a field, and then injects
the necessary code to collect the measurements of field access.
The pseudo code shown in Fig. 3 depicts the SBWeaver at the
Invasive-Mode. As for the step at line 11, transformed classes
are marked transformed so they will not be transformed twice.
For this purpose, the SBWeaver adds an implementation of the
empty interface ITTU_SBWeaverMark, which is used as a
marking interface.

The output of SBWeaver is a transformed version of the
application that is ready to be monitored at runtime. Fig. 4
illustrates the RMA framework GUI in action. The framework
has been implemented totally using Java. Note the options of
monitoring. In Controlled-Mode, users can select to perform
monitoring (per class) either on methods or fields only. For
fine-grain selection, users can select subset methods and subset
fields to be involved in runtime monitoring. This flexibility in
selection can increase target application suitability for
monitoring.

C. Output Representation Unit

During the execution of transformed application, runtime
measurements and behavioral measurements are recorded. The
Output Representation Unit (ORU) is part of RM framework
and is responsible of representing these measurements in
various ways. The ORU makes it easy to browse the results in
proper and compatible way. However, users of RM framework
can issue their customized reports as they have access to the
database.

V. CASE STUDY: MONITORING A CHATTING APPLICATION

An experiment has been conducted to test the RMA
concepts on an object-oriented application. The application,
called Bvcse, is a chatting application in Java. It is open source
and free to download from the Internet.

A. The “Bvcse” Chatting Application

The application consists of two parts; the server program,
which coordinates and organize connections between clients.
The second part is the client program, which allows users to
chat in public global rooms or privately in user rooms. It allows
chatters to share a drawing panel that provides a simple
drawing toolbox to draw colorful sketches. Both programs are
having GUI to facilitate chatting features. In total, “Bvcse”
application includes (36) Java classes.

The application is an interactive application that broadcasts
global chat messages and syncs the drawing board to all
clients. Therefore, it has been selected to check monitoring
applications with intensive interaction with different
monitoring modes. Next section discusses how we apply the
RMA monitoring modes on “Bvcse” application.

B. Applying RMA on “Bvcse”

The RM Framework is used to augment “Bvcse”
application with runtime state monitoring capability several

times; each time with a specific monitoring mode. For each
case, the application is then deployed on five machines; four
for clients (chatters) who do not know that the application is
being monitored, and one for server.

1) Invasive monitoring mode: In this round, all the 36

classes of “Bvcse” application have been transformed. The

SBWeaver excludes automatically all Interface and

Enumeration classes. The direct impact of applying this mode

is the inflation of application classes. Depending on the

number of fields defined and methods implemented, the

SBWeaver injects new code chunks. For example, the size of

class “Bvcse.class” before transformation was (4,351 Bytes)

and after transformation becomes (8,881 Bytes). All in all, the

more fields defined by application class the more increasing in

transformed class size. This is expected because SBWeaver

injects for each field two methods; one to get field’s value and

one to set a new value. In addition, all field access operations

(gets and sets) in the original code will be replaced by calls to

getter and setter methods.

2) Controlled mode [functionality and attribute]: The

experiment is performed twice in this round; the first one to

monitor method executions and the other to monitor field

access operations. As for monitoring methods executions, the

application works fine and all statistics have been recorded and

stored in the database during the experiment duration (one

hour). For field access monitoring, the application performance

suffers from periodic congestion at clients and server sides;

especially when syncing the drawing panel. Once again, a large

number of fields need to be accessed upon message sending or

drawing panel synchronization; which causes these

congestions.

3) Controlled mode [selective]: In this round, three fields

and three methods from each class have been randomly

selected for monitoring (a customized set of fields and methods

could be selected per class). The transformed application is

then deployed for execution. As expected, the application

works fine without any “stutters” as clients experience no

delays. The statistical information gathered for the monitored

fields and methods are recorded and stored in the database

during experiment. Fig. 5 shows a short snippet for statistical

field access as appeared in the database.

C. Results and Discussion

According to experiment results, it is obvious that
monitoring in the Invasive-Mode is improper for interactive
and dense applications. As expected, the connection traffic was
very dense and the performance of all five copies suffers strong
bottlenecks. Technically, the experiment of round one comes
out with the worst results; because large set of fields need to be
accessed at the server and client programs each time a new
message or new drawing panel update arrive. For RM
framework, this means a connection to the database is required
to execute update query for the corresponding accessed field;
which means extra runtime.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

192 | P a g e

www.ijacsa.thesai.org

Fig. 5. Statistical Measurements of Some Fields as Appeared in the Database.

However, in all rounds, application consistency (structure
and hierarchy) has been preserved. In addition, users give no
comments on differences in application functionality; as they
use the original application before applying RMA. Therefore,
RM framework supports the monitoring transparency claimed
in this research.

VI. RELATED WORKS

Several researches have been conducted to deal with
application runtime states. In the context of applications
behavior, the authors in [10] have presented blended program
analysis as a new paradigm to analyze large framework-based
Java applications. The researchers have designed a blended
escape analysis for approximating the effective lifetimes of
objects. The approach was supposed to help explain how
temporary structures are built and used. We found a relevancy
between our work and their work from the purpose. This
research collects information about the creation of objects
statistically, while blended analysis inspects objects’ lifetime
lines.

A new metric to measure the degree of cohesion in relation
to objects of a class at runtime has been presented in [11]. A
runtime cohesion metric called LCOM-Desouky has been
defined and experimented on Rhino 1.7R4 – an open source
JavaScript framework written in Java. The study results in a
large negative correlation between the metric and tested data.
The author did not mention how they collect statistics for
metric calculations at runtime. Our framework explains this
step in details, and provides a modular and cohesion method
for collecting runtime statistics. We do believe that more
metrics could be constructed according to runtime statistics
collected by RM framework.

A runtime state fetching method has been proposed in [5].
The authors designed a language called State Fetching
Description Language (SFDL) to express monitoring
requirements, and implemented a framework to compile SFDL
rules into monitor probes which gather information and store
them. The approach has been applied on distributed software
and some performance bottlenecks have been detected. The
approach is similar to RM framework from the point that both
of them present runtime monitoring as a separate concern. Our
approach, however, is transparent; there is no need to a
description language such as SFDL to describe what to
monitor. Instead, RM framework provides three monitoring
modes.

The work proposed in [12] presents a similar approach to
the one in [5]. The proposed technique uses Online Evolution

Module (OEM) which receives monitoring information and
compares state event to pre-defined evolution rules. It performs
evolution actions and real-time corrections if these rules are
triggered. In [13], the author presented a performance analysis
of large-scale object-oriented software by finding repeated
patterns of dynamic behavior in calling context tree (CCT)
extracted from software profile data. In the tested application
with over 64 thousand unique calling contexts, 10 patterns
account for over 50% of application execution.

The authors in [3] presented a survey of software runtime
monitoring. The research introduced the fundamentals of
runtime monitoring; which include the architecture of a
monitoring system, and the monitoring levels. The study
introduced, classified, analyzed, and compared the typical
software runtime monitoring methods. The research presented
some problems related to runtime monitoring methods, and
gave some future directions.

VII. CONCLUSIONS AND FUTURE WORK

Monitoring the runtime state of applications is important to
study the behavior of these applications. Collecting runtime
measurements is one of the vital methods to perform this task.
In this research, Runtime Monitoring Aspect (RMA) has been
presented, which describes how and when to collect statistical
data about runtime state of object-oriented applications
transparently. The research introduced the RM Framework as
an implementation to RMA. The framework suggests three
monitoring modes; the Invasive-Mode to monitor the overall
application runtime state. The Controlled-Mode/(Functionality
and Attribute) monitors method executions, which helps
inspecting application behavior and tracks field access
operations. Finally, the Controlled-Mode/Selective allows
monitoring customized set of fields and methods.

An experiment has been conducted to apply RMA on a
chatting application written in Java. In the experiment, all
monitoring modes have been applied. Because the chatting
application is highly interactive, bottlenecks and congestion
problems appear when applying Invasive-Mode and
Controlled-Mode/Attribute.

The RM framework has some limitations. First, it injects
extra code into target applications, which may inflate their
sizes. If verification on class sizes is an issue, then RM
framework causes a violation. The framework is limited in
scope because it targets applications developed in Java. For
future work, more applications need to be monitored by RM
framework.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

193 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Nusayr and J. Cook, “AOP for the Domain of Runtime Monitoring:
Breaking Out of the Code-Based Model”, DSAL’09, March 3, 2009,
Charlottesville, Virginia, USA,ACM. (2009)

[2] J. Sundararaman and G. Back, “HDPV: interactive, faithful, in-vivo
runtime state visualization for C/C++ and Java”, SOFTVIS 2008,
Herrsching am Ammersee, Germany, September 16–17, 2008. (2008)

[3] L. Gao, et. al., “A Survey of Software Runtime Monitoring”. The 8th
IEEE International Conference on Software Engineering and Service
Science (ICSESS), Beijing, 2017, pp. 308-313. IEEE. (2017)

[4] G. Franks, et. al., “Layered Bottlenecks and Their Mitigation”, Third
International Conference on the Quantitative Evaluation of Systems
(QEST'06), IEEE. (2006)

[5] G. Changguo and W. Tao, “A Method and Framework for Fetching
Software Runtime State”, International Conference on Computer,
Mechatronics, Control and Electronic Engineering (CMCE), IEEE.
(2010)

[6] J. Xu, “Rule-based Automatic Software Performance Diagnosis and
Improvement”, WOSP’08, June 24–26, 2008, Princeton, New Jersey,
USA, ACM. (2008)

[7] H. Rajan and K. Sullivan, “Aspect Language Features for Concern
Coverage Profiling”, In Proceedings of the 4th international conference

on Aspect-oriented software development (AOSD '05). ACM, New
York, NY, USA, 181-191. (2005)

[8] G. Kiczales, et. al., “Aspect-Oriented Programming”, In proceedings of
the European Conference on Object-Oriented Programming (ECOOP),
Finland. Springer-Verlag LNCS 1241. June 1997. (1997)

[9] M. Dahm, “Byte Code Engineering with the BCEL API”, Freie
Universitaat Berlin, Institut fur Informatik, (Technical Report B-17-98),
April 3, 2001. (2001)

[10] B. Dufour, B. Ryder, and G. Sevitsky, “Blended Analysis for
Performance Understanding of Framework-based Applications”,
ISSTA’07, July 9–12, 2007, London, England, United Kingdom. ACM.
(2007)

[11] A. Desouky and L. Etzkorn, “Object Oriented Cohesion Metrics: A
Qualitative Empirical Analysis of Runtime Behavior”, ACM SE '14,
March 28 - 29 2014, Kennesaw, GA, USA. (2014)

[12] L. Zhen-Dong, et. al., “Bytecode-based Software Monitoring and
Trusted Evolution Programming Framework”, 2012 IEEE Symposium
on Robotics and Applications (ISRA), Kuala Lumpur, 2012, pp. 494-
497. IEEE. (2012)

[13] D. Maplesden, “Performance Analysis of Object-Oriented Software”,
ICSE Companion’14, May 31 – June 7, 2014, Hyderabad, India. ACM
978-1-4503-2768-8/14/05. ACM. (2014)

