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Abstract—Real time welding quality control still remains a 

challenging task due to the dynamic characteristic of welding. 

Welding current of gas metal arc welding possess valuable 

information that can be analyzed for weld quality assessment 

purposes. On-line monitoring of motor current can be provided 

information about the welding. In this study, current signals 

obtained during welding in the short- circuit metal transfer mode 

were used for real-time categorization of deliberately induced 

weld defects and good welds. A hall-effect current sensor was 

employed on the ground wiring of the welding machine to 

acquire the welding current signals during the welding process. 

Vector reduction of the current signals in time domain was 

achieved by principle component analysis. The reduced vector 

was then classified by various classification techniques such as 

support vector machines, decision trees and nearest neighbor to 

categorize the arc weld defects or pass it as a good weld. The 

proposed technique has proved to be successful with accurate 

classification of the welding categories using all three classifiers. 

The classification technique is fast enough so it can be used for 

real time weld quality control as all the signal processing is 

carried out in the time domain. 

Keywords—Arc weld defects; feature extraction; PCA; 

classification techniques; on-line monitoring 

I. INTRODUCTION 

Welding is an integral process in manufacturing in the 
metal industry. Gas Metal Arc Welding (GMAW) is usually 
chosen over other welding techniques due to its various 
advantages. A few major advantages are high productivity, can 
be used for automation, is mobile and the welding can be 
carried out from various angles and positions. Due to its 
exponential growth and vital importance in the industry, the 
need for evaluating any defects present on the welded parts 
arose. A lot of research has been carried out to overcome this 
challenge but due to the complexity of the physics involved in 
arc welding [1] the challenge has not been successfully 
overcome. The complexities arise from the various 
variables/parameters that define the dynamic welding process 
such as gas flow rate, welding intensity, welding speed, 
electrode feed rate, material composition, arc length, weld 
seam geometry etc. All these variables are interrelated by a 
highly non-linear and interdependent process [2], making it 
difficult to come up with a valid theoretical model to define the 
process. Therefore, many researchers in the area have focused 
on studying the welding parameters individually or combining 
a few together to get feedback on the final weld quality. 

Several undesired scenarios can appear during the welding 
processes which may directly affect the quality of the final 
welds. Some of the known factors of weld defect and 
irregularities during GMAW are; Instantaneous short circuits, 
failure of arc re-ignition and wire feed rate variations [3]. 
These factors, if kept under steady control, can lead to 
achieving a good final weld. Other factors which cannot be 
directly controlled like contamination and environmental 
conditions in the welding area need to be kept optimal to 
ensure quality welding. Commonly used off-line techniques to 
identify welding quality include destructive (macrographs) and 
non-destructive testing like x-ray, ultrasounds, penetrant 
liquids, magnetic particles, etc. [4]. These off-line techniques, 
although being accurate, have many drawbacks so research 
work has mostly focused on developing an on-line sensing and 
welding path determination by using feedback and adaptive 
control [5]. On-line monitoring of the welding process reduces 
the effects of the uncontrollable factors and also saves on the 
otherwise resource consuming quality control inspection. 
Several sources such as welding sound, voltage signal, current 
signal, power, weld-pool image, electric arc are found to have a 
correlation with weld quality [6].Therefore the most commonly 
used methods of on-line quality inspection derive from the use 
of welding voltage and current [7], welding sound [8] and 
high-speed photography [9]. 

Multiple studies have been carried out to analyze the sound 
produced for the purpose of on-line weld defect. It is common 
knowledge that the human welder combines both audible 
sound and vision to control the welding process [10]. The 
knowledge of the behavior of acoustic signals generated during 
the welding process is important for inspection of the 
consistency of the process [11]. The sound signals produced 
during GMAW carry information about the transfer mode, 
behavior of the arc column and the molten pool [8]. A 
mathematical relationship that relates the sound produced 
during the welding, the arc voltage and the welding current was 
formulated by [12]. A study by [13] showed that the short 
circuit transfer mode of the GMAW produces discernible 
sound which makes it easier to capture and analyze compared 
to the other two modes; Globular mode and spray mode. 
Despite the vast research on this area, industrial use of sound 
signals for on-line quality monitoring of GMAW is still not 
realized. This is due to the fact that in the industrial 
environment back ground noise is a great hindrance to the 
acquisition of the welding sound. Usually research is carried 
out in laboratories using welding trolleys or a moving 
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workpiece that is usually not the case in the industries. The 
background noise in these laboratories is from the shielding gas 
and the welding machine which is not a hindrance since their 
magnitude is very low compared to the actual welding sound 
[14]. In addition, the sound signals require some signal 
processing before being able to use which makes the on-line 
defect detection slower. Some of the basic signal processing 
includes filtering the sound signal in time domain and then 
converting the filtered signal to frequency domain for further 
processing [15]. 

High-speed photography is another method some 
researchers have used to develop on-line weld defect detection. 
It is not a very common technique due to the fact that it is 
expensive, can be affected by splatter which can damage the 
acquisition equipment which is closely placed to the welding 
torch and requires high bandwidth for acquisition and 
processing.  Measuring the arc voltage and welding current is a 
common method researchers have been using for defect 
detection in the welding process [7]. This method is simple and 
relatively reliable and most of the signal processing can 
directly be carried out in the time domain. Welding equipment 
usually keep one of the parameters constant; constant voltage 
or constant current welding equipment. It is common to take 
the parameter that is variable for weld quality control purposes. 

Several time domain processing techniques have been 
suggested by researchers. Some have successfully used 
welding voltage or welding current to detect a defect in the 
welding process. Control charts have been used by [16] on the 
welding voltage to identify porosity in the final weld. They 
confirmed their study using radiographic test. Hilbert–Huang 
transform and time–frequency entropy was used by [17] on 
preprocessed current signals to estimate the stability of short-
circuiting GMAW. The author in [18] proposed using 
regression modeling using all the three parameters; sound, 
current and voltage to predict two main weld quality measures; 
welding defects and bead shape factor. A technique of Wavelet 
packet coefficients of current signal in back-propagation 
Artificial Neural Network (ANN) was used by [19] to monitor 
weld defects in Pulsed Metal Inert Gas Welding. The authors 
achieved an error rate of 11% using this technique. ANN 
together with PCA feature extraction was successfully 
employed by [20] to monitor arc-welding systems. They 
presented several examples of weld seams that showed that, 
once the ANN has been properly trained, it can efficiently 
discriminate different welding defects, lack of penetration and 
gas flow reduction among others. Many similar approaches 
have been used in research and theoretically the results are 
promising. However, a universal on-line system that will detect 
weld defect and categorize them immediately is still lacking. 
Some approaches require too much time to process and give 
results which may be a hinder for on-line control. Some 
approaches tend to be complex so implementation cannot be 
realized. For example acquiring voltage, current and sound at 
the same time complicates the system and may lose versatility 
where it may work for some applications and be erroneous on 
others. 

This study presents a technique for detecting a weld defect 
and categorizing the cause of the weld defect. Current signals 

were acquired from deliberately induced weld defects as well 
as from good welding. The weld faults were induced by: 

 Deliberate fast welding 

 Welding carried out without shielding gas 

 Deliberate slow welding 

 Increasing the wire feed rate 

 Decreasing the wire feed rate 

The captured current signals in time domain are then 
processed using PCA for vector reduction. The reduced vector 
samples are then divided into train and test samples for 
classification. A total of three classifiers were used to identify 
which classifier is the fastest and most accurate. This technique 
aims to reduce the complexity of the system, be versatile and 
give results fast enough so they can be used for on-line defect 
detection and categorize the cause of faulty welds. 

II. EXPERIMENTAL PROCEDURE 

Standard industrial, constant voltage, welding equipment, 
OZEN GDC360 V was used in this study. The experiments 
were carried out on mild steel plates which were 4 mm thick 
using an electrode wire with a diameter of 1.0mm. The 
shielding gas used was a mixture of Argon (80%) and Carbon 
20(%). The welding current is sampled at 20 kHz from a Hall 
effect current sensor using a data acquisition card. The 
photograph of the welding set-up and components used are 
shown in Fig. 1 while the data acquisition system photograph is 
shown in Fig. 2. The block diagram of the used experimental 
system is given in Fig. 3. An experienced welder carried out 
the welding and varied the parameters for deliberate faulty 
welding. The parameters for a good weld are shown in Table I. 
Eight runs for each welding class were made with a run time of 
approximately 5 seconds for each run. feature extraction and 
classification were made for each data. Flow chart of the 
technique used in this study was given in Fig. 4.  

 

Fig. 1. Welding Set-Up. 

TABLE I.  WELD CLASS DATA ROW PLACEMENT IN A MATRIX 

Parameter Value 

Wire Feed Rate 350 cm/min 

Approximate Weld Speed 30 cm/min 
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Fig. 2. Data Acquisition System. 

 

Fig. 3. Block Diagram of the Experimental Set-up [21]. 

 

Fig. 4. Flow Chart of the Technique used in this Study. 

III. EXPERIMENTAL RESULTS AND DATA PROCESSING 

The Current signals of each weld run acquired on the data 
acquisition system were exported in excel format to a PC for 
the processing. Each signal had around 100,000 samples so the 
first part of the processing was to truncate the signals to 10,000 
samples. To get accurate results, the truncation was done 
randomly on different parts of the signal. Several truncation 
runs were made from different parts of the signal each time to 
ensure legitimacy of the results. The plots on Fig. 5(A-F) show 
the signals truncated from sample 30,001 to 40,000 from the 
first test runs of the different weld types plotted versus time. 

 
(A) Current Signals Obtained from Fast Welding. 

 
(B) Current Signals Obtained from Welding without Shielding Gas. 

 
(C) Current Signals Obtained from Good Welding. 

 
(D) Current Signals Obtained from Slow Welding. 

 
(E) Current Signals Obtained from Fast Wire Feed Rate Welding. 

 

Fig. 5. (F) Current Signals Obtained from Slow Wire Feed Rate Welding. 
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(A) Weld Obtained when no Shielding Gas was used. 

 
(B) Picture of a Good Weld. 

 
(C) Weld Obtained when the Welding Speed was Increased. 

 

Fig. 6. (D) Weld Obtained when the Wire Feed Rate is reduced. 

The rising and falling of the welding current in a well-
defined pattern usually signifies a good weld. This can clearly 
be seen on Fig. 5C where the peaks are in a good pattern and 
well spread out with little difference between peak gaps. A 
photograph of the good weld is shown in Fig. 6B. Notice the 
few peaks in Fig. 5A; the welding process was too fast 
therefore short circuits took place far apart resulting in a bad 
weld. Fig. 6C shows a photograph of a fast weld where it can 
be seen that the material deposition is less. Rapid peak currents 
can be noticed on the weld carried out without shielding gas as 
shown on Fig. 5B. Fig. 6A shows the weld carried out without 
using shielding gas. The porosity of the final weld can be seen. 
With a fast wire feed rate shown on Fig. 5E, the electrode is 
vigorously fed to the workpiece leading to constant contact 
(short circuit) therefore the current is almost always peaked.   
From Fig. 5F it can be deduced that with a slow wire feed rate, 
there is little metal deposition with time therefore short circuits 
that are very far apart. Fig. 6D shows the corresponding 
photograph where the weld is basically just splatter. 

From Fig. 5(A-F) it is clear that welding current signals 
possess valuable data that can be used to categorize weld 
defects. Statistical methods like Peak to Peak, Standard 
Deviation, Root Mean Square, Skewness and Kurtosis etc. 
could directly be used on this raw data to identify the weld 
defects with some success. But in the real industrial 
environment such deliberately induced weld defects would not 
exist. The variation of the short circuit peaks may be little 
when a defect comes across so statistical methods may be left 
wanting. Therefore Principal Component Analysis (PCA) was 
chosen for this study. PCA not only finds the variance in data, 
but it also carries out dimensional reduction which gets rid of 

redundant data. This is especially useful when using a classifier 
to classify the data. 

A. Principle Component Analysis 

Principle Component Analysis (PCA) is one of the most 
important methods used in pattern recognition and 
compression.  In the works of [22], fault detection applications 
in industries using PCA have been presented. The authors 
reviewed cases where PCA was successfully implemented in 
the various industries coming up with a conclusion that it is 
feasible to use PCA for successful fault detection. Despite this 
fault detection success in the industry, PCA is more commonly 
known for its role in facial recognition applications. Many 
researchers on facial recognition techniques choose to use PCA 
for feature extraction from the facial images.  In PCA method, 
the 2-Dimensional face image matrices are transformed into a 
1-Dimensional vector [23]. Since signals are already in a 1-
Dimensional vector, it simplifies the data processing even 
further as there is no need to concatenate the vector before 
applying the PCA method. The main steps to be carried out in 
the PCA approach are summarized below: 

1) Standardize the scale of the data into d-dimensional 

vector (d is the different classes of data). 

2) Compute the covariance matrix for the data. The 

covariance matrix is the scatter matrix. 

3) Obtain the Eigenvectors and Eigenvalues from the 

covariance matrix or alternatively perform Singular Vector 

Decomposition. Eigenvectors and Eigenvalues exist in pairs: 

every eigenvector has a corresponding eigenvalue. An 

eigenvector can simply be thought of as a direction while an 

eigenvalue is a number showing how much variance there is in 

the data in that direction. 

4) Sort the eigenvectors in order of decreasing eigenvalues 

and choose k eigenvectors with the largest eigenvalues to form 

a d by k dimensional matrix W in which every column 

represents an eigenvector. W is our new projection matrix 

5) Finally, the projection matrix is used to transform the 

samples onto the new subspace. 

In our case, we had 8 test runs for each of the 6 weld 
groups (5 faulty welds and 1 good weld). To make processing 
much faster only the last 5 test runs were used for PCA. 
Therefore, a total of 30 different classes were used for the 
feature extraction each having 10,000 samples. The data was 
standardized into one matrix of 30 by 10,000. The first five 
samples were of Fast welding followed by No Shield Gas 
welding. The Good weld data was on classes 11-15 followed 
by Slow welding, Rapid Wire Feed weld and Slow Wire Feed 
Rate weld at classes 26-30 as shown in Table II. 

Then the covariance of this matrix was computed. This 
resulted in a 10,000 by 10,000 matrix. This was followed by 
obtaining the eigenvectors and corresponding eigenvalues from 
the covariance matrix and choosing 100 eigenvectors from the 
10,000 obtained with largest eigenvalues in a descending order. 
Projecting onto the subspace leaves us with a matrix of just 30 
by 100. Taking fewer Eigenvectors will increase the speed of 
the process but may affect the performance. Taking more 
eigenvectors would lead to slow processing with a slight 
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increase in performance up to a certain point. In our case 100 
was found to be optimal. The data at this point was ready to be 
used for classification. 

TABLE II.  WELD CLASS DATA ROW PLACEMENT IN A MATRIX 

Type of Weld Row Placement 

Fast Welding 1 to 5 

No Shielding Gas Welding 6 to 10 

Good Welding 11 to 15 

Slow Welding 16 to 20 

Fast Wire Feed Welding 21 to 25 

Slow Wire Feed Welding 26 to 30 

Classification is a supervised learning approach in which 
the computer program trains from the data input given to it and 
then uses this training to classify new observation. The most 
commonly used classifiers are; 

1) Naive Bayes Classifier 

2) Support Vector Machines  

3) Decision Trees 

4) Boosted Tress 

5) Random Forest 

6) Artificial Neural Networks 

7) Nearest Neighbor 

For this study SVM, Decision Tress and Nearest Neighbor 
classifiers were used.  

B. Support Vector Machines 

Support Vector Machines (SVM) classifier makes use of 
the special function called the kernel, with which the 
experimental data set is converted from the original space of 
characteristics into the higher dimension space with the 
construction of a hyperplane that separates classes [24]. SVM 
is one of the most popular classification systems in data mining 
and pattern recognition applications, due its high classification 
rates [25]. It gives very good results in terms of accuracy when 
the data are linearly or non-linearly separable. When the data 
are linearly separable, the SVMs result is a separating 
hyperplane, which maximizes the margin of separation 
between classes. If data are not linearly separable, the 
algorithm works by mapping the data to a higher dimensional 
feature space using an appropriate kernel function [26]. 

C. Classification Results and Discussion 

The Projection vector was tested with the three mentioned 
classification techniques. To decide on which runs of the weld 
classes to choose for training and testing, two methods can be 
used; Cross Validation and Holdout. Holdout simply takes a 
percentage of the data for training and tests the rest with that 
trained data. This method is good for large data sets. Since 
each weld class had just five runs in the reduced vector, using 
holdout method was not feasible so cross validation method 
was used. Cross validation method selects a number of 
divisions to partition the data into. Each division is then held 
out in turn for testing. The classifier trains each division using 
data outside the division and the data to be tested is within the 
division and the average test error over all division is 

calculated. In this way all data is used for both training and 
testing thus classifying more accurately. This method takes 
longer to classify compared to holdout but the overall 
efficiency of the results is better. The classifier results are 
presented in three different figures to give a good idea of the 
accuracy of each classifier and show which weld class was 
misclassified. The three figures show Percentage Accuracy, 
Confusion Matrix and Scatter Plots. 

 
(A) Scatter Plot Obtained when Middle Part of the Signal was used. 

 
(B) Scatter Plot Obtained when Random Part of the Signal was used. 

 

Fig. 7. (C) Scatter Plot Obtained when the First Part of the Signal was used. 
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Fig. 7(A-C) shows the scatter plots of the projected vector 
data. The different color dots represent the weld types. A 
scatter plot gives an idea of how successful PCA was on a 
certain data set. Well spread out data means that the feature 
extraction was successful and high success rates in 
classification.  Data points of different classes close to each 
other on the scatter plot will usually lead to a less accurate 
classification but that also depends on the classification 
algorithm used as well. Figures 8A and 8B show the scatter 
plot from PCA conducted on the middle parts of the signal. 
The data is well scattered and the features from the different 
weld types are discernible. Fig. 7C shows the scatter plot from 
PCA conducted on the first part of the signals, which is from 
sample 1 to 10,000. Although the different weld types can be 
differentiated, the feature points are not so well spread out 
compared to when the middle parts of the signal are used. 

Fig. 8 (A-D) shows the percentage accuracy of the three 
classifiers used on the projected vector from different parts of 
the signal. Fig. 9A and 9B, whose corresponding scatter plot is 
8A and 8B, are the results of when the middle part of the signal 
was used. Fig. 8C resulted from the same projected vector as 
9B but in this case Quadratic SVM was used instead of Linear 
SVM to see the effect on the final accuracy. Fig. 8D, whose 
corresponding scatter plot is Fig. 8C, is the accuracy when the 
first part of the signal was used. From the accuracy plots it is 
clear that using the first parts of the signal can result in lesser 
accuracy. This may be due to the fact that during the first few 
seconds of the welding process the process is not very stable 
and the current readings may fluctuate abnormally. It is also 
clear that k-nearest-neighbors is by far more accurate and 
reliable for classification on our dataset. It achieved 100% 
accuracy in all runs except for the first part of the signals where 
an accuracy of 90% was realized. SVM is also a reliable 
classifier for our data set and using Quadratic SVM increased 
the accuracy as depicted from Fig. 9B and 9C. Decision Trees 
classifier performed poorly and is unreliable for our data set. 
Overall speed of all the classifiers was very fast. In a matter of 
milliseconds we had the accuracy results. Generally the 
accuracy results portray the success of using PCA on current 
signals for weld defect detection. 

Fig. 9 (A-D) shows the confusion matrix of the classifiers. 
A confusion matrix is a table that is often used to describe the 
performance of a classifier on a set of test data for which the 
true values are known. As the green shade gets darker the 
percentage accuracy increases while darkening shade of red 
implies increasing percentage error in classification. The 
Legend for Confusion matrix is presented in Table III. Fig. 9A 
shows the confusion matrix of the k-nearest-neighbors 
classifier (almost all runs from different parts of the signals had 
the same result). The k-nearest-neighbors classifier accurately 
categorized the weld defects and can tell whether it was a good 
weld or not. Fig. 9B shows confusion matrix of the SVM 
classifier when the first part of the signal was used. The 
classifier could not tell the difference between fast welding, no-
gas welding and good welding in some of the weld test runs. 

It misclassified 2 good weld runs as being no-gas weld runs 
and 2 no-gas weld runs as being fast weld runs. When other 
parts of the signals were used SVM had 100% accuracy in 
categorization. Confusion matrix for decision trees is shown in 
Fig. 10C and 10D. Decision tree classifier struggled in 
categorizing the welding types. In some cases, it totally 
misclassified the weld types as can be seen from Fig. 9D where 
it entirely misclassified the good weld and slow wire feed rate 
weld. Overall accuracy of categorization by Decision Tree was 
around 80% when the whole signal is considered. 

 
(A) Classification Accuracy when Middle Part of Signal was used. 

 
(B) Classification Accuracy when Random Part of Signal was used. 

 
(C) Classification Accuracy when Quadratic SVM was used Instead of Linear 

SVM. 

 

Fig. 8. (D) Classification Accuracy when First Part of Signal was used. 

TABLE III.  LEGEND FOR CONFUSION MATRIX 

Class Number Weld Class Represented 

1 Fast Welding 

2 No Shielding Gas Welding 

3 Good Welding 

4 Slow Welding 

5 Fast Wire Feed Welding 

6 Slow Wire Feed Welding 
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(A) Confusion Matrix for K-Nearest-Neighbors. 

 
(B) Confusion Matrix for SVM on First Part of Signal. 

 
(C) Confusion Matrix for Decision Trees on Middle Part of Signal. 

 

Fig. 9. (D) Confusion Matrix for Decision Trees on First Part of Signal. 
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IV. CONCLUSION 

 In this paper, an attempt was made to categorize weld 
defects from current signals using PCA and a suitable 
classifier. Current signals were obtained from deliberately 
defected welding and good welds. Defected welding was 
obtained by either changing the welding speed, changing the 
wire feed rate or carrying out welding without shielding gas. 
Features from the obtained current signals were extracted using 
PCA. The extracted features were then used to classify the 
weld defects or pass it as a good weld. Three classifiers were 
used namely SVM, Decision Trees and Nearest Neighbor. The 
results showed that Nearest Neighbor classifier was the most 
accurate with 100% accuracy in categorizing the weld defects 
in almost all cases. SVM classifier followed closely with high 
accuracy in most of the runs. Decision Trees classifier did not 
perform as well as the other classifiers but its overall 
classification accuracy was around 80%. The total time taken 
from data acquisition to feature extraction and classification is 
very low. Since this set-up did not immediately process the 
welding signals on-line, only an estimate of the processing and 
classification time of less than a minute can be given. This little 
time taken and the few resources required proves that the 
method proposed in this study could successfully be employed 
for on-line weld defect detection and categorization in the 
GMAW process.  For future work, this technique could be 
improved by employing a robot to carry out the welding and 
carrying out the research on-line to prove the efficiency of this 
technique. 
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