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Abstract—This paper addresses the problem of simultaneous 

actuator, process and sensor Fault Detection and Isolation (FDI) 

for nonlinear system having flatness properties with the presence 

of disturbances and which are operating in closed-loop. In 

particular, the nonlinear system is corrupted with additive 

actuator, process or sensor faults with simultaneous occurrence. 

In this case, the residual signals might be sensitive to all of these 

faults that can appear in the system. The proposed FDI method is 

based on both input and parameter estimators that are designed 

in parallel. With the flatness property of such system, the design 

of these two estimators requires information on the measured 

outputs and their successive derivatives. To estimate these last 

one, a new scheme of the 2nd-order dynamic sliding mode 

differentiator is proposed. Residuals are next defined as the 

difference between the estimated and expected behavior. In order 

to isolate the faults, dynamic neural networks technique is 

employed. Besides, comparative study between this new 

differentiator and the well-known 2nd-order Levant’s 

differentiator is provided to show the pros and cons of the 

proposed FDI method. This latter is validated by the simulation 

results and is carried out on a three tank system.  
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inputs/parameters estimator; higher order sliding mode 
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I. INTRODUCTION  

Recently, FDI problem has received a great deal of 
attention especially for systems for which the faults 
occurrence can lead to irreparable damages. Moreover, the 
FDI problem is addressed in many applications and is 
important in safety critical systems such as energy domain [1], 
chemical domains [2] and industry machines [3]. In the 
literature, FDI methods can be classified in two approaches: 
process history based methods and model-based ones. A 
thorough review of such FDI methods can be viewed via the 
following papers: [1] [2] [3]. The first approach does not need 
any knowledge of the process mathematical model. This can 
be a main interest over the second category of FDI approach. 
In fact conventional methods of such FDI approach for 
sensors or actuators can basically be defined by thehardware 
redundancy. However, its main disadvantage is that it requires 
knowledge of a large amount of data. Moreover, this method 
cannot deal with the effects caused by measurement noises. 
Actually, it cannot proceed in the real time case. 

For this approach, there are different methods. In [4] the 
authors present an FDI method to supervise the aircraft gas 
turbine engine actuator and sensors. This method uses only the 
system input/output data. Then, it does not require any prior 
knowledge of the linear model of the system. It has given 
satisfactory results, but the problem is with regarding the 
robustness and accuracy of the fault estimation especially in 
the practical case. 

Other methods have been used FDI for nonlinear systems 
based on Neural Networks (NN) and there are many research 
results about this subject. However, the limit of the NN 
method concerns the updating rate of learning weights 
especially in facing of sudden faults. To overcome this 
problem, many solutions are proposed as in [3]. In this latter, 
the Weightless Neural Networks (WNN) based on random 
access memory devices method is investigated to carry out the 
detection and identification per fault groups. Even though 
satisfactory results obtained by this method without residual 
generation, the proposed of the training and testing method is 
very complicated and its implementation is also complex. In 
general way, the methods of this first approach have many 
disadvantages, such as the complexity of the structure and the 
need for many learning and tuning parameters that require in-
depth analysis and studies to obtain the optimal selection of 
the structure. In addition, these methods require a large 
amount of data for proper training of the adjustable parameters 
available. 

The model-based approaches are defined by the analytical 
redundancy FDI methods. Much kind of methods have been 
developed for the case of nonlinear systems [5], [6]. In [5], the 
problem of sensor faults detection for Unmanned Aerial 
Vehicle (UAV) system is studied. This method is based on 
NN observer to detect the presence of faults and the weighting 
parameters which are updated using kalman filter. This 
method gives efficient results only for sensors faults in the 
UAV systems. On the other hand, actuator faults may cause 
significant impact problem in the UAV control system. That’s 
why, other researchers have proposed a fault detection and 
isolation method in sensor and actuator faults occurring UAV 
system [6]. 

However, there is a major disadvantage to such method 
that is likely going to lead to false results because it uses 
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simple model for observer’s design which is far from reality. 
Thereby, there are methods based on sliding mode technique 
which have been strongly used especially in the presence of 
uncertainties and matched perturbations on the system model. 
Then, sliding mode observers or differentiators based 
techniques have been widely considered in FDI methods. For 
example, in [7], the proposed method is based on multi-
models to solve the fault detection and isolation problem for a 
certain class of nonlinear system. The derivatives of the 
system’s output are calculated by the well-known HOSM 
Levant’s differentiator [8] and the system states are estimated 
using the HOSM multiple observers. The equivalent output 
injection of the HOSM multiple observers is used to detect the 
presence of faults in the system. This method is able to be 
detected and isolated simple and multiple faults but it has a 
great drawback consisting in the difficulty implementation 
especially for the rather complicated systems. 

In addition, the result of this method depends on the 
quality of the derivative signals. In practice, the differentiation 
operation must provide a best compromise between accuracy 
and the noise rejection. As well known, the sliding mode 
differentiator has a major benefit which is known by the 
simplicity in real-time implementation. But, it presents a main 
drawback concerning the adjustment of its gains. Indeed, these 
tuning gains require information of the Lipschitz constant of 
the derivative signals. So, in the practice case, it is hard to 
obtain beforehand exact information about the value of this 
constant. To solve this problem, different new schemes of 
sliding mode differentiators have been proposed in the 
literature, let us mention some examples [9], [10], [11]. 

In this paper, we have investigated a novel model-based 
fault Diagnosis strategy for a particular class of nonlinear 
systems called flat ones [12].The proposed method offers a 
fast performance in on-line closed loop operation and ensures 
robustness with respect to additive measurement and plant 
noises. For our research work, the considered flatness property 
of the model system leads to estimate the successive 
derivatives using some differentiation scheme. The outputs of 
this scheme are used to design both inputs and parameters 
estimators. For this aim, a High Order Sliding Mode 
Differentiator with Dynamic Gains (SMDDG) defined in [13] 
is employed to detect faults. Furthermore, we consider a 
simultaneous occurrence of actuator, process or sensor faults. 
Thus, the obtained analytic residual signals might be sensitive 
to all of these faults which make fault isolation very difficult. 
That’s why, the isolation procedure is formulated here as a 
pattern recognition problem using a Dynamic Neural 
Networks (DNN) on the residual signals. Comparing with FDI 
methods in the existing literature, the main contributions of 
this paper are: 

1) A new scheme of adaptive higher order sliding mode 

differentiator is used to define a new FDI method [13]. Where 

this algorithm offers a full segregation between the actual 

faults and measurement noises, which keeps the false alarms 

rate at a very low level compared to other proposed adaptive 

differentiators. 

2) The fault isolation is realized using an Adaptive Neural 

Network. In this step, the approach can easily distinguish 

between the three types of faults that can occur in the system, 

even though they appeared simultaneously. 

3) A comparative study with the well-known Levant’s 

differentiator is proposed to show the performance of the 

proposed approach. 

This paper is organized as follows. The problem is 
formulated in Section 2. In Section 3 the proposed FDI 
method is explained. The system application is presented in 
the next section. The simulations cases are given in Section 5 
to discuss the results and to show the effectiveness of the 
proposed method with different fault scenarios. 

II. PROBLEM FORMULATION 

Consider the following form of the nonlinear system: 

 
 

, , ,F ( , )
,

, ,F

x f t x g x F uux

y h t x y






  


  
             (1) 

Where f and h are nonlinear functions;  1 n,x x ...,x

 1 mu u ,...,u and  1 py y ,..., y are the state, the input and 

the output vectors system respectively.  1
, ...,

r
   is a 

finite set of unknown parameters which can be a combination 
of the system’s physical parameters.  is a sensor noise 

considered here by noises on the outputs system. , ,
, yx u

F F F


are finite set of process, actuators and sensor faults variables 
respectively. The non-linear systems present unknown 
parameters of additional faults that can appear at the sensors, 
actuators or process. Based on Fliess’ work [12], for this class 
of system defined in (1), its input and state vectors can be 
characterized by a set of variables called flat outputs and their 
finite number of its successive derivatives. According to [12], 
the system (1) presents a flatness property if it can be described 
by the following equations: 

 

 

0 1 0 1
1 1 1 1

0 1 0 1
2 1 1 1

k k
u L y ,L y ,...,L y ,...,L y ,L y ,...,L y ;i j f f f f m f m f q

k k
x L y ,L y ,...,L y ,...,L y ,L y ,...,L y ;j j f f f f m f m f q













   (2) 

Where 
1 j

 and 
2 j

are two nonlinear functions. 

 1j ,...,n and  1k ,...,q , k  is the differentiation 

order where q  is the flatness order, m is the input number and 

 fL h . is the Lie derivative defined by  h
x

f


 . 

Then, considering the flat nonlinear system (2), the aims of 
this paper are: firstly, detect the presence of faults taking into 
account of sensor noises. Then, isolate possible acts of faults 
on the system (actuator, sensor or process). In order to obtain 
these goals and basing on the flatness property of the system, a 
generic residual signal is obtained as follows: 
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        k
l l e e e

e
r t , u , , y, y ..., y   

 
           (3) 

Where  1 qy y ,..., y is the flat output vector,

 1 mu u ,...,u is the input vector and  1 r,...,   is the 

parameter vector.

  
e

u and  
e

 are the estimated input and parameter 

vectors.  k

e
y 
 

is the estimated derivatives outputs vector. 

Note that the obtained residual expression (3) contains 
information about any type faults which can affect the system. 
This residual dealt with two issues. The first one is the choice 
of the differentiation algorithm where it plays a crucial role 
having good quality of the estimated signal and consequently 
the capability of accurate fault detection. The second issue 
concerns the fault isolation.  Indeed, for the residual given by 
(3), it is difficult to dissociate the different types of fault, 
besides; this problem becomes more important with the 
presence of other disturbances. To solve these issues, the 
proposed FDI method is described in the following section. 

III. PROPOSED FDI METHOD 

To explain the proposed FDI method, Fig. 1 is presented. 
Fig. 1 is defined by three blocks: control loop, fault detection 
and isolation blocks. The FDI procedure is based on residual 

generation signal ir  which is defined by input  i e
u , parameter

 r e
 estimated vectors respectively and also the flat output 

vector with their successive derivatives ( k )

e
y 
 

. Fig. 1 is 

illustrated for the case where twoflat outputs are present in the 
system which explains the use of second order differentiator. 

But the proposed approach may well be used in the general 
case where the system presents q flat outputs. As it is 

explained above, the choice of the differentiation algorithm is 
very delicate to give a good quality of the derivatives 
estimations especially with noisy signal. In the literature, there 
are different differentiators that have been proposed such as 

[9] [10] [11]. For instance, there are a HOSM differentiators 
proposed by Levant in [8]. In this paper, a new scheme of 
HOSM Levant’s differentiator is employed. It is defined by 
the higher order Sliding Mode Differentiator with Dynamic 
Gains (SMDDG) proposed in [13].As already indicated, the 
studied system presents only two flat outputs which limit the 
order of the differentiation to two. In the following, we start 
by exposing the sliding mode algorithms. 

A. AbbreviationsDifferentiation Algorithms 

Define abbreviations and acronyms the first time they are 
used in the text, even after they have been defined in the 
abstract. 

Considering the input function to differentiate as follows 

     
0

t t ty y  
              (4) 

Where  
0

ty is an unknown base signal where the  1
th



derivative is bounded by a positive Lipschitz constant C and

 t is a noise which has only a known upper limit such that

 t  . Where   very much less than 1 and

   
0

.t ty y    

1) HOSM differentiator: The dynamic equations of the 

second order differentiator proposed by Levant are as follows: 
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



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

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

            (5) 

 

Fig. 1. Block Scheme of Proposed FDI Method.
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Note that  0 0 1 1 0
,s z y s zt     are the two sliding 

surfaces of the differentiator which define the derivatives 
estimation errors. Theoretically and after a convergence time, 

we have two outputs:    
0 1

,t ty s y   . In [11] the 

authors give the inequalities that are established in finite time, 

for a positive constant µi depending exclusively on the 

differentiator parameters:  

   
1

11( )

0 , 0,...,
ii

i

i iz y t µC i
 
   

           (6) 

From (6) it can be deduced that the precision is degraded 
with the increase of the derivative order. 

 

2) SMDDG differentiator: The advantage of this new 

scheme is that its gains are adjusted in real time regardless of 

the input signal. Considering the input signal defined by (4) 

and under the same assumption on the noise signal, the second 

order differentiator with dynamic gains is described by (7): 

 

   

0 0

0 0 0 0 0 1

1
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2
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  



   



   









          (7) 

Where 0 ,
1

KK are positive convergences gains and

0 1 2
ˆ ˆ ˆ, ,    are positive dynamic gains of the algorithm 

computed in real time and depending on the sliding surfaces

,
0 1

S S . The dynamic equations are defined by (8). 

   

   

 

0 0 0 0

1 1 1

1 1

2
ˆ 3 ˆ ˆ, 0 0 0 0

0 0

1
ˆ ˆ ˆ2 , 0 0 0 0
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sign and t
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sign dt

  

  



    
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 

  
  

   


 
 
   




          (8) 

With Equations (8), the trajectories of the system (7) 

converge towards the point 
0 1

0s s   under the assumption 

that existed unknown positive constants 
*

0  and 
*

1  defined 

by (9): 

Assumption: 

 

   

*

0 0 0

*

1 1 1 1

2

3

1

2 0

1

*
2

t
dt

y sign z

y sign sign

s s

s s s



 

  

  





            (9) 

In the absence of noise, the convergence time of this 
differentiation algorithm becomes so fast if the tuning of the 
convergence gains values is high. However, in the case of 
noisy signals, there is a trade-off between the convergence 
time and the reduction of the noise amplification. Indeed, the 
linear terms added on the dynamics equation of the algorithm 
represent a solution to have more smoothing outputs. Then, in 
this case, it is necessary not to choose a high value for

 0 1iK , i , . For more details see [13]. 

B. Parameters and Inputs Estimation 

Started by the proposed parameter estimator, for this fact, 

we assume that the system parameters  1 2
T

r, ,...,   

satisfy some identifiability conditions in order to be obtained 
only from measured data. For this aim the observability test is 
obtained by rank test condition based on the calculation of the 
space spanned by gradients of the Lie derivatives of the output 
functions of the system. 

 0 1
1

k
f i

j

rank J rank L y n;
x

  
   
              (10) 

With      1 1 2 1 2 1 1 1 2j , ,...,n ; k , ,...,n ;i , ,..., p   

Where  fL h . is the Lie derivative defined by  
h

f .
x




and 0J is 

the Jacobian matrix. 

If  0rank J n , so the system is observable. Therefore, 

by considering parameters as state variables P and have 

derivatives are equal to zero 0P  .  So, for the described 

system the parameter identifiability can be treated as a 
particular case of the observability problem. The rank test of 
the following matrix is then used to determine the parameters 
to be identified. 

 

     

1 1

2

2 1 2 1 2 1 1 1 2

k
f i

j

rank J rank L y n;
P

j , ,...,q ; k , ,...,n ;i , ,..., p .

  
   
    

   
        (11) 

Suppose that the parameters to be identified

 1 2
T

r, ,...,    satisfy the identifiability condition, the 

estimation of the parameters  
e

 could be written by (12) 

            
 1 2

p

e e ee
e

m
u

e
t , y , y ,..., y ,u, u ,...,

with , ,...,r

     
  


      (12) 

Where r is the parameters number. 

For the input estimator, the estimation of the system’s 
inputs is based on the flatness expression presented in 
equation (2) and the estimated parameters defined by (12). 
When including the equations (12) and (2), a relation between 
the parameter estimations and the system’s outputs and their 
derivatives is defined as follows: 
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            
 

1

1 2

k
i re e ee

e
u t, y , y ,..., y , ,...,

with i , ,...,m

   
 


        (13) 

Where  is a nonlinear function,      k

e
e

y , y ,..., y 
 

 are 

the output and their derivatives estimation given using the 

SMDDG differentiator and    1 re e
,...,  are the parameter 

estimations. 

After the estimation of the system’s inputs, a comparison 
between the estimated inputs eu and their nominal values nu  is 

performed. The residual signal is then defined as: 

i n er u u 
            (14)           
 1 2

k m
i i je e ee e

r t, y , y ,..., y ,u, u ,..., u ,

with i , ,...,m

           


          (15) 

Where i is a nonlinear function. 

The residual signal ir converge to zero in fault free case  

meaning that the input estimated  
e

u is equal to the nominal 

system input  
n

u . Besides, ir makes a deviation in the 

presence of any anomaly in the system. Note that the residual 

vector has the same size of the input vector  1 2i , ,...,m

since it is a result of the difference between the nominal and 
the estimated inputs vector. 

   

   

0

0

e n

i

e n

u u

r
u u

 


 
            (16) 

C. Fault isolation with Neural Network 

After the fault has been detected by the proposed FD 
method, it is necessary to obtain information about it in order 
to isolate faults. Indeed, it is important to determine which 
component is faulty in the system and also identify the 
successive and simultaneous fault cases. This problem is 
solved by using a Dynamic Neural Network algorithm (DNN). 
This algorithm is implemented by feed-forward technique 
explained in Fig. 2. DNN is an adaptive NN with multiple 
hidden layers of neurons used to model complex non-linear 
systems. The training consists in giving the proper output 
according to the corresponding input patterns. For our case, 
this algorithm is based on the learning method for the residual 

signal  1 2 mr r ,r ,...,r obtained by the comparison between 

the nominal inputs  1 2 mu ,u ,...,u  and the estimated ones

 1 2e e meu ,u ,...,u
.
 

The DNN’s output 
id is trained to present"0" in the fault 

free case of the system and"1" in case of fault. 

Considering the on-line use, the network training is 
performed for all possible fault scenarios with using a sliding 

window 
swT where 10sw eT T for the residual signal with a 

step of1ms . So, the signal is transformed into a matrix P  as 

follows: 

   

   

   

(0) ... 9

( ) 2 ... 10
,

( 9 ) 8

i i e i e

i e i e i e

i e i e i

r r T r T

r T r T r T
P

r t T r t T r t

 
 
 
 
 

        

In order to enable the neural network to learn the imposed 
input-output pattern, the network weights are adjusted by a 
specific algorithm called back propagation algorithm which is 
used in [10]. The main purpose is to bring the network 
function as close as possible to a given function. So, the 
learning problem consists to find better weight combinations. 

However, the function is not given explicitly but implicitly 
though some examples. Consider a feed-forward network with
m input and output. This network can have no fixed number of 

hidden units and can exhibit any desired feed-forward 

connection pattern. A training set     1 1r rl NN,d , , ,dp is 

given and consists of NNp ordered pairs of m and NNp

dimensional input and output patterns vectors. The primitive 
functions of the networks are considered continuous and 
differentiable. The initial weights are considered as random 

numbers. In general, when the input ir is presented to the 

network, it produces an output it different to from the desired

id .The aim is to make it and id  identical by using a learning 

algorithm. So, it is necessary to minimize the error function of 
the network, this error is defined by (17). 

 

Fig. 2. Neural Network Pattern and Fault Isolation. 

 

Fig. 3. Network for the Computation of the Error Function. 
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21
2

1

pNN

i i
i

E t d


 
           (17) 

After minimizing this error function, new unknown input 
patterns will be presented to the network and meanwhile it’s 
interpolate. In order to obtain a local minimum of the error 
function, a back-propagation algorithm is used. Based on this 
algorithm, the network is initialized with random weight. 
After that we correct the initial weight by calculation of the 
gradient of the error function. Fig. 3 shows the computation 
technique of the error function by using the back-propagation 
technique. The minimization process consists at the first on 
extending the network to computes automatically the error 
function. 

All the j output units of the networks evaluate the function

 
21

2
ij ijt d . The addition of the m outputs nodes gives iE as a 

result. The same network extension has to be built for each 
pattern id . All quadratic errors are added in one sum unit

1 pE E  to define the error function E . Then, the error for 

a given training set is calculated. In order to make the 
quadratic error E as low as possible, the weights are the only 
parameter that can be modified in the network. We now have 
w network capable of calculating the total error for given 
training set. E is calculated by the extended network 
exclusively through composition of the node functions, it is a 
continuous and differentiable function of the weights

1 2 lw ,w , ,w in the network. We can thus minimize E by 

using an iterative process of gradient descent, for which we 
need to calculate the gradient. 

 
1 2

E E E
w w wl

E , , ,  
  

  . Each weight is updated 

using the increment 1E
i wi

forw i , ,l 


    . 

Where  represents a learning constant, i,e, a proportionality 

parameters which defines the step length of each iteration in 
the negative gradient direction. With this extension of the 
original network the whole learning problem now reduces to 
the question of calculating the gradient of a network function 
with respect to its weights. Once we have a method to 
compute this gradient, we can adjust the network weights 
iteratively. In this way we expect to find a minimum of the 
error function, where 0E  . 

IV. APPLICATION TO THE THREE-TANK-SYSTEM 

In order to validate the proposed FDI method, the chosen 
study system is the three-tank-system shown in Fig. 4. This 
system consists of three cylindrical tanks with identical 

section S . The three tanks are interconnected by two 

cylindrical pipes of section
p

S and the outflow coefficients of 

tank 1 and tank 2  are
31

q and
32

q respectively. The liquid 

flows from the tank 3, with a valve of section
p

S which 

supplies the two pumps 1P and 2P collected in the tank 0R . 

 
Fig. 4. Three-Tank System. 

The two pumps are collected by DC motors, supply the 

tanks 1and 2 with flow rates
1Q and

2Q . The water levels in 

the three tanks are noted by 1 2,h h and
3h respectively and 

verify the following inequality:      1 3 2
h t h t h t  .The three 

tanks are connected with the tank
0R by three valves

1 2
,v v and

3
v where their sections are flexible to simulate various failures 

such as more or less significant leaks on each tank. 

The nominal behavior of this system is defined by: 

 The valves
1 2
,v v and

3
v  must be closed in order to have 

no leakage rates; 

 The fluid is supposed to be perfect. Its characteristics 

are considered unchanged. So the parameters such as 

the coefficients of viscosity supposed to be known, 

certain and have a constant average value; 

 The aging and the environment effects on the system’s 

parameters are not considered. 

Using the mass balance this system can be presented as 
follows 

1
1 13

2
2 32 20

3
13 32

dh
S Q q

dt

dh
S Q q q

dt

dh
S q q

dt

 

  

 









            18  

 ; , 1, 2,3
ij

q i j i j   represent the flow of water 

flowing from the tank i to j . The expression of the flow is 

given by:  . . . 2ij i p i j i j
S sign h h g h hq    where

20q

represent the outflow that can be expressed by

20 2 2
. . 2

p
S g hq  .For the next, the following notations 

are considered to facilitate the model exploitation:
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1 2 3 1 2 3
( , , ) ( , , )

T T
x x x x h h h  and 

1 2 1 2
( , ) ( , )

T T
u u u Q Q  . 

Then the full nonlinear system model is given by 

13
1 1 3 1

32 20
2 3 2 2 2

13 32
3 1 3 3 2

1 2

2 3

1
,

1
, (19)

,

,

,

q
x x x u

S S

q q
x x x x u

S S S

q q
x x x x x

S S

y x

y x


   




   



    





         (19)

    

 

This system has two flat outputs defined by
1y and

2y , see 

equations (20) and (21). 

 

 

1 1

2

13 1 2 2

2 2

32

3 2

1 1 13 1 2

13 1 2 2

32
2

32

13 1 2
2

1 2

13 1 2

2

13 1 2 2

20 2

32

,

2

( )

2
  20

x y

q y y Sy
x y

q

x y

u Sy q y y

S
q y y Sy

q
u

q

q y y
Sy

y y

q y y

q y y Sy
q y

q




   
    

  
 

   

  


 



 
      


 


   

    
           (20) 

According to (20), the second input
1u is expressed in 

terms of these two flat outputs and their successive derivatives 
but its expression is still complex compared to the first input

1.u  

For the parameter estimation of the system, it is necessary 
to test the identifiability of the latter. So, to obtain information 
about system’s parameters it is necessary to calculate the 
Jacobean matrix of Lie-derivatives (21): 

11 1
31 2

2 2 2
1 2 3

3 3 3
1 2 3

ff f

I f f f

f f f

L yL y L y
PP P

J L y L y L y
P P P

L y L y L y
P P P

  


  


   
  

   


              (21) 

Where
1 1 2 3

2 3 1 2

0f f f fL y L y L y L y
P P P P

   
   

   

and

 1 2 1 3
2 1 3

0f f fdet J L y . L y . L y ;
P P P

  
  

  
for

1 3 2x x x .   

So, the rank of the matrix (21) is 3 and also 3n . 

Therefore, the system’s parameters are identifiable. Then, the 
observability of the system is justified. Based on equation (19) 
it can be concluded that the parameter estimation as follows 

 
 

 

 
        

 

 
    
 

1 1

1

1 3 1 3

1 2 3 1 2

2

2 2

1 3 1

3

3 2 3 2

2

2

2

e

e

p

e e e

e

p

e e

e

p

S y u

S sign y y g y y

S y y y u u

S sign y g y

S y y u

S sign y y g y y







  
 
  



    




   
 
           (22) 

For the input estimator, it is easy to obtain the estimation 
of the system’s inputs using (20) and (22): 

   

 
  

    
 

 

1 1 13 1 2

13 1 2 2

32
2

32

13 1 2

2

1 2

13 1 2

2

13 1 2 2

20 2

32

,

2

2

e e

e

e

e e

e

e

u S y q y y

S
q y y S y

q
u

q

q y y
S y

y y

q y y

q y y S y
q y

q

   



 


 



 
  
   


 


   
   

             (23) 

The residual expression is given by (24) 

 

 

1 1 1

2 2 2

e

e

r u u

r u u

  



              (24) 

In the following paragraph simulation results of the 
proposed method are presented. 

V. SIMULATION RESULTS 

For the estimation tests, the Matlab SIMULINK is used 

with sampling period 
310eT s and in the presence of a 

Gaussian white noise with noise power equal to 0.01 . The 

known nominal parameters of the system are: the gravity 

constant
29.81 .g m s , the tank section 0.0154S m  
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and the pipes section
55.10pS m . The nominal values of 

the viscosity coefficient of the system are:

1 2 3
0.5, 0.675, 0.5     . For the SMDDG,

0
150K   and

1
100K   are considered and the dynamic 

gains initialized to zero. The simulations are achieved under 
operating conditions that allow the full rank condition for 
parameter identifiability. To satisfy this condition, the 
operating conditions are chosen as with operating condition

1 3 2
x x x  . 

To prove the effectiveness of the proposed method, 
various fault scenarios are defined and summarized in Table I. 
The first one consists on simple actuator fault first one 

consists on simple actuator fault
1

f
act

which appeared in the 

first input 1u  of the system. The second scenario is a simple 

process fault 
1proc

f  that occurs on the first parameter of the 

system 1 .  For scenario 3 , three faults are generated. Two 

faults appear successively at the first, then the second actuator, 

1act
f  and 

2act
f respectively and another one appears on the 

output sensor.  The last scenario considers the case of 

simultaneous process faults that arise on the system, 
1proc

f

and
2proc

f respectively. 

For our studied system, the process faults are generally 
consisting on leakage faults. However the actuator faults can 
be defined by a reduction in control effectiveness. 

An evaluation with known method in literature will be 
performed. 

A. Analysis and Validation of the Fault Detection Schemes 

Before presenting the simulation results, it is important to 
specify the types of faults that are applied. Table II 
summarizes the forms of the various faults. Here, the actuator 
fault is a positive intermittent signal, the process faults are an 
intermittent negative signal and the fault sensors is a step 
signal. 

The effectiveness of the proposed FDI method Fig. 1 
presented in the comparison results between the using of the 
SMDDG Differentiator (7) and the case when we used the 
Second Order Sliding Mode Differentiator (5). 

1) Simple Actuator fault detection: Scenario 1: In this 

case, an intermittent fault
1act

f  is introduced in the first 

actuator at 20ms . The simulation results are shown in Fig. 5. 

Based on equation (23), Fig. 5(a) shows the first and the 

second input estimation  1 e
u  and  2 e

u respectively. This 

figure represents the curves given by using the SMDDG and 

HOSM compared by the nominal input values with any faults. 

Remark that the red signal obtained by the SMDDG 
presents a positive peak which appeared at 20t ms and a 

negative one appeared at 25t ms . 

This explains that despite of the noise presence, it is well 
possible to detect an intermittent fault occurring on the first 

input 1u . 

First output estimation is provided by the SMDDG. 
However, with the HOSM differentiator fault detection is 
much more difficult since the failure is almost lost in the 
noise. 

Consequently, only a very small variation appeared in both 
input and output of the estimated signal at the interval time

 20 25t ms . In Fig. 5(c) it is clear to see that, the first 

residual given by the SMDDG can introduce the appearance 

of actuator fault on 1u . Since this residual is considered as 

DNN inputs so learning is better than the residual signal 
obtained using the HOSM. 

2) Simple process fault: scenario 2: The second scenario 

represents a case of an intermittent fault 2procf  introduced in 

the second parameter of the system at 30 .ms Fig. 6(a) and 

Fig. 6(b) represents the first and the second inputs and their 

estimations by using the SMDDG and the HOSM 

differentiator. These figures show that a fault occurred at
30t ms.  

TABLE I.  SIMULATION SCENARIOS 

Fault Types and its 

magnitude  

Actuator 1 

1 0.6actf   

Actuator 2 

2 0.4actf   

Process 1

1 0.5procf    

Process 2

2 0.3procf    

Sensor 1

1 0.01senf   

Fault appearance interval   20, 25 ms   25, 30 ms   20, 28 ms   30, 36 ms  30t ms  

Scenario 1       

Scenario 2       

Scenario 3 
  

      

Scenario 4      
   
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TABLE II.  FAULT MODEL 

Fault Types  Model 

Actuator Fault  

 

Process Fault  

 

Sensor Fault  

 

In the same time, a perturbation is showed in the second 

parameter  2 e
  estimated by using the equation (22). 

With the SMDDG differentiator, the occurrence of fault is 
clearly shown compared it to the case of using the HOSM 
differentiator algorithm. The occurrence of the fault only in 
the second estimated input explained by its expression in 
equation (23), where the first input estimation is independent 
of the second parameter of the system. This difference shows 
the performance of our differentiator compared to the HOSM 
differentiator which presents more noise amplification. In 

Fig. 6(e) of the residual signal 2r the fault starts with a negative 

peak and ends with a positive one. 

This explains the presence of process fault, because the 
process defect is described by a leak so the residual, which is 

the difference between  2 e
u  and 2u , gives a decay to the 

residual curve. 

3) Successive actuator faults detection case scenario 3: In 

the practical case of non-linear systems, not only simple faults 

can appear, but many faults can occur in the same time or/and 

in a successive way. In this case, successive faults are tested. A 

fault 
2act

f  is introduced in actuator 2  at 25 .ms  In the same 

way, successive faults, 
1act

f in actuator1at 20ms and
1sen

f  

in sensor1  at 30ms  have been simulated. Fig. 7 shows the 

simulation results of this case. 

Thanks to the flatness properties, the system presents a 
strong relation between all parameters; inputs, outputs, there 
derivatives and even all the parameters of system itself shown 
in equation (22) and (23). Basing on Fig. 7 and with using the 
SMDDG, we remark the presence of fault in the output 
derivatives, Fig. 7(a) and also in the input estimation, 
Fig. 7(c). 

    
(a). First and second inputs estimation using HOSM and SMDDG. 

   
(b). Outputs and its derivative estimations. 

    
(c). First residual signal with SMDDG     (d). First residual signal with HOSM. 

Fig. 5. First Scenario: Simple Actuator Fault. 
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But for the results that are given by using the HOSM 
differentiator, a small disturbance is shown, see Fig. 7(d) due 
to the presence of chattering on the estimated signals. For the 
residual signals given in Fig. 7(e), the actuator fault is shown 
like in the previous example and the sensor fault is presented 
by a high positive magnitude peak. 

4) Simultaneous fault detection case scenario 4: Now, the 

scenario considering simultaneous faults is presented. The 

faults present in this case are: an actuator and a two process 

faults respectively
1

0.6
act

f  ,
1

0.5
proc

f   , and

2
0.3f

proc
  . The 

1act
f and

1proc
f  appeared in the same 

time on the first input and also a fault in the second parameter 

systems
2proc

f   appeared in next time. The first and the 

second inputs estimations are shown in Fig. 8(a). The curve of 

the estimated parameter 2  shows the presence of two faults. 

The first one caused by
1proc

f and the second one by

2
0.3f

proc
  . This proves the difficulty of the isolation step. 

In Fig. 8(d) which corresponds to the residual signals; it is clear 

that in the case where the SMDDG differentiator is used, faults 

are visible more clearly than the using of HOSM differentiator.  

Finally, the proposed simulation results show the effectiveness 

of the proposed technique in detecting faults compared to the 

well-known Levant’s differentiator. 

   
(a). First Input Signal and its Estimations.    (b). Second Input Signal and its Estimations. 

 
(c). Outputs and its Derivative Estimations. 

 
(d). Second Parameter and its Estimations. 

   
(e). First Residual Signal with SMDDG.    (f). First Residual Signal with HOSM. 

Fig. 6. Second Scenario Simple Process Fault. 
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(a). Outputs and its Derivative Estimations with SMDDG.  (b). Outputs and Its Derivative Estimations with HOSM. 

   
(c). Input Estimation: with SMDDG. 

   
(d).Input Estimations with HOSM. 

   
(e). Residual Signals. 

Fig. 7. Third Scenario: Case of Successive Faults. 

B. Fault Isolation 

After the detection fault, the fault type is identified by the 
use of the DNN. The results of the four scenarios are 
summarized in Tables III and IV. 

The first table shows the results in the case of using the 
SMDDG differentiator. With this last one, the fault kinds are 
clearly identified in all of the simulation scenarios. For 
example, in the case of successive actuator faults, we remark 
that the table presents the value 1 in the box of the first and the 

second actuators and also in the box of the first. Table II 
represents the results of the isolation fault by the DNN in the 
case of using the HOSM differentiator. In this table, some 
faulty alarm is presented. For example, in the case of 
scenario4, where the first actuator fault and the first process 
fault occurs simultaneously and a fault occurs in the second 
process, the value 1 is present in the first and the second 
actuator, in the first process and in the first sensor. Also, in the 
scenario3, it shows the presence of fault in the second process 
and the first sensor, which represents a faulty alarm. 
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(a). Input Estimations. 

  
(b). Outputs and its Derivative Estimations. 

  
(c). First and Second Estimated Parameters. 

  
(d). Residual Signals. 

Fig. 8. Ford Scenario Case of Simultaneous Faults. 
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TABLE III.  NEURAL NETWORK RESULTS: SMDDG CASE 

Residual 1fact
 

2fact  1f proc  2f proc  1fsen  2fsen
 

 

S1 
1

2

r

r
 

1

0  

0

0  

0

0  
0

0  

0

0  

0

0  

S2 
1

2

r

r

 0

0
 

0

0
 

0

0
 

0

1
 

0

0
 

0

0
 

S3 
1

2

r

r

 

0

1
 

0

1
 

0

0
 

0

0
 

0

1
 

0

0
 

S4 
1

2

r

r

 

0

1
 

0

0
 

0

1
 

0

0
 

0

1
 

0

0
 

TABLE IV.  NEURAL NETWORK RESULTS: HOSM CASE 

Residual 1fact
 

2fact  1f proc  2f proc  1fsen  2fsen
 

 

 
S1 

1

2

r

r
 

1

0  

0

1  

0

0  
0

0  0

1
 

0

0  

 
S2 

1

2

r

r

 

0

1
 

0

0
 

1

1
 

0

1
 

0

0
 

0

0
 

 
S3 

1

2

r

r

 

0

1
 

0

1
 

0

0
 

1

1
 

0

1
 

0

1
 

 
S4 

1

2

r

r

 

0

1
 

0

1
 

0

1
 

0

0
 

0

1
 

0

0
 

VI. CONCLUSION 

In this paper, a new FDI method is proposed to solve the 
fault detection and isolation problem in particular class of 
nonlinear system having the flatness property. This property 
gives a generic residual signal which is obtained by the 
difference between the input estimation and the nominal one. 
The residual signals are ready to be sensitive to all types of 
fault that can appear in the system which makes the 
identifiability of the fault very difficult. The effectiveness of 
the proposed fault detection method is given by the using of 
the SMDDG differentiator which gives satisfactory results in 
comparison with results obtained by the Levant’s HOSM 
differentiator. After the fault detection, the isolation phase is 
done by the use of DNN pattern with back propagation. Many 

scenarios are tested to improve the effectiveness of the 
proposed method which contains an actuator, process or 
sensor fault. These faults are presented in different situation; 
simple, successive and simultaneous cases. 

Several future works can be considered as a perspective. 
The first is to apply this approach in the practical case and the 
second is to extend this approach to be applied on other types 
of nonlinear systems. 
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