
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

305 | P a g e

www.ijacsa.thesai.org

A Novel Network user Behaviors and Profile Testing

based on Anomaly Detection Techniques

Muhammad Tahir*1, Mingchu Li*2, Xiao Zheng3, Anil Carie4, Xing Jin5, Muhammad Azhar6, Naeem Ayoub7

Atif Wagan8, Muhammad Aamir9, Liaquat Ali Jamali10, Muhammad Asif Imran11, Zahid Hussain Hulio12

School of Software Technology, Dalian University of Technology, Dalian, 116620, China1, 2, 3, 4, 5

Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, 116020, China1, 2, 3, 4, 5

College of Computer Science, Shenzhen University, Shenzhen, 518060, Guangdong, China6

Department of Mathematics & Computer Science, University of Southern Denmark

Cam-pusvej 55, DK-5230 Odense M, Denmark7

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China8

College of Computer Science, Sichuan University, Chengdu, 610065, China9

College of Software Engineering, Nankai University, Jinnan District, Tianjin, 300350, China10

School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China11

School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, China12

Abstract—The proliferation of smart devices and computer

networks has led to a huge rise in internet traffic and network

attacks that necessitate efficient network traffic monitoring.

There have been many attempts to address these issues; however,

agile detecting solutions are needed. This research work deals

with the problem of malware infections or detection is one of the

most challenging tasks in modern computer security. In recent

years, anomaly detection has been the first detection approach

followed by results from other classifiers. Anomaly detection

methods are typically designed to new model normal user

behaviors and then seek for deviations from this model.

However, anomaly detection techniques may suffer from a

variety of problems, including missing validations for verification

and a large number of false positives. This work proposes and

describes a new profile-based method for identifying anomalous

changes in network user behaviors. Profiles describe user

behaviors from different perspectives using different flags. Each

profile is composed of information about what the user has done

over a period of time. The symptoms extracted in the profile

cover a wide range of user actions and try to analyze different

actions. Compared to other symptom anomaly detectors, the

profiles offer a higher level of user experience. It is assumed that

it is possible to look for anomalies using high-level symptoms

while producing less false positives while effectively finding real

attacks. Also, the problem of obtaining truly tagged data for

training anomaly detection algorithms has been addressed in this

work. It has been designed and created datasets that contain real

normal user actions while the user is infected with real malware.

These datasets were used to train and evaluate anomaly detection

algorithms. Among the investigated algorithms for example, local

outlier factor (LOF) and one class support vector machine

(SVM). The results show that the proposed anomaly-based and

profile-based algorithm causes very few false positives and

relatively high true positive detection. The two main

contributions of this work are a new approaches based on

network anomaly detection and datasets containing a

combination of genuine malware and actual user traffic. Finally,

the future directions will focus on applying the proposed

approaches for protecting the internet of things (IOT) devices.

Keywords—Network user behaviors; profile testing; anomaly

detection techniques; datasets; anomaly detection algorithms;

machine learning

I. MOTIVATION AND INTRODUCTION

Nowadays, detecting intruders and malware infections [1],
in local networks is one of the most difficult and highest
studied challenges in modern computer security. From the huge
amount of detection methods proposed, a large majority used
static rules or reputation methods for performing the detection;
until more modern behavioral techniques were introduced.
Although very useful, these static techniques were not enough
to detect the majority of attacks and malware. In particular, it is
believed that the more important limitations of the current
techniques are that first, the detections are done per connection
and not per user, second, the classifiers are trained and tested
on ―only normal‖ and ―only infected‖ datasets and third, the
types of attacks and infections evolve and make classifiers
quickly less useful. Apart from the more traditional signature-
based intrusion detection system (IDS), such as snort [2] and
bro [3], there has been extensive research on behavioral
detection methods during the last decade. From these new
methods, the most used is anomaly detection techniques
(ADTs) due to its easy implementation and understandability.
Anomaly-based IDS detect anomalies by assuming that more
than half the data is normal and then searching for some
deviation from that normality. The main benefits of ADTs are
its ability to detect previously unknown attacks and the
identification of non-malicious problems within the network,
such as corporate policy violation. Despite its extensive use,
ADTs suffers from several issues that undermine its usefulness.
First, it is hard to verify the results, leading to attacks being
mixed with normal connections. Second, the anomalies found
are not necessarily malicious, generating a high rate of false
positives. Third, the nature of the network changes over time,
making the original normal model obsolete and prone to more
errors. Fourth, ADTs methods usually work with packets,
making the methods a little less stable. The amount of errors

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

306 | P a g e

www.ijacsa.thesai.org

generated by these issues tends to be so large that researchers
give the output of ADTs to other algorithms to improve the
detection. In consequence, ADTs models tend to need constant
maintenance and supervision even to achieve acceptable
results. Shown below in the 2nd row of Fig. 1, is available
from different sources in a multitude of forms.

To improve the current situation, it is proposed that a ADTs
method that focuses on the high-level changes in the behavior
of a user. The proposed anomaly detection method is analyzing
time-fixed user profiles and how they change with regard to the
past traffic of the same user. Each profile is composed of a set
of features based on the flows received and sent during a time-
window. Fig. 2 shows diverse data sources out of the box (i.e.,
packet, NetFlow, logs, files, 3rd-party alerts and threat feeds).

It is hypothesized that it is possible to detect the infected
users and to have a small number of false positives by focusing
on the high-level behavior in time. The detection approach
consists of monitoring a user‘s computer, and it is collected
flows during a fixed time-window. With the data collected in
that time-window, profile is created for that user. The profile
describes user‘s behavior during this time-window. With the
data obtained during the time-window of each profile, twelve
features are computed. These references are featured as profile
features (for more details see Section III.C).

The features of a profile cover a wide range of possible
changes in traffic to have enough representations of the
behavior of the users. For example, one of the features analyzes
the number of flows for all the transmission control protocol
(TCP) connections from a host, and another feature describes
the number of packets for all the TCP connections aggregated
by destination ports. If a user is infected with a malware which

tries to connect to a large number of different computers, this
last feature will show a very distinctive pattern for the number
of packets on each destination port. As another example, if
malware steals personal information of a user the features of
the profile might show a higher volume of packets sent from
the user‘s computer.

The profiles generated for each time-window may allow us
to detect these changes and variances and generate alarms that
may prevent the actions of an infected computer.

To be able to detect changes in the behavior of users it is
needed to define a baseline of their behaviors. Set of profiles
are collected which covers different time intervals such as:
working hours, night activity, weekends, etc. Within each
profile, each feature describes the user‘s behavior from a
different perspective. Fig. 3, showing data sources in a variety
of detection vectors in order to detect the different attacks and
stages.

Each perspective contributes a different type of information
to the algorithm, and therefore obtaining detections for
different behaviors. Each feature of individually is evaluated
with the same feature in past profiles.

The initial phase of in anomaly detection method consists
in preprocessing the collected data and preparing it for the
algorithm. Dimensionality reduction technique is applied to the
features of a profile. Each feature has to have the same
dimensionality. Then the features of a profile are normalized.
Data normalization might significantly improve the
performance of anomaly detection algorithms [4]. The
normalization is done for each feature individually with respect
to the same feature in other profiles.

Fig. 1. Showing the Stages between Malware Infections and Data Losses as well as the Data Sources Needed for Analytics to Accurately Detect the Attack Stage.

Fig. 2. Showing the Comprehensive Subset of Data Sources to Build a Risk

of Network user behaviors Profiling for Each Entity.

Fig. 3. Showing the Variety of different Detection Vectors and there

Examples.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

307 | P a g e

www.ijacsa.thesai.org

After the preprocessing phase, the anomaly is trained to
detect algorithms (see in Section III.E) by using the normal
behavior of a user. An anomaly detection model is created for
each feature of a profile, based on all the data of that feature
across all the normal profiles of the user. Each profile has
twelve different features. Therefore, each feature has its unique
normality model.

Once the twelve normal models were trained, it is possible
to evaluate the performance of the algorithms using new
unseen profiles. The new unseen profiles contain both normal
data and normal plus attack data, and they were generated in
the same way as the training profiles used to create the normal
models. The anomaly detection algorithms, trained in the
normal profiles, are used to evaluate the unseen profiles and
assign a label to each feature in these profiles. Each feature has
a label, and all these labels are used to generate the final label
of the profile.

After assigning the labels, the detection method uses
majority voting to get the final decisions regarding a profile. If
six out of twelve of the final labels assigned by the anomaly
detection algorithms classify the profile as anomalous, then the
final label of the profile is anomalous.

One of the most important drawbacks of using anomaly
detection algorithms is the lack of verified and trusted data.
Therefore, the datasets consist of normal profiles and
anomalous profiles. A normal profile is a profile which was
created before the computer was infected and an anomalous
profile is a profile which was created after the infection of the
computer. A clean virtual machine is used to create a packet
capture for both datasets. The creation of the datasets involved
several steps. The first step is to imitate a normal user doing
standard things (e.g., checking emails). After some time, the
machine is infected with a malware while at the same time it is
capable to continue to perform normal actions.

To evaluate the performance of the algorithm it‘s necessary
to have ground-truth labels. It has been assigned the normal
label (label = 1) to all the profiles that are created before the
infection of the virtual machine. The anomaly label (label =
−1) has also been assigned to all the profiles that are created
after the infection of the virtual machine. The reason to assign
the anomaly labels in this way is the assumption that
everything after an infection is worth detecting, and that
malware produces changes in the behavior observed in the
network. In fact, not all the attacks are anomalies, but this
assumption helps us better evaluate our algorithm.

The datasets and labels are used during the experiments to
evaluate our hypothesis and proposed approach. Each
experiment uses one normal dataset for creating the normal
model and one mixed dataset of normal plus attacks for
evaluating and testing the performance of the model. Each
dataset is split into three parts: train, validation, and test. The
train set contains only normal profiles created before the
infection. This set is used to create a model of normal network
user behavior. The validation set and the test set contains a mix
of normal profiles and anomalous profiles.

From all the anomaly detection algorithms that are
available, those are selected and reported by the community as

better for this problem. The algorithm that is used in this
research work has different parameters that can be adjusted to
improve detection. The adjustment of these parameters is done
based on the performance metrics computed on the validation
set. The validation results allow us to select the best models.
The model selection is described in Section III.G and later
computes the final performance metrics on the test set.

The evaluation of the algorithms is done in two ways: per
individual feature and for the whole profile. First, each feature
gives a label for the profile from the point of view of this
feature. Then the results are combined using the majority
voting to get the final decision for the profile. Having a result
per feature allows us to evaluate features individually and learn
which ones contribute the most to the detection of the
anomalous behavior produced by malware. The analysis of the
performance of individual features might also help us better
understand how malware communicates.

The analysis of the results is also done by analyzing
individual features and then analyzing the result of the majority
voting. The analysis of the results shows that most experiments
achieved a very low false positive rate (FPR) for individual
features in the experiments. FPR does not exceed 0.01 in three
out of four experiments for all features. When majority voting
is used to produce the final label, the FPR was 0.0 in all
experiments. The highest achieved true positive rate (TPR) was
0.44. Although it may seem low, this is the final result among
all tested profiles with the FPR 0.0. It means that the algorithm
will detect one out of three anomalous profiles with 99.9%
approximately success, while at the same time it will not detect
a normal profile as an anomalous.

The major highlights and the gap of this study are as
follows:

1) Analyze the state-of-the-art methods for detecting

malicious behaviors with special attention to anomaly detection

techniques.

2) Propose and implement anomaly detection method to

detect changes in computer network user behavior analysis.

Infected computers change their behavior, this testing method

would help to detect them securely.

3) Experimentally evaluate the proposed solution on

datasets from cognitive threat analytics (CTA), developed by

Cisco Systems, Inc., is a cloud-based software-as-a-service

product designed to detect infections on client machines.

4) Analyze results of the implemented system and propose

further improvements and applications of the solution in

network security.

5) Finally, the proposed method which is novel in that it

analyze features individually across probability distribution of

time-window. Results are promising and show that the high-

level analysis may provide a good improvement over the

current ADTs and the proposed algorithm achieved a low FPR

and reasonably high TPR.

In this paper, the remaining sections are explained as
follows: Section 2 introduces related work and state-of-the-art
in the area of anomaly detection for network security. Section 3
creates a new anomaly detection methodology and facing the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

308 | P a g e

www.ijacsa.thesai.org

malware infections of computers in networks. Section 4,
describe the functional requirements of the dataset used for
training and testing in the domain are investigated by using
machine learning algorithms and get the final results.
Section 5, experimental results of an anomaly detection method
is designed and a good dataset generated for training and
testing in the hypothesis by running experiments. Section 6,
analysis the final results. Section 7, concludes this study along
with possible future directions defined in Section 8.

II. RELATED WORK AND STATE-OF-THE-ART

In this section, related work and state-of-the-art is discussed
in the area of anomaly detection for network security. There is
much research that has been done in the field of anomaly
detection in general and its application to the network security
domain in particular. There are multiple survey papers of
algorithms for anomaly detection. Chandola et al. [5] reviewed
different types of anomalies, the different fields where anomaly
detection is used, challenges of anomaly detection and
algorithms that could be used for anomaly detection. The paper
[6], mentioned that one of the main challenges of applying
anomaly detection in the field of network security is that the
nature of anomalies keeps changing with time and intruders try
to adapt to evade detection.

A central premise of anomaly detection for security was
defined by Patcha et al. [7] as that intrusive activity is a subset
of anomalous activity. He mentioned that activities in a
network could be split into four categories:

 Intrusive but not anomalous—the source of false
negatives.

 Not intrusive but anomalous—the source of false
positive.

 Not intrusive and not anomalous—true negatives.

 Intrusive and anomalous—true positives.

Among the systems that use flows for anomaly detection is
Minnesota intrusion detection system (MINDS) [8] proposal.
The system extracts the following features: source and
destination IP addresses, source and destination ports, protocol,
flags, number of bytes and number of packets. MINDS
compute the anomaly score for each IP flow individually. As
an anomaly detection algorithm, the creators of MINDS used
local outlier factor [9]. One of the main differences between
MINDS and it is proposed that the search for anomalies closer
to the actions of the user, and not to the network. Anomalies
are studied time, from several aggregations of the type of
flows.

The methodology used in MINDS was used by Ertoz et al.
[10] to develop an agent-based system to detect anomalies in
networks by using multiple correlated anomaly detection
techniques. Hubballi, N. et al. [11] used NetFlow data and built
a trust model to reduce the number of false positive alarms.
They combined the output of each agent to build a trust model.
Each agent used not only past observations but also anomaly
assessments obtained by other agents.

The algorithms that can be used for anomaly detection are
varied and include any algorithm that can differentiate between

distributions of data. This is the case of one class SVM that has
been used for anomaly detection by Zhang et al. [12], used one
class SVM to detect anomalies. They evaluated their approach
on the dataset Knowledge discovery data mining KDDCUP99
which was created in 1999. The algorithm showed very
promising results compared to other methods. Authors
mentioned the problem of obtaining a good dataset with labels
to evaluate the anomaly detection methods.

Xu et al. [13] also used NetFlow to analyze the traffic.
Their system created a cluster for each internet protocol IP in
the current time-window. Clustering was based on the source
IP (srcIP). For each cluster, the system computed the
normalized entropy of source port (scrPort), destination port
(destPort) and destination IP (destIP) and used it as a feature
vector to represent clusters. Then the system applied behavior
classification scheme to classify each sample in its behavioral
class.

All the features in this paper use the state field from IP
flows to specify if the connection was established or not
established. Mahoney et al. [14] also inspected TCP flags but
based on individual packets. The proposed NETAD algorithm
built nine models to identify anomalies in nine subsets of
packets. Packets were split into subsets based on TCP flag in
the packet and on the port. The algorithm achieved 66
detections out of 185 with only 20 false alarms.

One of the examples of creating normal traffic profiles is
fire-sight tool [15] from Cisco. This tool allowed a user to
specify a sliding time-window length and traffic profile would
be created during this window. After the profile was created,
the tool allowed detecting abnormal network traffic by
comparing it to the profile. To detect abnormal traffic user
should define correlation rules which would be triggered ones
the traffic deviates from the normal profile.

Another example of profiling a user was presented by G.
Pannell et al. [16]. The user profiles was created using multiple
characteristics such as the number of running applications, key-
stroke analysis, websites viewed, application performance and
the number of windows. Each characteristic was modeled
separately, and then the evaluation results were combined
using a weighting algorithm to produce the final decision. The
results showed that combining results was producing a lower
FPR than individual characteristics.

The features used for detecting anomalies in this paper
were a subset of features created by Benevento, F., et al. [17],
and Wagner, Claudia et al [18], both authors of different papers
defined a lot of different features to identify users in the social
networks even if they would connect from a different place.
Subset of features is selected which describes outgoing traffic
from a computer of a user since it is wanted to detect the
infection of the computer.

III. METHODOLOGY

In this section, the complete methodology is described step
by step. The assumption of the approach is that after an
infection the behavior of a host is changing, and the proposed
algorithm have to be able to detect these changes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

309 | P a g e

www.ijacsa.thesai.org

To create a new anomaly detection method it is necessary
to define what should be detected and why. The definition of
anomaly depends on the goal of the system, the data available
and the conditions of execution. In this paper, it is wanted to
detect when a computer is infected by malware while it‘s still
acting normally in the network. The focus is the malware
infections of computers in networks. The data available are
network packets, but it is decided to use NetFlow to process all
the information quickly and to preserve the privacy of users. In
consequence, the method is also evaluating if the use of
NetFlow may be enough for a good anomaly detection method.
The constraints of the method are that detections should be
reported as soon as possible and that the number of false
positives should be minimized. The proposed method analyzes
anomalies in the behavior of the computers from a high-level
perspective. This perspective is the actions of the user as they
are reflected in flows in the network. Every time a user
interacts with a computer, packets are sent via the network.
These packets are grouped into flows according to their
protocol. These flows are further grouped in this idea in
specific new features, such as the number of flows sent to each
destination port. These features are a higher level perspective
of the actions in the network. To obtain a detection as soon as
possible the traffic of each computer is separated in time-
windows of five minutes. These time-windows allow the
method to run quickly, to capture enough traffic to model
behavior, but not to be too big to process. The decision taken
by the anomaly detection method is per time-window.

A. NetFlows

NetFlow [19] is a data structure developed by Cisco
Systems that allow to capture and aggregate information about
network traffic each packet which is forwarded through a
router or a switch is examined for a set of IP packet attributes.
Another way to generate NetFlow is to use a monitoring
software such as ARGUS tool to generate them directly from
network traffic. Usually, packets are identified by the following
attributes.

 IP source address

 IP destination address

 Source port

 Destination port

 Layer 3 protocol type

 Class of Service

 Router or switch interface

After the examination, all packets are grouped based on the
attributes described in the list. Constructing anomaly detection
methods using NetFlow data has been a subject of research in
many works, such as [20-22]. NetFlow data are easy to
generate. It can be generated flows from traffic captures or
obtain it directly from a router. Also, NetFlow data preserves
the anonymity of the users, because it does not contain the
content of packets.

The flows in experiments were generated from the packet
capture ―.PCAP file‖, using the ―Argus tool‖ [23]. One of the

reasons of using the Argus is the option to generate bi-
directional flows. Bi-directional flows contain information
about packets sent in both directions. Argus can generate
additional fields to the ones that used for flow creation.

The flag field in flows contains two parts separated by an
underscore. These are the TCP flags used in the packets in the
flow. In the state field generated by Argus, the letters to the left
of the underscore character are the TCP flags used in the
packets going from the source to the destination. The letters to
the right of the underscore character are the TCP flags used in
the packets going from the destination to the source.

B. Established and not Established Connections

It is determined if a flow between two computers is
established or not by the flag field. An established TCP
connection is the one which completed a three-way handshake
[24]. For example, these are the flags of an established
connection flag: SRPA_FSPA. The Argus state field
summarizes the TCP flags used in the packets. In flow state
there are the following TCP flags:

 S—synchronization bit (SYN)

 R—reset bit (RES)

 P—push bit

 A—acknowledgment bit (ACK)

 F—final bit (FIN)

These packets could have been sent in any order. An
example state of a not established TCP connection is S. It
means that the source IP address initiated a connection with
SYN flag and did not get any response. For the UDP protocol
Argus uses flags such as CON and REQ which are set by
Argus. CON flag is set in case of an established UDP
connection. REQ flag is set if a client tried to establish a
connection but a server did not send anything in response.

C. Profiling to Identify Network user behaviors

A profiling is a high-level representation of user behaviors
in a network. To create a profile, it is collected network traffic
over a predefined time-window. Currently, the creation of the
profile only includes the IP protocol version 4 (IPv4) not
(IPv6), and the TCP and UDP protocols. Other protocols are
not included such as ICMP because they are by far the minority
of the packets.

Each feature is constructed in the following way: First, the
purpose of the feature is decided; for example, to capture the
variations in the destination ports, according to the flows used
by the computer being analyzed when the connection is
successful. Second, a subset of all the flows in the current time-
window is selected according to the previous criteria. In the
example, only the established flows are selected. Third, the
subset of flows is separated into two groups, one for the TCP
protocol and one for the UDP protocol. This separation is done
because the purpose of applications using the TCP and UDP
protocols is very different and should not be mixed in a single
feature. Fourth, the desired field is extracted for all the flows.
So far there are two groups of data, one has all the destination
ports for established TCP connections, and the other has all the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

310 | P a g e

www.ijacsa.thesai.org

destination ports for established UDP connections. Fifth, the
extracted data is used to create a histogram of the number of
flows per destination port. After these steps there are two
features, both having a list of values that represents a
probability distribution in a time-window. The first feature
Client Destination would be called and Port Number of Flows
TCP are Established and the second feature Client Destination
Port Number of Flows UDP Established.

It is represented features in a profile as vectors of real
numbers fk = (x1, x2, ..., x65535), where xi is a value for i-th

port and 65, 535 is the maximum amount of ports available. A
profile contains the following set of features:

 Client Destination Port Total Bytes UDP Established–
distribution of a total number of bytes over ports for
established UDP connections.

 Client Destination Port Number Of Flows TCP
Established–distribution of a total number of flows over
ports for established TCP connections.

 Client Destination Port Number Of Flows UDP Not
Established–distribution of a total number of flows over
ports for not established UDP connections.

 Client Destination Port Total Packets TCP Established–
distribution of a total number of packets over ports for
established TCP connections.

 Client Destination Port Number Of Flows UDP
Established–distribution of a total number of flows over
ports for established UDP connections.

 Client Destination Port Total Packets TCP Not
Established–distribution of a total number of packets
over ports for not established TCP connections.

 Client Destination Port Total Bytes UDP Not
Established–distribution of a total number of bytes over
ports for not established UDP connections.

 Client Destination Port Total Bytes TCP Established–
distribution of a total number of bytes over ports for
established TCP connections.

 Client Destination Port Total Packets UDP Not
Established–distribution of a total number of packets
over ports for not established UDP connections.

 Client Destination Port Number Of Flows TCP Not
Established–distribution of a total number of flows over
ports for not established TCP connections.

 Client Destination Port Total Bytes TCP Not
Established–distribution of a total number of bytes over
ports for not established TCP connections.

 Client Destination Port Total Packets UDP Established–
distribution of a total number of packets over ports for
established UDP connections.

Those features are referenced as "profile features". The
profile features describe the behavior of a user from different
perspectives.

Fig. 4(a) shows a feature "Client Destination Port Total
Bytes UDP Established" of a normal profile and Fig. 4(b)
shows the same feature of an anomalous profile. A logarithmic
scale is used for the y-axis to allow a large range to be
displayed without small values being compressed down into
the bottom of the graph.

D. Host behavior using Profiles

In the previous section, the complete content of a unique
profiling was described, including its twelve features. These
profiles are the basic unit of analysis of the anomaly detection
method, and together they are part of the complete behaviors of
the hosting user. This section first describes how the profiles
are used to build the behaviors of a user, and then it describes
which is the behavioral analysis method used by anomaly
detection techniques.

The behavior of a user is defined by all the actions and
decisions taken by the user in a certain period. Their actions are
transformed into packets and flows, which are then captured in
the already described features of a profiling. This allows each
profile to describe the behavior of a user from twelve different
points of view, each capturing a different perspective. As time
goes by and the user generates more network traffic, and many
profiles are generated.

(a) Shows an Example of Histogram for the Feature ‗Client Destination Port

Total Bytes UDP Established‘ for a Normal Profile. It can be seen that the

Amount of Ports is Small.

Fig. 4. (b) Shows an Example Histogram for the Same Feature but for an

Anomalous Profile (an Attack was being Done). It can be seen a Large

Number of Ports used.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

311 | P a g e

www.ijacsa.thesai.org

The behavior of the user is then defined by all these profiles
and their features. However, each feature describes the same
data differently and therefore it does not make much sense to
compare each feature with each other. Instead, it is proposed
to compare each feature in the profile, with the same feature in
the rest of the profiles for this user. The idea is that anomalies
will arise when the same feature is analyzed in the
concatenation of profiles. Fig. 5 shows the idea of searching for
anomalies on the same feature on successive profiling.

Each feature in the profile corresponds to some
measurement of data per port. Interpreted as a histogram, each
feature is defined in the space of 65, 535 dimensions. Working
with such a large space has two main limitations. First, data in
the histogram are sparse, since most of the ports are never
used. Second, the algorithms that analyze this data will have to
deal with an increased, and probably unnecessary, complexity.
Therefore, a reduction in the dimension of the space of each
feature is necessary.

a) Dimensionility Reduction of the Feature Space: After

normal profiles are collected, features are aggregated by type

of data it measures over all profiles, and these are arranged

into matrices Pi (i is a feature number). The matrix Pi is a

sparse matrix, and it has dimensionality n × 65, 535, where n

is the number of profiles these have been collected and [0 −

65535] is the range of ports. Such number of dimensions

might cause a problem with scalability and with the

performance of anomaly detection algorithms. To improve the

scalability and performance the number of dimensions of the

data are needed to be reduced.

A common dimensionality reduction approach is a
principal component analysis (PCA). It is a well-known
dimensionality reduction technique [25]. PCA was successfully
used in [26] to reduce the number of dimensions in features
derived from web logs.

PCA derives a reduced set of the most significant
uncorrelated features (principal components) that are linear
combinations of the original set of features [27]. The new
principal components are vectors in the direction of the largest
variance of the dataset.

Given m features, PCA selects d < m principal components
which define a new k-dimensional space based on normal
profiles. There are two ways of specifying d: one can either set
d to a fixed number or specify a percentage of variance to
preserve, and d will be computed based on this percentage. In
that case, the PCA algorithm was configured to preserve 99.9%
of variance. It has been observed that dimensions to d = 8
could be reduced in some cases and due to a high percentage of
preserved variance the much information had not been lost.

However, after some experimentation, it is realized that
there had been a problem with using PCA in the approach. The
problem was that an infected computer used ports which were
not commonly used by a normal computer. Because ports were
not used by the normal computer, the matrix Pi always had 0
values in the columns corresponding to these ports. PCA was
not using these columns when learning how to transform Pi to
P’i in a new basis.

When the transformation learned was applied on the normal
profiles to an anomalous profile in which an anomaly was
reflected in columns which were not used in creation of the
new basis, the information about the anomaly has lost.

Because of this problem it has been decided against using
PCA in the said approach. Due to a problem of unseen ports, a
different method of dimensionality reduction is applied.

b) Anomaly Detection Methodology: Each profile

feature is represented by a vector of real numbers. It is

proposed to use the Euclidean distance to compare a profile

feature along with other profiles. Fig. 6 below shows the

training process of the proposed approach. During the training,

the normal profiles are used which are collected at different

time intervals. The collected profiles cover the time when a

user is active and when the user is idle. Providing a model

with different types of the behavior of the user, allows the

model to better generalize the network user behaviors.

The dimensionality reduction does not require training, and
it is the same for each profile feature. Therefore it is applied
during profile creation. The profile features are grouped based
on the information they capture. After features have been
grouped the profile feature is centered and scaled so all
components of individual profile features will have 0 mean and
unit variance. The original mean value and standard deviation
of components are saved for future because they are required to
center and scale new profiles. ―Standard-Scaler‖ is used from
python library ―sklearn-Preprocessing‖ for this task.

Then profile features are used as an input to the anomaly
detection technique algorithm to train models. The ADTs
algorithm is applied to each group of features and for each
group it learns a model. After the training phase there are the
following models:

 Twelve pairs of parameters ([µ, σ]) for scaling and
centering of features.

 Twelve models to classify profile by individual features.

Fig. 7 below depicts the inference phase of the proposed
algorithm. The algorithm uses the models created during the
training phase. The scaling and centering is applied to
individual profile features of a testing profile. The scaled
features are used as an input to the trained models. Each model
produces one of two labels: 1 if the model considers the testing
profile normal according to this feature or −1 if it considers the
testing profile anomaly according to this feature.

Each output of the models contributes equally to the final
decision. If six out of twelve models classify the profile as
normal, the final label will be 1. Otherwise, the profile is
labeled with −1.

E. Anomaly Detection Algorithms

The previous sections described how the flows are
processed and how the features are created to obtain a suitable
set of data to work on. This section describes all the anomaly
detection algorithms selected and tested in order to find the
best one. Among all the possible options, the following
algorithms were selected:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

312 | P a g e

www.ijacsa.thesai.org

Fig. 5. Design of the Anomaly Detection Techniques. Instead of Comparing Each Feature with Each other, the Method Searches for Anomalies on the Same

Feature on Successive Profiling.

Fig. 6. The Diagram Shows the Training Process of the Proposed Approach. the Training uses N Collected Normal Profiles. there are Twelve Pairs of Parameters

([µ, Σ]) for Scaling and Centering of Features and Twelve Models after the Training.

Fig. 7. The Diagram Shows the Inference Process of the Proposed Approach. there is One Profile which is Classified. Each Profile Feature is Scaled and Centered

to the Same Scale as in Training Profile Features. Trained Models are used to Give Predictions for Each Feature and then Apply the Majority Voting to Get the

Final Prediction for the Profile.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

313 | P a g e

www.ijacsa.thesai.org

1) Local Outlier Factor (LOF) uses collected normal

profiles to compute an anomaly score of a new profile.

2) One Class SVM [28]—outputs a boundary around

normal data.

3) Isolation Forest [29]—method based on random forest,

outputs a model of normal data.
The following subsections describe the details of how each

of these algorithms works:

a) Local Outlier Factor (LOF) Algorithm: The LOF

algorithm assigns an anomaly score to each data point based

on the idea of density. The LOF measures how density around

a point differs from the density of its neighbors. It detects

outliers in data on regions with different densities.

Fig. 8 shows two clusters C1, C2 and two additional O

notations O1 and O2 reflects the facts that the complexity is

linear to the number of hostnames. It can be seen that the C2

cluster is much denser than the C1.

According to Hawkins‘ [30], both points (O1 and O2) are

outliers. However, it can be shown that there does not exist any
distance-based detector that can mark O2 and not mark all

points in the C1 cluster.

This example shows that distance-based methods have a
problem if there are regions with different densities in the data.
The LOF algorithm presented in solves this problem by
assigning a value to each object which represents its anomaly
score.

This example shows that the distance based methods have a
problem if there are regions with different densities in data.
The LOF algorithm presented in solves this problem by
assigning a value to each object which shows the degree of it
being an anomaly.

To use the LOF algorithm, authors in [31], define several
notions: E-neighborhood and k-distance.

Let p be an object from a database D, let E be a distance
value, let k be a natural number and let d be a distance metric
on D. Then:

Fig. 8. Shows an Example Situation when there are Clusters with different

Density. It is a Demonstration of the Advantage that LOF have over other

Distance based Algorithms. This Example is Taken from LOF: Identifying

Density-based Local Outliers [9].

Definition 1,

(E-neighborhood)

The E-neighborhood are the objects x with d(p, x) ≤ ∈ : N∈
(p) = {x ∈ D|d(p, x) ≤ ∈}

Definition 2,

(k-distance)

The k-distance of p is the distance d(p, o) between p and an
object o ∈ D, such that it holds at least for k objects o‘ ∈ D it
holds that d(p, o‘) ≤ d(p, o) and for at most k − 1 objects o‘ ∈ D
it holds that d(p, o‘) ≤ d(p, o)

Definition 3:

(reachability distance of object p with regard to object o)

Let k ∈ N. The reachability distance of object p with
respect to object o is defined as

reach-dist = max{k-distance(o), d(p, o)}

In other words, all objects that belong to the k-
neighborhood of an object p are considered to be equally
distant from the object p.

The next equation is the equation of local reachability
density. It is an inverse of the average reachability of the object
p from its neighbors.

 ()
∑ () ∈ ()

| ()|

 (1)

The LOF is computed by comparing with local reachability
distances of the neighbors:

 ()
∑

 ()

 () ∈ ()

| ()|
 (2)

For any object which is inside a cluster, the LOF will be
around 1. It does not depend on the density of a cluster, and it
will be the same for objects inside cluster C1 and objects inside

C2 [32], as is depicted in above (Fig. 8).

The main drawback of the LOF algorithm is its time
complexity. Computation of the LOF has the complexity

O(n2), because it requires computing pairwise distances
between all data point.

b) One Class SVM Algorithm: One class SVM is an

algorithm that identifies regions of space by their support

vectors, of which there are far fewer than data points. The one

class SVM algorithm solves the following optimization

problem to compute the support vectors:

 ∈ ∈ ∈

∑

 (3)

subject to

 ()

Where Φ : Rn 1→ F is a nonlinear mapping from data space

Rn to feature space F, ξi is a slack variable one for every data

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

314 | P a g e

www.ijacsa.thesai.org

sample, ρ is a distance from the hyper-plane to the origin in
feature space, and v is the expected fraction of data samples
outside the estimated support. The one class SVM algorithm
depends on the choice of two parameters: ν and σ. The
parameter ν controls the sensitivity of the model. More
precisely it controls the ratio of outliers in the data. The
parameter σ controls the number of support vectors. The lower
value of σ leads to "remembering" the training dataset and the
model over-fits the larger value leads to oversimplifying
dependencies in the dataset, in other words, it leads to high
bias.

The other important decision one has to make when
training a one class SVM model is a choice of kernel. The
general advice is to use a redial basis function kernel (RBF
kernel) [33] because usually, it performs better on different
datasets. It has been experimented with different kernels, and
the RBF kernel was showing the best results. RBF kernel adds
one more parameter which can be adjusted to change the
performance of the one class SVM algorithm. The parameter γ
controls how far the influence of a single training example
reaches. The smaller value of γ means that a single example
influences other examples far away and the larger value means
its influence is shorter.

c) Isolation Forest: Isolation Forest is a model-based

approach to detect anomalies. In the context of isolation forest

―isolation‖ means "separating an instance from the rest of the

instances". The algorithm constructs trees which isolate every

single instance of data. Because anomalies are different, they

will be isolated faster by the algorithm, which means they will

be closer to the root of a tree. To achieve this, isolation forest

takes advantage of two properties of anomalies:

 They are in the minority.

 Attribute-values of anomalies significantly differ from
normal samples an example of isolation can be seen in
Fig. 9(a), (b).

The authors of the paper has define the path length of a
point x as the number of edges and the point of traverses until it
terminates in the end node.

Fig. 9. (a). Shows the Isolation of a Normal Data Sample. (b) Shows the

Isolation of an Anomalous Data Sample. Image is Taken from Isolation Forest

[29].

There are two stages of anomaly detection with isolation
forest. The first stage is a training stage. In this stage, the trees
are constructed recursively until all instances are isolated or the
specified tree height is reached. The theory behind growing the
trees up to some height is that the utmost interest has been
shown in points which have a shorter than average path
distance. There is no need to grow the trees until each point is
isolated. The second stage is the evaluation. The anomaly score
of a sample is based on the average path length from root to its
termination node.

F. Training and Validation

Cross-validation [34], is going to be used which is a
common technique to estimate a test error of a model. Dataset
is split and hold out a small subset of data to test the model
performance and to make sure that the model does not just
memorize the dataset. It is ensured that the model does not
have a high FPR and also that it detects anomalies. The model
is also prevented from overfitting. It means that a model is
trained too much and it is fitted too close to the train set. The
main sign of overfitting is that a model has the very low error
on the train set, but a much higher error on a validation set. The
data is split into three sets: train, validation, and test. The train
set consists of normal profiles only. The validation and test sets
consist of normal and anomalous profiles. All anomalous
profiles are taken randomly to select half of them and to insert
them into validation set. The other half is inserted into the test
set. The split is the following:

 Train set—70% of normal data.

 Validation set—15% of normal data and 50% of
anomalous profiles.

 Test set—15% of normal data and the other 50% of
anomalous profiles.

As it has been mentioned before the data are scaled and
normalized to have 0 mean and unit variance. To avoid
information leak from the training data to test data, it has been
learnt a mean value and variance for scaling and centering only
on train data, and then scaling is applied to validation and test
data. The information leak might lead to test error
underestimating the actual error.

G. Model Selection

In Section III.E, it has been described the algorithms that
has been tried for anomaly detection. LOF and one class SVM
have both hyper-parameters that can be tuned to improve the
performance. When search has been made for the optimal set
of parameters for our model, a grid of search is conducted over
a range of possible parameter values. If a hyper-parameter is
restricted to some range of values we use that range. If a hyper-
parameter is not restricted selection of some reasonable size
and search inside it have been done.

The evaluation of a network anomaly detection algorithm is
a very important step in showing the advantages and efficiency
of the proposed method. The main challenge is to acquire
labeled data to measure the performance of the model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

315 | P a g e

www.ijacsa.thesai.org

To select a model the following criteria is used:

1) Find a set, A, of models with the lowest False Positive

Rate FPR.

2) Select a model slowest with the highest True Positive

Rate TPR from the set A.

3) Find a set of models B with the FPR less than 0.01.

4) Select a model Sthreshold with the highest TPR from

the set B.

5) Select the final model with the highest FPR by comparing

F P R of Slowest & Sthreshold.

The FPR metric is very important in anomaly detection. If a
model has FPR around 0.05 in a small network with 10
computers and 5 minutes profiles, if will generate 144 false
reports daily. Since each report should be checked manually by
a system administrator, it would consume many resources.

It has been tried to find model parameters which will have a
good trade-off between FPR and TPR. The goal is to maximize
TPR while at the same time keeping the FPR below 0.01 or
1%.

IV. MACHINE LEARNING DATASETS

The characteristics of the dataset used for training and
testing a machine learning algorithm [35] are very important
for the results obtained. In fact, the dataset is so important that
it completely define if the algorithm works or not, it defines its
performance and its generalization power. It does not make
much sense to talk about if an algorithm is good or bad without
discussing the dataset used.

The dataset used in this research work was created from
scratch to fulfill the requirements. In particular, it was very
important to have a dataset of real malicious activities [36,37]
at the same time that the normal user is also using the
computer. This was achieved through a large process of
configurations and infections. The setup to create the datasets
consisted of a Windows 10 virtual machine running on Virtual-
Box. The traffic was captured by Virtual-Box in a ―.pcap file‖.
After the capture was finished, the pcap file was processed
with the Argus tool to obtain bidirectional flows.

To work with an anomaly detection algorithm, it‘s
necessary to have a dataset which contains two main parts:
normal user activity, and a mix of normal activity and
malicious activity. The normal user activity is used for creating
a model of normal traffic. Later on, the models are evaluated
using the mix of normal traffic and malicious traffic [38].

To generate normal activity, multiple accounts in different
services such as Facebook, Gmail, Dropbox, and Twitter are
created [39]. All these accounts were used to generate real
normal traffic, where the user creates and writes in new
documents, chat with friends and synchronizes data in the
cloud [40]. There is also normal activity such as visiting
websites, searching for information and downloading files,
including executable files. In all type of datasets the normal
activities lasted several hours, up to several days.

After the normal activity was done, the computer was
infected with some malware while the user keeps doing normal
actions. This mixed traffic was kept for several hours also.

During all the experiments all the activities done by the normal
user were logged and stored. This log was later used for
labeling the profiles with normal and anomalous labels [41].

A. Ground-Truth Labels Process

In this section, labeling process has been described. For the
evaluation of the performance, it is needed to have ground-
truth labels. The captures of network traffic [42] are split into
two parts: before and after an infection. When profiles are
created from the flows it is known that if it belongs to pre or
post-infection part.

The normal label (label = 1) is assigned to all profiles
which are created before the infection of the virtual machine
run on web based adaptive data-driven networks (DDN)
management and cooperative network communities [43]. A
virtual machine before each capture is created which ensures
that it is clean and does not contain any malicious software.
The anomaly label (label = −1) is put to all profiles which are
created after the infection of the virtual machine. The reason of
assigning the anomaly labels this way is the assumption that
everything after an infection worth detecting and that malware
produces changes in behavior. It is known that not all the
attacks are anomalies, but this assumption helps us better
evaluate the algorithm.

V. EXPERIMENTAL RESULTS

With the help of anomaly detection techniques, method
designed and a good dataset generated it was possible to train
and test the hypothesis by running experiments. There were
five experiments in total, each one verifying a different
algorithm with a different dataset. The goal of these
experiments was to verifying if the hypothesis was true. Else if
hypothesis was not true then it is possible to detect the infected
users and to have a small number of false positives by focusing
on the high-level behaviors in time. The side effect verification
was to see if the method was capable of generalizing to
malware which it has not seen during the training.

All the experiments in point were evaluated in two ways.
First, labeling to each feature individually was used to trained
models. Then second way is to use a voting mechanism to
decide if the analyzed profile was anomalous or not. The
voting is described in Section III.D.b.

A summary of the experiments follows:

 The first experiment uses one-class SVM trained on the
normal part of the first dataset and validated on the
mixed part of the first dataset.

 The second experiment uses one-class SVM trained on
the normal part of the second dataset and verification on
the mixed part of the second dataset (and the mixed part
of the third dataset).

 The third experiment uses LOF trained on the normal
part of the first dataset and validated on the mixed part
of the first dataset.

 The fourth experiment uses LOF trained on the normal
part of the second dataset and validated on the mixed
part of the second dataset.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

316 | P a g e

www.ijacsa.thesai.org

 The fifth experiment uses Isolation Forest trained on the
normal part of the first dataset and validated on the
mixed part of the first dataset.

All the experiments were run in docker container using
Ubuntu 16.04, Python 3.6 and the following versions of
libraries: ―pandas: 0.20.3‖, ―numpy: 1.13.1‖ and ―scikit-learn:
0.19.0‖.

A. The First Experiment

In the first experiment, one class SVM algorithm is used, as
it was described in Section III.E.b. this algorithm was trained
with the normal part of the first dataset in Section IV, and it
was validated on the mixed part of the same first dataset. The
SVM algorithm used the Euclidean distance and the RBF
kernel function. To train the SVM a grid search over the
following parameters is used:

 Gamma parameter for RBF kernel: values in range

[10−9, 103] with step 102.

Nu parameter for lower bound of fraction of support
vectors: values in range [0.01, 0.99] with step 0.01, depicted in
Fig. 10.

The training of the algorithm was performed by splitting
the normal part of the first dataset into three sets: train,
validation and test. This was done using the train_test_split
function from the python library sklearn [44-46]. To make the
data split repeatable, we specify that the random seed is 42.
The mixed part of the first dataset (that contains both normal
and malicious traffic) was split into two sets: validation and
test. Both were generated by randomly selecting half of the
profiles in that dataset.

With the sets of data defined a model for each of the twelve
features in a profile (see in Section III.C) Is trained. After that
all models have been trained, the best model is selected by
using the validation set. The best model was selected for each
feature (see in Section III.G).

The first analysis of these results is done according to each
feature. Fig. 11 and Table I below shows that one class SVM

achieved low FPR for each feature. It does not exceed 0.01 in
any case, and for eight of the features, it is 0.0. The algorithm
also has 1.0 TPR for five features. All of these five features are
TCP features. It means that the malware actively uses TCP
protocol to communicate and this is very anomalous compared
with the normal user.

The interesting observation is that the feature
Client_DestinationPort_NumberOfFlows_TCP_Established
has 0.0 TPR.

Fig. 10. Shows the Winning Parameters for One Class SVM Model in the

First Experiment.

Fig. 11. Shows the Validation Results for Each of the Twelve Features,

Present in below Table I.

TABLE. I. VALIDATION RESULTS FOR THE FIRST EXPERIMENT. ONE CLASS SVM ALGORITHM TRAINED ON THE NORMAL PART OF FIRST DATASET AND

TESTED ON THE MIXED PART OF THE FIRST DATASET. THE VALIDATION SET CONSISTS OF SOME NORMAL PROFILES AND SOME MALICIOUS PROFILES

Twelve Features Name FPR% TPR% Precision F1-Score

1. Client_DestinationPort_TotalBytes_UDP_Established 0.0 0.389 1.0 0.560

2. Client_DestinationPort_NumberOfFlows_TCP_Established 0.0 0.0 --- ---

3. Client_DestinationPort_NumberOfFlows_UDP_NotEstablished 0.0 0.389 1.0 0.560

4. Client_DestinationPort_TotalPackets_TCP_Established 0.009 1.0 0.947 0.973

5. Client_DestinationPort_NumberOfFlows_UDP_Established 0.009 0.389 0.875 0.539

6.Client_DestinationPort_TotalPackets_TCP_NotEstablished 0.0 1.0 1.0 1.0

7. Client_DestinationPort_TotalBytes_UDP_NotEstablished 0.009 0.389 0.875 0.539

8. Client_DestinationPort_TotalBytes_TCP_Established 0.009 1.0 0.947 0.973

 60

9. Client_DestinationPort_TotalPackets_UDP_NotEstablished 0.0 0.389 1.0 0.560

10. Client_DestinationPort_NumberOfFlows_TCP_NotEstablished 0.0 1.0 1.0 1.0

11. Client_DestinationPort_TotalBytes_TCP_NotEstablished 0.0 1.0 1.0 1.0

12. Client_DestinationPort_TotalPackets_UDP_Established 0.0 0.389 1.0 0.560

UDPTCPUDPTCPUDPTCPUDPTCPUDPTCP TCPUDP

0.0

0.2

0.4

0.6

T
im

e
-W

in
d

o
w

TCP and UDP Flows

 Gamma

 Nu

UDPTCPUDPTCPUDPTCPUDPTCPUDPTCP TCPUDP

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
-W

in
d

o
w

TCP and UDP Flows

 FPR (%)

 TPR (%)

 PRECISION

 F1-Score

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

317 | P a g e

www.ijacsa.thesai.org

After running the validation using grid search on the
parameters, the best model is selected by using the
methodology explained in Section III.G. The winning
parameters for these one class SVM models were discussed
below:

After the winner parameters were selected during the
validation phase, it can be tested the model for its
generalization power using the test set Fig. 12 below shows the
results on the test set. The results are very similar to the
validation set results, which means that there is a good
generalization. This test set contains the same malware that
was used in the validation set. After testing the one class SVM
using our first method of evaluation, the evaluation of the
results is done by applying a majority voting mechanism on the
output generated for each feature to decide if the profile was
anomalous or not. As in the previous testing, it has been tested
the majority voting model on the test set from the first dataset.
Our approach to a majority voting is described in
Section III.D.b. Therefore, the results are shown below in
Table II.

Table II shows that the majority votes among the models
produces a good result on the test set. The TPR of 0.444 or
44% may seem low, but this is the final result for all the
profiles in time, with a 0 FPR and a 100% precision. These
results mean that on average the one anomaly will be detected
out of three with probability 99.9%. It also means that if it is
used the five-minute time-windows to create profiles, it can
raise the alarm after first 15 minutes after a malware becomes
active. Considering that the evaluation is per profile, it is
believe that these results are very good in this area.

B. The Second Experiment

In the second experiment, the one class SVM is used, as it
was described in (section III.E.b). this algorithm was trained
with the normal part of the second dataset in (section IV.), and
it was validated on the mixed part of that same dataset. The
SVM algorithm used the Euclidean distance and the RBF
kernel function.

UDPTCPUDPTCPUDPTCPUDPTCPUDPTCP TCPUDP

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
-W

in
d

o
w

TCP and UDP Flows

 FPR (%)

 TPR (%)

 PRECISION

 F1-Score

Fig. 12. Shows the Results on the Test Set Experiment, the Results are very

Similar to the Validation Set Results, Dipict in (Fig. 11 above) which means

that there is Good Generalization.

TABLE. II. TEST RESULTS FOR THE FIRST EXPERIMENT USING MAJORITY

VOTING. THE MAJORITY VOTING TO THE TWELVE RESULTS ON EACH PROFILE

IS APPLIED TO GET THE FINAL DECISION ABOUT A PROFILE. THE TEST SET FOR

THE FIRST DATASET WAS USED FOR THE TESTING. THE TEST SET CONTAINS

NORMAL PROFILES AND PROFILES CREATED DURING THE INFECTION WITH

THE MALWARE

Feature Name FPR% TPR% Precision F1-Score

Majority voting 0.0 0.444 1.0 0.615

To train the SVM model a grid search over the following
parameters is used:

 Gamma parameter for RBF kernel: values in range

[10−9, 103] with step 102.

 Nu parameter for lower bound of fraction of support
vectors: values in range [0.01, 0.99] with step 0.01.

The training of the algorithm was performed by splitting
the normal part of the dataset into three sets: train, validation
and test. This was done using the train_test_split function from
the python library sklearn. To make the data split repeatable, it
is specified that the random seed is 42. The mixed part of the
second dataset (that contains both normal and malicious traffic)
was split into two halves: the first half was added to the
validation set and the second half was added to the test set.
Both were generated by randomly selecting half of the profiles
in that dataset.

With the sets of data defined a model is trained for each of
the twelve features in a profile (see in Section III.C). After
having trained all models, the best model is selected by using
the validation set. The best model was selected for each feature
(see in Section III.G). After the validation is finished the
winner model is selected.

The first analysis of the results is done with regard to each
feature, Fig. 13, shows that the models achieved low FPR for
each feature. It does not exceed 0.01 in any case, and for seven
of the features, it is 0.0. However, TPR is lower than in the first
experiment. This might be caused by the nature in which this
malware communicates. The mixed capture of the second
dataset was generated using [47]. Dark-VNC virtual network
computing is used to silently control the computer of a victim,
and it does not generate much additional traffic.

This is an example of how the anomaly detection technique
might help better understand the communication details of
malware. By analyzing results, the analyst could very fast see
which protocols are used by malware, if it generates many
connections and sends much information. The winning
parameters for the best one class SVM models were discussed
below:

After the winner parameters were selected during the
validation phase, it can be tested the model for its
generalization power using the test set. See Fig. 14 and
Table III below shows the results on the test set. This test set
contains the same malware that was used in the validation set.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

318 | P a g e

www.ijacsa.thesai.org

UDPTCPUDPTCPUDPTCPUDPTCPUDPTCP TCPUDP

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e-
W

in
d

o
w

TCP and UDP Flows

 FPR (%)

 TPR (%)

 PRECISION

 F1-Score

Fig. 13. Shows the Results that Model Achieved Low FPR for Each Feature.

UDPTCPUDPTCPUDPTCPUDPTCPUDPTCP TCPUDP

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
-W

in
d

o
w

TCP and UDP Flows

 Gamma

 Nu

Fig. 14. Shows the Results on the Test Set, this Test Set Contains the same

Malware that was used in the Validation Set, Present in Table III.

TABLE. III. THE WINNING PARAMETERS FOR ONE CLASS SVM MODELS IN

THE SECOND EXPERIMENT. THESE PARAMETERS WERE OBTAINED USING THE

VALIDATION SET OF THE SECOND DATASET

Features Name Gamma Nu

Client_DestinationPort_TotalBytes_UDP_Established 10
−9

 0.50

Client_DestinationPort_NumberOfFlows_TCP_Established 10
−3

 0.03

Client_DestinationPort_NumberOfFlows_UDP_NotEstablished 10
−4

 0.02

Client_DestinationPort_TotalPackets_TCP_Established 10
−3

 0.03

Client_DestinationPort_NumberOfFlows_UDP_Established 10
−4

 0.01

Client_DestinationPort_TotalPackets_TCP_NotEstablished 10
−9

 0.50

Client_DestinationPort_TotalBytes_UDP_NotEstablished 10
−8

 0.49

Client_DestinationPort_TotalBytes_TCP_Established 10
−2

 0.01

Client_DestinationPort_TotalPackets_UDP_NotEstablished 10
−9

 0.99

Client_DestinationPort_NumberOfFlows_TCP_NotEstablished 10
−7

 0.60

Client_DestinationPort_TotalBytes_TCP_NotEstablished 10
−9

 0.50

Client_DestinationPort_TotalPackets_UDP_Established 10
−3

 0.01

It is wanted to test the generalization power of the models
even further, and the mixed capture is used from the third
dataset in Section IV to test the performance of the models.
Since the mixed capture from the third dataset contains traffic
from a different type of malware and it was not used during the
selection process of models, this evaluation could be a good
estimate for the real error. See Fig. 15 below contains the
results obtained for the mixed capture from the third dataset
using the models trained on the second dataset:

UDPTCPUDPTCPUDPTCPUDPTCPUDPTCP TCPUDP

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
-W

in
d

o
w

TCP and UDP Flows

 FPR (%)

 TPR (%)

 PRECISION

 F1-Score

Fig. 15. Shows the Results Obtained for the Mixed Capture from the Third

Dataset using the Models Trained on the Second Dataset.

Fig. 16. Shows the Results of different Features Contributing to the Detection

of different Types of Infected Malware.

These results are first analyzed per each feature. Fig. 16
below shows that different features contribute to the detection
of different types of malware.

For example, on the one hand, the feature
Client_DestinationPort_NumberOfFlows_UDP_NotEstablishe
d contributes a lot to the detection of Simba malware and on
the other hand the same feature does not contribute to the
detection.

After testing the one class SVM using the first method of
evaluation, it is now evaluated the results of applying a
majority voting mechanism on the output generated for each
feature to decide if the profile was anomalous or not. As in the
previous testing, the majority voting model is tested on the test
set from the second dataset. The approach to a majority voting
is described in Section III.D.b and the results are shown in
above Table II.

Table IV below shows that the majority voting among the
models produces FPR of 0.0. However, the TPR is very low,
which could be explained by the difficulty of detecting this
particular malware. In the future it is wanted to experiment
with approaches other than majority voting, for example,
neural network will be trained to summarize the outputs of the
twelve models into one final result.

Majority of voting to classify the profiles was generated
during the infection with the Simba malware in the third
dataset. The results are shown in below Table V.

UDPTCPUDPTCPUDPTCPUDPTCPUDPTCP TCPUDP

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
-W

in
d

o
w

TCP and UDP Flows

 FPR (%)

 TPR (%)

 PRECISION

 F1-Score

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

319 | P a g e

www.ijacsa.thesai.org

TABLE. IV. THE SECOND EXPERIMENT. THE MAJORITY VOTING IS

APPLIED TO THE TWELVE RESULTS TO GET THE FINAL DECISION ABOUT A

PROFILE. THE RESUTS ARE SHOWN ON THE TEST SET FOR THE SECOND

DATASET AND THE FIRST MALICIOUS PART. THE TEST SET CONTAINS

NORMAL PROFILES AND PROFILES CREATED DURING THE INFECTION WITH

THE FIRST MALWARE

Feature Name FPR% TPR% Precision F1-Score

Majority voting 0.0 0.031 1.0 0.060

TABLE. V. THE SECOND EXPERIMENT THAT IS APPLIED MAJORITY

VOTING TO THE TWELVE RESULTS TO GET THE FINAL DECISION ABOUT A

PROFILE. THE RESULTS ARE SHOWN ON THE TEST SET FOR THE SECOND

DATASET AND THE SECOND MALICIOUS PART. THE TEST SET CONTAINS

NORMAL PROFILES AND PROFILES CREATED DURING THE INFECTION WITH

THE SECOND MALWARE

Feature Name FPR% TPR% Precision F1-Score

Majority voting 0.0 0.233 1.0 0.378

The TPR of 0.233 or 23% is lower than in the first
experiment. However, this result means that the algorithm will
detect one anomalous profile out of five with probability
99.9%. If we use five minutes time-windows to create profiles,
the alarm will be raised during the first 25 minutes after a
malware becomes active.

C. The Third Experiment

In the third experiment, the use of the LOF algorithm has
been done, as it was described in Section III.E.a. This
algorithm was trained with the normal part of the first dataset
see in Section IV and it was validated on the mixed part of that
same first dataset. The LOF algorithm used the Euclidean
distance to compute density estimation.

To train the LOF, a grid search over the following
parameters is used:

 k parameter for number of neighbors: values in range [1
−10] with a step 1.

 Contam parameter for contamination rate (the ratio of
anomalies): values in range [0.01, 0.1] with a step
approximately 0.002.

The training of the algorithm was performed by splitting
the normal part of the dataset into three sets: train, validation
and test. This was done using the train_test_split function from
the python library sklearn. To make the data split repeatable, it
is specified that the random seed is 42. The mixed part of the
first dataset (that contains both normal and malicious traffic)
was split into two halves: the first half was added to the
validation set and the second half was added to the test set.
Both were generated by randomly selecting half of the profiles
in that dataset. With these sets of data defined the model has
been trained a model for each of the twelve features in a profile
(see in Section III.C); after that all trained models, select the
best model by using the validation set. The best model was
selected for each feature (see in Section III.G).

After the validation is finished the winner model is
selected. The first analysis of these results is done according to
each feature. Fig. 17 below shows that LOF achieved low FPR
for each feature. It exceeds 0.01 only for one profile and only
by 0.001, and for other eleven of the features, it is 0.0. The
algorithm also has 1.0 TPR for three features. All of these three
features are TCP features. It means that the malware actively

uses TCP protocol to communicate and this is very anomalous
compared with the normal user.

UDPTCPUDPTCPUDPTCPUDPTCPUDPTCP TCPUDP

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
-W

in
d

o
w

TCP and UDP Flows

 FPR (%)

 TPR (%)

 PRECISION

 F1-Score

Fig. 17. Shows the Results of LOF Algorithm Achieved Low FPR for each

Feature.

After running the validation using grid search on the
parameters, the best model is selected by using the
methodology explained in Section III.G. The winning
parameters for these LOF models are shown in Fig. 18 and
Table VI.

After the winner parameters were selected during the
validation phase, it can be tested the model for its
generalization power using the test set given in Fig. 19 shows
the results on the test set. The results for TPR are similar to the
results obtained on the validation set, but the FPR is slightly
higher for nine profile features. This test set contains the same
malware that was used in the validation set.

UDPTCPUDPTCPUDPTCPUDPTCPUDPTCP TCPUDP

1

2

3

4

5

6

 K

 Contam

TCP and UDP Flow

T
im

e
 W

in
d

o
w

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 W

in
d

o
w

Fig. 18. Shows the Winning Parameters of LOF Model in the Third

Experiment, Present in Table VI.

Fig. 19. Shows Results on the Test Set for the First Dataset, the Test Set

Contains Normal Profiles and Profiles Created During the Infection with the

Malware.

UDPTCPUDPTCPUDPTCPUDPTCPUDPTCP TCPUDP

0.0

0.2

0.4

0.6

0.8

1.0

1.2
 FPR (%)

 TPR (%)

 PRECISION

 F1-Score

T
im

e
-W

in
d

o
w

TCP and UDP Flows

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

320 | P a g e

www.ijacsa.thesai.org

TABLE. VI. THE WINNING PARAMETERS FOR LOF MODELS IN THE THIRD

EXPERIMENT. THESE RESULTS WERE OBTAINED USING THE VALIDATION SET

OF THE FIRST DATASET

Features Name k Contam

Client_DestinationPort_TotalBytes_UDP_Established 1 0.01

Client_DestinationPort_NumberOfFlows_TCP_Established 6 0.01

Client_DestinationPort_NumberOfFlows_UDP_NotEstablished 2 0.01

Client_DestinationPort_TotalPackets_TCP_Established 1 0.01

Client_DestinationPort_NumberOfFlows_UDP_Established 3 0.01

Client_DestinationPort_TotalPackets_TCP_NotEstablished 3 0.01

Client_DestinationPort_TotalBytes_UDP_NotEstablished 1 0.01

Client_DestinationPort_TotalBytes_TCP_Established 1 0.01

Client_DestinationPort_TotalPackets_UDP_NotEstablished 1 0.01

Client_DestinationPort_NumberOfFlows_TCP_NotEstablished 3 0.01

Client_DestinationPort_TotalBytes_TCP_NotEstablished 4 0.01

Client_DestinationPort_TotalPackets_UDP_Established 4 0.01

TABLE. VII. THE THIRD EXPERIMENT WHICH IS APPLIED MAJORITY

VOTING TO THE TWELVE RESULTS TO GET THE FINAL DECISION ABOUT A

PROFILE. IS SHOWN IN RESULTS ON THE TEST SET FOR THE FIRST DATASET.
THE TEST SET CONTAINS NORMAL PROFILES AND PROFILES CREATED

DURING THE INFECTION WITH THE MALWARE

Feature Name FPR% TPR% Precision F1-Score

Majority voting 0.0 0.333 1.0 0.496

After testing the LOF using the first method of evaluation,
it is now evaluated the results of applying a majority voting
mechanism on the output generated for each feature to decide
if the profile was anomalous or not. As in the previous testing,
the majority voting model is tested on the test set from the first
dataset. The approach to a majority voting is described in
Section III.D.b. The results are shown in below Table VII.

The above Table II shows that the majority voting among
the models produces a good result on the test set. The TPR of
0.333 or 33.3% may seem low, but this is the final result for all
the profiles in time, with a 0 FPR and a 100% precision. These
results mean that on average it will be detected one anomaly
out of three with probability 99.9%. It also means that if the
five-minute time-windows is used to create profiles, it can raise
the alarm during the first 15 minutes after a malware becomes
active. Considering that the evaluation is per profile, it is
believed that these results are very good in the area.

D. The Fourth Experiment

The first analysis of the results is done with regard to each
feature. Fig. 20 below shows that the models achieved low
FPR for each feature. It does not exceed 0.01 in any case, and
for seven of the features, it is 0.0. However, TPR is lower than
in the first experiment. This might be caused by the nature in
which this malware communicates. The mixed capture of the
second dataset was generated using Dark-VNC malware.

Dark virtual network computing (Dark-VNC) is used to
silently control the computer of a victim, and it does not
generate much additional traffic.

After running the validation using grid search on the
parameters, which are selected the best model using the
methodology explained in Section III.G. The winning
parameters for these LOF models are shown in Fig. 21 and
Table VIII.

UDPTCPUDPTCPUDPTCPUDPTCPUDPTCP TCPUDP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 FPR (%)

 TPR (%)

 PRECISION

 F1-Score

T
im

e
-W

in
d

o
w

TCP and UDP Flows

Fig. 20. Shows that the Models Achieved Low FPR for each Feature it doesn‘t

Exceed 0.01 Score in any Case, and for Seven of the Feature, it Takes 0.0

Score.

UDPTCPUDPTCPUDPTCPUDPTCPUDPTCP TCPUDP

1

2

3

4

5

6

7

8

9

 K

 Contam

TCP and UDP Flow

T
im

e
 W

in
d

o
w

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 W

in
d

o
w

Fig. 21. Results Shows the Wining Parameters for LOF Model in Fourth

Experiment, Present in Table VIII.

TABLE. VIII. THE WINNING PARAMETERS FOR LOF MODELS IN THE

FOURTH EXPERIMENT THESE RESULTS WERE OBTAINED USING THE

VALIDATION SET OF THE SECOND DATASET

Feature Name K Contam

Client_DestinationPort_TotalBytes_UDP_Established 3 0.01

Client_DestinationPort_NumberOfFlows_TCP_Established 2 0.02

Client_DestinationPort_NumberOfFlows_UDP_NotEstablished 1 0.01

Client_DestinationPort_TotalPackets_TCP_Established 8 0.02

Client_DestinationPort_NumberOfFlows_UDP_Established 5 0.01

Client_DestinationPort_TotalPackets_TCP_NotEstablished 6 0.01

Client_DestinationPort_TotalBytes_UDP_NotEstablished 1 0.02

Client_DestinationPort_TotalBytes_TCP_Established 5 0.03

Client_DestinationPort_TotalPackets_UDP_NotEstablished 3 0.01

Client_DestinationPort_NumberOfFlows_TCP_NotEstablished 7 0.01

Client_DestinationPort_TotalBytes_TCP_NotEstablished 3 0.01

Client_DestinationPort_TotalPackets_UDP_Established 2 0.01

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

321 | P a g e

www.ijacsa.thesai.org

UDPTCPUDPTCPUDPTCPUDPTCPUDPTCP TCPUDP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 FPR (%)

 TPR (%)

 PRECISION

 F1-Score

T
im

e
-W

in
d

o
w

TCP and UDP Flows

Fig. 22. The Results Shows that the TPR is Similar to the Results Obtained on

the Validation Set, but the FPR is Slightly Higher for Five Profile Features.

After the winner parameters were selected during the
validation phase, it can be tested the model for its
generalization power using the test set. Fig. 22 shows the
results on the test set. The results for TPR are similar to the
results obtained on the validation set, but the FPR is slightly
higher for five profile features. This test set contains the same
malware that was used in the validation set.

It is wanted to test the generalization power of the models
even further, and it is used the mixed capture from the third
dataset (Section IV) to test the performance of the models.
Since this mixed capture contains traffic from a different type
of malware and it was not used in the during the selection
process of models, this evaluation could be a good estimate for
the real error. Fig. 23 contains the results obtained for the
mixed capture from the third dataset using the models trained
on the second dataset:

After testing the LOF using the first method of evaluation,
it is now evaluated the results of applying a majority voting
mechanism on the output generated for each feature to decide
if the profile was anomalous or not. As in the previous testing,
It is also apply majority voting to classify the profiles which
were generated during the infection with the Simba malware in
the third dataset. The results are shown in Table IX, as in the
second experiment results of the majority, voting are not
satisfactory, and it is going to address this problem in the future
work.

E. The Fifth Experiment

In this experiment, it has been tried to use isolation forest
on our data. The results were surprising because it was not able
to train a model with any true positive detection. The isolation
forest is shown to out-perform many algorithms including LOF
and one class SVM [48, 49].

UDPTCPUDPTCPUDPTCPUDPTCPUDPTCP TCPUDP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 FPR (%)

 TPR (%)

 PRECISION

 F1-Score

T
im

e
-W

in
d

o
w

TCP and UDP Flows

Fig. 23. Contains the Results Obtained for the Mixed Capture from the Third

Dataset using the Models Trained on the Second Dataset.

TABLE. IX. THE FOURTH EXPERIMENT WHICH IS APPLIED MAJORITY

VOTING TO THE TWELVE RESULTS TO GET THE FINAL DECISION ABOUT A

PROFILE. RESULTS ARE SHOWN ON THE TEST SET FOR THE THIRD DATASET.
THE TEST SET CONTAINS NORMAL PROFILES AND PROFILES CREATED

DURING THE INFECTION WITH SIMBA MALWARE

Feature Name FPR% TPR% Precision F1-Score

Majority voting 0.0 0.0 --- ---

TABLE. X. THE FIFTH EXPERIMENT WHICH IS APPLYED MAJORITY

VOTING TO THE TWELVE RESULTS TO GET THE FINAL DECISION ABOUT A

PROFILE. RESUTLS ARE SHOWN ON THE TEST SET FOR THE SECOND DATASET.
THE TEST SET CONTAINS NORMAL PROFILES AND PROFILES CREATED

DURING THE INFECTION WITH DARKVNC MALWARE.

Feature Name FPR% TPR% Precision F1-Score

Majority voting 0.0 0.0 --- ---

It could be caused by the nature of anomalies in the dataset.
As it is described in Section III.C, each feature of a profile is
represented by a vector. When it is detected anomalies among
one feature of a profile, it means that it is detected anomalous
vectors.

Anomalies in the datasets are reflected in vector
components which are irrelevant during the training. They are
irrelevant because normal data have only 0 values in these
components and these components do not contribute to model
training, the final results are shown in Table X.

When it is run interference on a testing profile, the model
does not use these components to isolate the profile faster.

As a result, the profile is labeled as normal by the model.
Another reason for the poor results could be a mistake in the
way it has been trained the isolation forest model. It will be
investigated more closely this issue in the future.

VI. ANALYSIS OF RESULTS

The experiments proposed in our analysis try to find how
the anomaly detection algorithms may work in a realistic setup
where a normal user is infected at the same time that they
continue to work. In this sense, this is new computer network
testing work in the security area that publishes results using a
mixed dataset of real normal actions and real malware actions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

322 | P a g e

www.ijacsa.thesai.org

Our experiments were designed, so they were trained with
real users and tested with real malware. They were also
designed to detect if a profile is anomalous and not the IP
address of a user. Finally, the time-window of the profiles is
five minutes, which also may affect the algorithm if changed.

Using the one class SVM, it was possible to obtain a good
TPR of 44% with 0% FPR. Since these results are per five-
minute profile, it means that the algorithm will, out of three
anomalous profiles, detect one with 100% probability (or 2 out
of 5). It also means that there will be a detection at most every
15 minutes. Moreover, these results are based on a majority
voting mechanism, which is not considered to be the best way
of improving the results.

In particular, there are some individual features that may
have better results under specific circumstances. In the first
experiment, six out of twelve features reach 100% TPR with
0% FPR. In the case of the Local Outlier Factor algorithm, the
results are very similar, with an average of 33% TPR detection
and 0% FPR using majority voting. This means that LOF can
also detect one profile correctly out of three anomalous profiles
with 100% probability. The detection time is similar to one-
class SVM: one anomalous profile every 15 minutes. If the
detection of profiles is not done with majority voting, then
LOF can reach 77.8% TPR with 2% FPR by using the feature
called Client_DestinationPort_TotalBytes_TCPEstablished.

LOF also had very good results on the third experiment that
used the first dataset. In this case the algorithm can have a
100% TPR, but only at the expense of a 2% FPR. The good
part was that these results were obtained with three different
features:

client_DestinationPort_NumberOfFlows_TCP_NotEstablished

client_DestinationPort_TotalBytes_TCP_NotEstablished,

client_DestinationPort_TotalPackets_TCP_NotEstablished.

The LOF algorithm also had good results on the fourth
experiment, which used the second dataset. In this case, the
algorithm achieved 47.2% TPR with a 1.1% FPR.

These results were obtained also with the feature
Client_DestinationPort_TotalBytes_TCP_Established.

In the fourth experiment, with LOF on the third dataset, the
algorithm obtained a very good 94.8% TPR with 0% FPR with
the feature client_DestinationPort_TotalPackets_TCP_Establis.

VII. CONCLUSIONS

The detection of attacks and malware using anomaly
detection techniques is a very well-known topic in the area of
artificial intelligence and machine leaning. This study proposes
a new perspective on the problem by analyzing the behavioral
features of users in the network and by applying a high-level
detection on features in time. By using a completely novel
dataset and known anomaly detection methods, promising
results can be obtained.

To the best of our knowledge, this research work presented
the new anomaly detection method where users were profiled
using their network traffic to create behavioral features, and
these features were analyzed from different perspectives. The

presented anomaly detection method was based on high-level
view of the global network traffic by generating behavioral
profiles of the activity of the users inside fixed time-windows.
The new profiles of the users were compared to the past
profiles to classify them as anomalous or normal. Our approach
is different from other anomaly detection algorithms because
the model user behavior by combining detailed features that
describe all actions of the user from different perspectives.

It is classified profiles by comparing each feature with the
same feature in other past profiles. The decision on whether
there was an anomaly or not was taken for each feature and
then the final label of the profile was decided by majority of
voting. The anomalies along with each feature were found
using well known algorithm local outlier factor (LOF) and one
class Support Vector Machine (one class-SVM).

To evaluate our approach it is needed the data from real
normal users and the data from real network traffic infection.
The produced datasets were unique because they contain real
malware activities at the same time that the real normal user
was using the computer. The datasets were made open to the
public and feature research.

The datasets were used to test and evaluate how our
approach would detect different types of malware. The
multiple experiments show that our approach could help in
reducing the number of false positive alarms while at the same
time being effective in detecting true anomalies. In multiple
experiments, it is possible to detect one out of three anomalous
profiles with 99% success, and it had 0% false alarms.

Even though the results are satisfactory, there is much
research to be done. One of the problems which want to be
worked in the future is to solve how to combine twelve
different results in order to get the final decision. It would like
to be to experiment with training another model which would
accept the output of the twelve models described in this work
and give the final decision. If it is provided enough data during
the training, it may be possible that such a model could help
find some non-oblivious relationship between data.

Also, our approach lacks the very important process of
updating the model of normal behavior in order to adopt to new
network traffic. Since the behavior of user might change with
time by time, it is needed to find a way how to keep our models
up-to-date. For this, it is needed to create large datasets which
would cover an extended period in different situations.

VIII. FUTURE DIRECTIONS

A very promising research direction it may be worked on
the usage of anomaly detection methods in to the Internet of
Things (IOT) devices and scheduling based on mobile edge
computing [50,51] such as: IP cameras, thermostats, printers
mobile users, mobile devices and multiple base stations etc.
The number of attacks on IOT devices is growing as well as
the amount of malware designed to target these IOT devices.
Our approach could be useful in protecting IOT devices
because the traffic from these devices is far more stable than a
human computer, and therefore it changes less diversity, and
the results from an anomaly detection method may be easier to
obtain.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

323 | P a g e

www.ijacsa.thesai.org

ACKNOWLEDGMENT

This paper is supported by National Natural Science
Foundation (NSFC) of China under grant numbers 61572095,
61877007 and 61802097. Conflicts of Interest: The authors
declare no conflict of interest.

REFERENCES

[1] Xiao, F., Lin, Z., Sun, Y. and Ma, Y., 2019. Malware Detection Based
on Deep Learning of Behavior Graphs. Mathematical Problems in
Engineering, 2019.

[2] Pandey, S.K., 2019. Design and performance analysis of various feature
selection methods for anomaly‐based techniques in intrusion detection
system. Security and Privacy, 2(1), p.e56.

[3] Koning, R., Buraglio, N., de Laat, C. and Grosso, P., 2018. CoreFlow:
Enriching Bro security events using network traffic monitoring
data. Future Generation Computer Systems, 79, pp.235-242.

[4] Wang, W., Zhang, X., Gombault, S. and Knapskog, S.J., 2009,
December. Attribute normalization in network intrusion detection.
In 2009 10th International Symposium on Pervasive Systems,
Algorithms, and Networks (pp. 448-453). IEEE.

[5] Chandola, Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly
detection: A survey." ACM computing surveys (CSUR) 41, no. 3
(2009): 15.

[6] Tahir, M., Li, M., Ayoub, N. and Aamir, M., 2019. Efficacy
Improvement of Anomaly Detection by using Intelligence Sharing
Scheme. Applied Sciences, 9(3), p.364.

[7] Patcha, A. and Park, J.M., 2007. An overview of anomaly detection
techniques: Existing solutions and latest technological trends. Computer
networks, 51(12), pp.3448-3470.

[8] Ertoz, L., Eilertson, E., Lazarevic, A., Tan, P.N., Kumar, V., Srivastava,
J. and Dokas, P., 2004. Minds-minnesota intrusion detection
system. Next generation data mining, pp.199-218.

[9] Breunig, M.M., Kriegel, H.P., Ng, R.T. and Sander, J., 2000, May. LOF:
identifying density-based local outliers. In ACM sigmod record (Vol.
29, No. 2, pp. 93-104). ACM.

[10] Ertoz, L., Lazarevic, A., Eilertson, E., Tan, P.N., Dokas, P., Kumar, V.
and Srivastava, J., 2003, July. Protecting against cyber threats in
networked information systems. In Battlespace Digitization and
Network-Centric Systems III (Vol. 5101, pp. 51-57). International
Society for Optics and Photonics.

[11] Hubballi, N. and Suryanarayanan, V., 2014. False alarm minimization
techniques in signature-based intrusion detection systems: A
survey. Computer Communications, 49, pp.1-17.

[12] Zhang, M., Xu, B. and Gong, J., 2015, December. An anomaly detection
model based on one-class svm to detect network intrusions. In 2015 11th
International Conference on Mobile Ad-hoc and Sensor Networks
(MSN) (pp. 102-107). IEEE.

[13] Xu, K., Zhang, Z.L. and Bhattacharyya, S., 2005. Reducing Unwanted
Traffic in a Backbone Network. SRUTI, 5, pp.9-15.

[14] Mahoney, M.V., 2003, March. Network traffic anomaly detection based
on packet bytes. In Proceedings of the 2003 ACM symposium on
Applied computing (pp. 346-350). ACM.

[15] Siraj, S., Gupta, A. and Badgujar, R., 2012. Network simulation tools
survey. International Journal of Advanced Research in Computer and
Communication Engineering, 1(4), pp.199-206.

[16] Pannell, G. and Ashman, H., 2010. Anomaly detection over user profiles
for intrusion detection.

[17] Benevenuto, F., Rodrigues, T., Cha, M. and Almeida, V., 2009,
November. Characterizing user behavior in online social networks.
In Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement (pp. 49-62). ACM.

[18] Wagner, C., Mitter, S., Körner, C. and Strohmaier, M., 2012, April.
When Social Bots Attack: Modeling Susceptibility of Users in Online
Social Networks. In # MSM (pp. 41-48).

[19] NetFlow, C.I., 2006. Introduction to cisco ios netflow a technical
overview. White Paper, Last updated: February. (accessed on 19 May
2019).

[20] Botros, S.M., Diep, T.A. and Izenson, M.D., Visa International Service
Association, 2013. Synthesis of anomalous data to create artificial
feature sets and use of same in computer network intrusion detection
systems. U.S. Patent 8,527,776.

[21] Veres, G. and Loop, S., Exinda Networks Pty Ltd, 2019. Method and
system for triggering augmented data collection on a network based on
traffic patterns. U.S. Patent Application 10/193,808.

[22] Chandrasekaran, B., Srinivas, A. and Zafer, M., NYANSA Inc,
2019. System and method for using real-time packet data to detect and
manage network issues. U.S. Patent Application 10/230,609.

[23] Moustafa, N., Hu, J. and Slay, J., 2019. A holistic review of Network
Anomaly Detection Systems: A comprehensive survey. Journal of
Network and Computer Applications, 128, pp.33-55.

[24] Postel, J., 1981. Transmission control protocol (No. RFC 793).

[25] Pearson, K., 1901. Principal components analysis. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 6(2), p.559.

[26] Sipola, T., Juvonen, A. and Lehtonen, J., 2012. Dimensionality
reduction framework for detecting anomalies from network
logs. Engineering Intelligent Systems, 20(1/2).

[27] Huang, T., Sethu, H. and Kandasamy, N., 2016. A new approach to
dimensionality reduction for anomaly detection in data traffic. IEEE
Transactions on Network and Service Management, 13(3), pp.651-665.

[28] Dreiseitl, S., Osl, M., Scheibböck, C. and Binder, M., 2010. Outlier
detection with one-class SVMs: an application to melanoma prognosis.
In AMIA Annual Symposium Proceedings (Vol. 2010, p. 172).
American Medical Informatics Association.

[29] Liu, F.T., Ting, K.M. and Zhou, Z.H., 2008, December. Isolation forest.
In 2008 Eighth IEEE International Conference on Data Mining (pp. 413-
422). IEEE.

[30] Hawkins, D.M., 1980. Identification of outliers (Vol. 11). London:
Chapman and Hall.

[31] Breunig, M.M., Kriegel, H.P., Ng, R.T. and Sander, J., 1999, September.
Optics-of: Identifying local outliers. In European Conference on
Principles of Data Mining and Knowledge Discovery (pp. 262-270).
Springer, Berlin, Heidelberg.

[32] Han, J., Pei, J. and Kamber, M., 2011. Data mining: concepts and
techniques. Elsevier.

[33] Singla, M.H.S.C.S. and Shen, Y., Kernel Selection and Dimensionality
Reduction in SVM Classification of Autism Spectrum Disorders.

[34] James, G., Witten, D., Hastie, T. and Tibshirani, R., 2013. An
introduction to statistical learning (Vol. 112, p. 18). New York: springer.

[35] Haria, S., 2019. The growth of the hide and seek botnet. Network
Security, 2019(3), pp.14-17.

[36] Xiong, H., Malhotra, P., Stefan, D., Wu, C. and Yao, D., 2009,
December. User-assisted host-based detection of outbound malware
traffic. In International Conference on Information and Communications
Security (pp. 293-307). Springer, Berlin, Heidelberg.

[37] Cabaj, K., Gawkowski, P., Grochowski, K. and Osojca, D., 2015.
Network activity analysis of CryptoWall ransomware. Przeglad
Elektrotechniczny, 91(11), pp.201-204.

[38] Ken, F.Y. and Harang, R.E., 2017, October. Machine learning in
malware traffic classifications. In MILCOM 2017-2017 IEEE Military
Communications Conference (MILCOM) (pp. 6-10). IEEE.

[39] Awad, Y., Nassar, M. and Safa, H., 2018, May. Modeling Malware as a
Language. In 2018 IEEE International Conference on Communications
(ICC) (pp. 1-6). IEEE.

[40] Smith, Z.M., 2016. Building an Adaptive Cyber Strategy. Air Command
and Staff College, Air University Maxwell Air Force base united States.

[41] Fu, Y., 2017. using botnet technologies to counteract network traffic
analysis.

[42] Tahir, M., Li, M., Ayoub, N., Shehzaib, U. and Wagan, A., 2018. A
Novel DDoS Floods Detection and Testing Approaches for Network
Traffic based on Linux Techniques. Int. J. Adv. Comput. Sci. Appl, 9,
pp.341-357.

[43] Tahir, M., Li, M., Shaikh, A.A. and Aamir, M., 2017. The Novelty of A-
Web based Adaptive Data-Driven Networks (DDN) Management &

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

324 | P a g e

www.ijacsa.thesai.org

Cooperative Communities on the Internet Technology. Int. J. Adv.
Comput. Sci. Appl, 8, pp.16-24.

[44] Bergstra, J., Yamins, D. and Cox, D.D., 2013. Hyperopt: A python
library for optimizing the hyperparameters of machine learning
algorithms. In Proceedings of the 12th Python in science conference (pp.
13-20).

[45] Komer, B., Bergstra, J. and Eliasmith, C., 2014. Hyperopt-sklearn:
automatic hyperparameter configuration for scikit-learn. In ICML
workshop on AutoML (pp. 2825-2830).

[46] Raschka, S., 2015. Python machine learning. Packt Publishing Ltd.

[47] Damshenas, Mohsen, et al. "A survey on malware propagation, analysis,
and detection." International Journal of Cyber-Security and Digital
Forensics, vol. 2, no. 4, 2013, p. 10+. Academic OneFile, (Accessed 19
May 2019).

[48] Liu, F.T., Ting, K.M. and Zhou, Z.H., 2010, September. On detecting
clustered anomalies using SCiForest. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (pp. 274-
290). Springer, Berlin, Heidelberg.

[49] Emmott, A., Das, S., Dietterich, T., Fern, A. and Wong, W.K., 2015. A
meta-analysis of the anomaly detection problem. arXiv preprint
arXiv:1503.01158.

[50] Naeem, M.R., Khan, M.U., Shaikh, M.T., Altaf, M., Rana, S.M. and
Iqbal, M.M., 2016. Smart Network Communication Using Secure And
Smart Internet of things and Fog Computing. Science
International, 28(4).

[51] Zheng, X., Li, M., Tahir, M., Chen, Y. and Alam, M., 2019. Stochastic
Computation Offloading and Scheduling Based on Mobile Edge
Computing. IEEE Access.

