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Abstract—The concept of Model Predictive Control (MPC) is 

considered as one of the most important controlling strategies. It 

is used in several fields, such as petrochemical, oil refinery, 

fertilizer and chemical plants. It is also well spread among the 

clinicians and in the biomedical fields. In this context, our paper 

aims to investigate the thermal conditions inside the infant 

incubator for premature babies. In this study, we propose the 

Dynamic Matrix Control (DMC) as a control strategy. The most 

particularity of this strategy is applicable to the Multi-input 

Multi-output (MIMO) systems. It aims to compare different 

coupled transfer functions achieved by two identification 

methods in previous work. Also, a simulation of the air 

temperature and humidity is achieved inside the unit care. In this 

work, we focus on the tuning controlling parameters because it is 

considered as a key step in the successful performance of (DMC). 

Then, to obtain the (DMC), we have used an analytic tool, which 

is the Process Reaction Curve (PRC), for higher order transfers 

function because it needs a lot of work for this purpose. It should 

be approximated as a low order transfer function with time 

delay, which is achieved by using the First Order Plus Dead Time 

(FOPDT) of processing models. Finally, the result of the 

comparison of the infant-incubator is provided to show an 

optimal and good performance of the thermal behavior of our 

propos methodology and prove that a good identification ensures 

a better performance. 

Keywords—Infant-incubator; DMC; MPC; higher-order; 

FOPDT; PRC and MIMO 

I. INTRODUCTION 

It is well-known that the period from 1970 to 1980 
witnessed the appearance of the first generation of Model 
Predictive Control (MPC). One of the most popular MPC 
technologies called Dynamic Matrix Control (DMC) was 
developed by a crew of engineers from the Shell Oil company 
lead up by Culter and Remarker [1, 2]. Also, in 1980, Prett 
and Gillette [3] presented an application of DMC. Since the 
existence of the first generation of MPC, this latter has a large 
effect on the image of the industrial applications. 

The DMC is a linear control technique which uses the First 
Order Plus Dead Time (FOPDT) model. The advantage of this 
method has already been established and has been foun to 
work correctly for a long period of time DMC is used in the 
majority of industrial applications, where its biggest 
particularity lies in the MIMO systems. Besides, the use of the 
model response to a unit step change is needed to predict the 

future response of the dependent parameters and formulates a 
sequence of control actions for all independent variables. The 
series of control action is chosen to minimize the error of the 
process over the time horizon. Also, it is applicable to 
multivariable processes as long as they are asymptotically 
stable and without integrators (Prada, Serrano, & Vega, A 
comparative study of GPC and DMC controllers, 1994) [4]. 
DMC is used in the implementation of Single-input Single-
output (SISO) and MIMO systems, but in this study, focuses 
only on the multivariable case, particularly two decoupled 
inputs and two outputs (the temperature and the humidity 
inside the unit care of the infant incubator). 

Over the years the technology witnessed a development in 
all fields, especially in the biomedical field. Until today, the 
infant-incubator for the preterm babies is considered as one of 
the important issues is in the neonatal field The incubators 
have been designed to achieve a helpful and appropriate 
hygrothermal environment for the newborn babies. In this 
context, a neonatal incubator requires agreeable conditions to 
establish a good range of temperature and humidity also a 
minimum waste energy. In general the closed incubator 
structure is depicted with four walls made of one layer of 
Plexiglas Fig. 1. In addition, all infant incubators perform in 
the same manner. The fan is used to circulate warm air over a 
heating element and a water container through two small 
ports. Also, the majority of the incubator system has a passive 
humidification system. But in this case, the heater is replaced 
by a dimmer to permit external control as it is an infinitely 
variable control. 

The essential objective of this study is to develop a 
mathematical model of the infant incubator and obtain a good 
tuning of the control strategy to ameliorate the performance of 
the control inside this device for coupling temperature and 
humidity and prove that the identification and the tuning play 
a radical way in the final response. 

The outlines of this paper start with a brief introduction. 
Then, Section 2 presents the related works of the infant 
incubators over the past years. The dynamic matrix control 
modeling for MIMO case is described in Section 3. As for 
Section 4, it highlights the validation of the tuning strategy of 
the two methods and discusses the simulation results. Then, 
Section 5 is dedicated to a comparative study of both methods. 
Finally, the concluding remarks and future works are 
presented in Section 6. 
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II. RELATED WORKS 

Over the past few decades, the problem of preterm infants 
and congenital patients has been addressed as a very important 
issue. For this reason, many studies in the literature have 
focused on controlling the relative temperature and humidity 
of an infant incubator with several strategies of control due to 
demands to improve the performance of the intensive care 
unit. Despite all the research and developments in this context, 
there is still little focus on the incubators controller with the 
predictive controls, which is the interest of this study. 

The predictive control strategy was first brought into use 
in 2006, within the study of Gustavo H. C. Oliveira which is 
based on the identification of the Laguerre function [5]. Then, 
the same researchers proposed a hybrid predictive control for 
mixed logical and dynamical models [6]. 

In 2010, the authors of this paper developed a robust 
predictive control strategy for multivariable systems with 
multiple delays and input constrains [7]. 

In [8], the same authors developed an application of 
Indirect Adaptive Generalized Predictive Control compared 
with ON-OFF and PID controller. In the same year, they 
designed a new active system which is able to generate the 
control of humidity and carried out a comparative study 
between GA-PID and GA-MPC [9]. 

In 2014, the authors developed a theoretical model for the 
thermal behavior (air temperature and relative humidity) 
which was controlled by decoupling the generalized predictive 
controller (DGPC) in order to achieve optimal thermal 
conditions [10]. 

In [11], in this study, they have designed the Simulink 
model using Generalized Predictive Control (GPC) as 
compared with PID control with and without newborn inside 
the infant incubator. 

III. DYNAMIC MATRIX CONTROL MATHEMATICAL 

MODELING 

A. Dynamic Matrix Control Mathematical Modeling 

The Since the appearance of DMC in the literature, 
researches have detailed the derivation of the MIMO-DMC 
control law [12, 13], Prett and Gracia [14], it can be 
considered as an extension of the SISO case dealt with in the 
previous works [1, 2, 17]. The former researchers were deeply 
reviewing the mathematical formulation and the tuning 
parameters of DMC [15]. For the sake of this paper, only a 
short study and a recap of DMC will be presented below. 

In our case, considering a system of two inputs, two 
outputs TITO (   ), we then obtain the output from the step 
response coefficients, as follows [16, 17]: 

Where       and    (k) are considered as the     input 
besides its variation in sample time k as              . In 
addition, the step response coefficients at sample time   are   , 
        and     Also, the sample time N at each step response 
reaches its steady state. 
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The appearance of any difference or change between the 
manipulated output (measuring system) and the predicted 
output among the above model is presented by equation (2): 
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Where       and        are the measured output and the 
output of the model respectively. These errors refer to the 
mismatch between the model/system and external disturbances 
(noises). In addition,   is known as the future predictions of 
the system output established on a control horizon    They are 
described on the following matrix-vector form which yields 
the following: 
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For the case of the multi variable (TITO) the Dynamic 
matrix process is achieved by the coefficients of the four step 
response models from the plant. It is represented by the 
dimension as (     ). 

The move suppression weight which is known as   is used 
to form the diagonal matrix which is represented by   and 
given by: 

1 2

Length P

( ............, ..............,............., ..............)ndiag    

           (4)

 

Where n is the number of the manipulated variables and 
(nP×nP) is the dimension of the move suppression matrix. The 
diagonal matrix is formed by using the control variable 
weights (λ) which is depicted by the following equation: 

1 2

Length M

( ............, ..............,............., ..............)ndiag    

           (5)

 

The dimension of the control variable weight matrix is 
(     ). 
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The previous expression equation (5) can be rewritten with 
a matrix vector as follows equation (6): 

lin past

fy S u y d   
            (6)

  

Where P and M are the prediction and control (moving) 
horizons, respectively; and       indicates the effects of the 
past inputs on the predicted outputs in the future. Also, the 
matrix A, which is named a dynamic matrix of the process, 
depends on the step response coefficients. 

Likewise, Δu which is the control moves is calculated 
according to the solution to the optimization problem of the 
Two input Two output, in this case, such that: 

( ) ( )sp lin T T sp lin T T

uMin y y y y u u         

Where 

    : is the desired output trajectory, 

𝛤: is the weighting matrices on the prediction error, and, 

ʌ: is the control effort. 

Under the unconstraint minimization, the optimal input is 
determined as follows: 

1
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Generally, the first line of the Δu is applied to the system. 
This procedure is performed in each sampling interval. 

B. Role of the Tuning Parameters of Multi-Input Multi-

Output of Dynamic Matrix Control 

The design of the DMC controller enables the adjustment 
of the prediction horizon and control horizon, which presents 
an optimal control action for the process. For that reason, the 
tuning parameters of the DMC along with the control horizon 
M, prediction horizon P and sample time T can provide a 
superior performance of controlling the humidity and 
temperature in the unit care of newborn babies. In this paper, 
user-friendly tuning strategy is developed and defined based 
on an algorithm that will calculate the above-mentioned 
parameters for an unconstrained MIMO system [18, 19]. 
Dougherty and Cooper (2003) [20] proposed some guidelines 
in order to use the MIMO-DMC. These guidelines are 
summarized in the next 7 steps [21, 22]: 

 Step1 

Approximate the process dynamics of the controller output 
to measure the process variable pairs of the integrating sub 
processes with FOPDT models, as follows: 
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 Step3 
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N, as the process settling time in samples (rounded to the next 
integer), such that: 
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 Step4 

Select the control horizon M as an integer (usually 
between 1 to 6). 

 Step5 

Select the controlled variable weights   
  to scale the 

measurements to similar magnitudes. 

 Step6 

Compute the move suppression coefficients,    
 , as 

follows: 
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 Step7 

Implement DMC using the traditional step response matrix 
of the actual process and the initial values of the parameters 
computed in steps 1 to 6. 

IV. TUNING STRATEGY VALIDATION FOR MULTIVARIABLE  

PROCESS AND  DISCUSSION 

Fig. 1 presents the real photo of the infant incubator, the 
isolette® Dräeger 8000C which is used in this experiment. In 
this system, the set point is defined as 37°C and the input 
energy varies between 0-100%, i.e. equivalent to 0 and 400 
Watt. An ultrasonic nebulizer, which is an instrument for 
converting a liquid into a fine spray, is also used. As for the 
humidifier power, it varies between 0–150 watts. This system 
is able to increase the humidity by 80% [12]. 

A. Case1: Dynamic Matric Control  for Ident Toolbox 

The tuning strategy is provided and validated in this paper 
to control the temperature and the humidity of the infant-
incubator. Besides the transfer function of this process, it is 
also extracted from previous works [23]. It is a system of 
(2×2) of the coupled system and third order system, as 
illustrated in the Fig. 2. 

where 
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Fig. 1. The Real Photo of the Infant Incubator Dräeger 8000 C. 

 

Fig. 2. Two-Input Two-Output Processes. 

The transfer function matrix can be written with a sample 
time Ts=20, as follows: 
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Each transfer function of the system is detailed in the 
following expression: 
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Also, all these functions can be rewritten as a continuous 
form and it is obvious that the model order is increased to 
handle real negative poles, as illustrated in equation (11): 
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The First Order Plus Dead Time (FOPDT) models are used 
to represent the behavior of numerous processes for the reason 
that some responses of such models like step or pulse inputs 
can propose an interesting and excellent approximation for the 
actual responses of many systems and sub-systems in many 
applications. Anyhow, the theoretical development of many 
system identification algorithms is available in the literature 
[25, 26]. 

Hence, this system is modeled according the Process 
Reaction Curve known as (PRC). It is identified by 
performing in an open loop step test of the process and finding 
model parameters for the initial step. A typical process 
reaction curve is generated using the following method [24- 
26]: 

1) Find Δy from step response. 

2) Find Δu from step response.  

3) Calculate    
  

  
 . 

4) Find the apparent dead time   , from step response. 

5) Find            from step response. 

6) Find       for                     from step 

response. 

7) Calculate               . 

As a result, of this method, it is obvious that the process 
reaction curve obtained from the real time model and its 
approximation is as shown below. 

Table I below summarizes the values of each parameter 
which are taken from the fitting curve and computed by the 
above method of approximation FOPDTs whose transfer 

function is given by    
      

. 

TABLE I.  APPROXIMATION COMPUTED VALUES  AS  FOPDT 

 Δy Δu                       
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Fig. 3, Fig. 4 and Fig. 5 shows the different step responses 
of the continuous third order functions and their 
approximations First Order Plus Dead Times of this system 
which is the infant incubator in open loop. Two curves which 
are very close to each other are obtained; this is why have 
been zoomed on the figures to distinguish between the two 
curves. 

As a result of those steps the multivariable system of infant 
incubator with two inputs and two outputs can be represented 
as follows: 

201
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Fig. 3. Comparison of the Open Loop of Step Response between 

             and            . 

 

Fig. 4. Comparison of the Open Loop of Step Response between 

                      and            . 

 

Fig. 5. Comparison of the Open Loop of Step Response between 

             and            . 

In equation (12)        and       are the process responses 
and       and       are the inputs functions. Then, the 

transfer functions     
      

     
      

     
      

and     
      

are 

taken from Table I. The obtained environmental conditions 
have been investigated to understand the dynamic relation 
between the temperature and humidity inside the infant 
incubator. 

To realize the process of testing, the regulation is affected 
in order to tune the Dynamic Matrix Control. The control 
horizon of fixed for both temperature and humidity such that 
Ncu1=Ncu2=6. Concerning the prediction horizon, it is kept 
to be equal to the maximum lengths of the model which are 
Npy1=1437 and Npy2=2725.The other parameters are 
summarized in the Table II. Several changes are made for 
each figure to prove the varying effect on the tuning of the 
DMC controller. 

TABLE II.  TUNING PARAMETERS OF DMC FOR SIMULATION OF INFANT-
INCUBATOR 

 Error weight Control weight 
Figure 

Case             

11 6.2 1 0.035 0.052 

Fig. 6 

21 6.2 5 0.035 0.052 

31 6.2 10 0.035 0.052 

41 6.2 20 0.035 0.052 

51 6.2 30 0.035 0.052 

12 10.2 5 0.035 0.052 

Fig. 7 

22 8.2 5 0.035 0.052 

32 6.2 5 0.035 0.052 

42 10.2 5 0.035 0.052 

52 0.2 5 0.035 0.052 

13 6.2 5 0.2 0.052 

Fig. 8 

23 6.2 5 0.07 0.052 

33 6.2 5 0.05 0.052 

43 6.2 5 0.035 0.052 

53 6.2 5 0.01 0.052 

14 6.2 5 0.035 0.12 

Fig. 9 

24 6.2 5 0.035 0.07 

34 6.2 5 0.035 0.052 

44 6.2 5 0.035 0.03 

54 6.2 5 0.035 0.01 

 

Fig. 6. The Effect of the Error Weight (  ) on the Humidity. 
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Fig. 7. The Effect of the Control Weight (  ) on the Temperature. 

 

Fig. 8. The Effect of the Control Weight      on the Temperature. 

 

Fig. 9. The Effect of the Control Weight      on the Humidity. 

The effect of the tuning parameters of the infant incubator 
is illustrated in Fig. 6 through 9 which demonstrate several 
trials created to tune the Dynamic Matrix Control arranged to 
achieve the most perfect desirable set of tuning parameters 
listed in the Table II. 

In this paper, spotlighting the effect of the role of the 
weighting tuning parameters    and   which are, the error 
weight vector and the weight of control move vector, 
respectively. 

Proceeding the trails from the small value of the error 
weight    that varies from 1 to 30. The other parameters 
starting from case 11 to case 51 are fixed and correspond to 
Fig. 6, as illustrated in Table II. It is noted that raising the 
possibility of error makes the responses of the humidity rapid. 

Fig. 7 corresponds to the tuning effect of   which varies 
from 10.2 to 0.2. The other fixed values from case 12 to 52 are 
maintained, as provided in Table II. It is figure out, that the 
decrease in the error obliges the response of the temperature to 
be faster in controlling the temperature inside the infant 
incubator. 

Then, Fig. 8 illustrates the tuning effect of the control 
weight   which varies from 0.2 to 0.01. As for the other 
parameters, they are also fixed. Fig. 8 also shows the result of 
the change in this parameter, so it is clear that dropping these 
parameters drive the system to be quick, but with an overshoot 
equal to 0.8118. 

Finally, Fig. 9 presents the effect of the tuning control 
weight    on the humidity which varies from 0.12 to 0.01, the 
other values starting from case14 to 54 are fixed, as it is 
shown in Table II. As the graph demonstrates, when this 
weight of controlling vector raises, the response of the system 
is damaged, which makes the response sluggish. 

B. Case2: Dynamic Matrix Control for Hito Identification 

Hidden 

In this part, will focus on the implementation of DMC that 
was identified by Hito Identification (Herramienta Integrada 
para Total Optimizacion, Integrated Tool for Total 
Optimisation) is a software tool oriented to implement MPC 
control called Hidden toolbox [23] which are a functions are 
extracted from the previous work. The transfer function of the 
infant incubator by this software tool under 
Matlab/environment [23] can be written with a sample time 
Ts=20 (second), as follows: 
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Besides, it can to be transformed as a continuous form as 
follows: 
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Table III below exhibits all the parameters of each 
response by using the same approximation as method First 
Order Plus Dead Times as the previous section in paragraph A 
to obtain the responses of the approximate functions of the 

system    
      

. 

Fig. 10 to Fig. 12 represents the various step responses of 
the continuous third order function and their approximations 
FOPDTs of this system modeling by Hidden identification 
toolbox under Matlab/environment [23]. 
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TABLE III.  APPROXIMATION COMPUTED VALUES OF AS FOPDT 
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Fig. 10. Comparison of the Open Loop of Step Response between 

         
         and         

        . 

 

Fig. 11. Comparison of the Open Loop of Step Response between 

         
         and         

        . 

 

Fig. 12. Comparison of the Open Loop of Step Response between 

         
         and         

        . 

Table IV contains the parameters of tuning for the DMC 
controller. 

To realize the process of testing, the regulation is affected 
in order to tune the Dynamic Matrix Control. The control 
horizon is fixed for both temperature and humidity to be equal 
to Ncu1=Ncu2=6.The prediction horizon is chosen to be equal 
to the maximum lengths of the model, namely Npy1=1437 
and Npy2=2725. The other parameters are summarized in 
Table IV. Several changed are caused for each figure to prove 
the varying effect on the tuning of the DMC controller. 

TABLE IV.  TUNING PARAMETERS OF DMC FOR SIMULATION OF INFANT-
INCUBATOR 

 Error weight Control weight 
Figure 

Case                    

11 25 10 0.3 0 

Fig. 13 

21 25 5 0.3 0 

31 25 0.9 0.3 0 

41 25 0.5 0.3 0 

51 25 0.05 0.3 0 

12 5 2 0.3 0 

Fig. 14 

22 15 2 0.3 0 

32 25 2 0.3 0 

42 35 2 0.3 0 

52 45 2 0.3 0 

13 25 2 0.09 0 

Fig. 15 

23 25 2 0.3 0 

33 25 2 0.8 0 

43 25 2 1.5 0 

53 25 2 2.5 0 

14 25 2 0.3 0 

Fig. 16 

24 25 2 0.3    0.0001 

34 25 2 0.3    0.0009 

44 25 2 0.3   0.01 

54 25 2 0.3  0.1 

 

Fig. 13. The Effect of the Control Weight (  ) on the Humidity. 
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Fig. 14. The Effect of the Control Weight (  ) on the Temperature. 

 

Fig. 15. The Effect of the Smoothing Factor (    on the Temperature. 

 

Fig. 16. The Effect of the Smoothing Factor (    on the Humidity. 

The effect of the tuning parameters of the infant incubator 
is demonstrated in Fig. 13 through 16 which demonstrate the 
various trials that made it tune the Dynamic Matrix Control 
arranged to achieve a good set of tuning parameters. These 
several values are listed in Table IV. 

In this part, will be concentrate as the previous part on the 
effect of the role of the weighting tuning parameters which 
account for the error weight vector and the weight of control 
move vector known as    and   , respectively. 

The trails begin from an enormous value of the error 
weight    that varies from 10 to 0.05. The other parameters 
starting from case 11 to case 51 are still fixed as it is 
illustrated in Table IV and correspond to Fig. 13. As 

previously, noted, the diminution of the error makes the 
responses of the humidity more unstable and less rapid and 
lazy. 

Fig. 14 coincides with the tuning effect of    varying from 
25 to 54.The other values from case 12 to 52are settled, as 
shown in Table IV. It is very noticeable that the reduction in 
the error obliges the response of the temperature to be faster in 
controlling the temperature inside the infant incubator. But 
with this gain in the speed of the peak time, it is very clear that 
there is an overshot and undershot which are penalizing the 
system. 

Fig. 15 depicts the tuning effect of the control weight 
  which fluctuates from 0.09 to 2.5 while the other parameters 
are fixed. The figure shows the result of the change in this 
parameter, where it is obvious that dropping these parameters 
drive the system to be very slow and achieve stability after an 
interval of time. 

Finally, Fig. 16 corresponds to the effect of the tuning 
control weight    on the humidity which varies from 0 to 0.1 
while the other values from case14 to 54 are fixed as it is 
presented in Table IV. As previously noticed from the graph, 
when we increase this weight of controlling vector, the 
response of the system is penalized and becomes sluggish and 
lazy. 

V. COMPARATIVE STUDY AND DISCUSSION 

From the curve of the response step which is implemented 
by Matlab/environment, it is possible to realize different 
parameters. But, we will only focus on the overshoot and the 
rise time which is cited in Table V. 

Besides, Ziegler-Nichols [27-29] is the researcher who 
suggested the trial and error method based on sustained 
oscillations. To obtain the criteria of the curves (response 
process), there are many methods used to compare the 
difference between those responses. However, the most 
popular one is the Integral of the Absolute Error (IAE) which 
is written as follows: 

 

0

( ) .IAE e t dt



 
            (15)

 

The second method is the Integral of the Square Error 
(ISE) which is expressed as follows: 

2

0

( ).ISE e t dt



 
            (16)

 

With e(t) is the difference or deviation (error) between the 
response and the desired set point. 

The main goal of the control of the infant incubator 
application is to maintain the humidity and the temperature at 
the desired value. Furthermore, the sample time is set to be 
equal to 20 sec. Hence, the parameters of the DMC controller 
are taken from both Table II and Table IV and given in 
Table V. Choosing the best performance and smoothest 
control signal of the output response of both methods for the 
sake of comparison. 
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TABLE V.  THE PERFORMANCE COMPARISON OF DMC OF THE INDEX OF 

THE INCUBATOR 

 Ident toolbox Hidden toolbox 

Output response T(°C) H (%) T(°C) H (%) 

Overshoot(s) 0.3872 0.4937 0 1.2503e-6 

Rise Time(s) 17.35 21.0045 15.847 0.8 

IAE 818.3214 1.18e+3 887.9422 280 

ISE 2.2337e+4 5.557e+4 2.1783e+4 2.1791e+4 

In this paper, the result is obtained by comparing the time 
domain specifications and the performance of the index 
criteria IAE and ISE of both methods which were illustrated in 
the previous paragraph. In addition, we remove (taken) the 
peak overshoot and the rise time from the time specifications. 
The controller which has less error, a minimum rise time and a 
peak overshoot is reckoned as the best controller. While 
comparing the time specifications, it is noted that the second 
method proves a minimum overshoot and less rise time 
compared to the first method. Moreover, for the criteria index, 
it is clear the presence of a satisfactory performance of the 
temperature response, yet an improved performance of the 
humidity response. Depending on the result of the system that 
is illustrated in the table below, it is very obvious that the 
second method of Hidden identification shows an amelioration 
of the responses of the humidity and the temperature. 

Finally, the limitation of this study is presented because it 
is focus only on the mathematical model of the infant 
incubator which can be used for the simulation in computer 
for the infant incubator. 

VI. CONCLUSION AND FUTURE WORK 

Different tools and software have been used in this work. 
The identification is performed on Matlab thanks to two 
toolbox methods, namely, the ident toolbox and HIDEN. In 
this paper, all the results of simulation implemented by the 
Matlab environment with the Dynamic Matrix Control (DMC) 
controller indicate that the use of this controller leads to good 
performance. The comparative study made between the two 
identification tools of the same system allows us to conclude 
that the identification has a huge effect on the final result that 
is able to ameliorate the performance, which is an important 
advantage. In addition, the choice of Dynamic Matrix Control 
as a controller is due to the ease and efficiency of this strategy. 
The future work may concern the parameters optimization of 
the infant incubator with intelligent methods, such as the 
Particle Swarm Optimization (PSO) and Genetic Algorithm 
(GA). 
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