
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

434 | P a g e

www.ijacsa.thesai.org

Improving Knowledge Sharing in Distributed

Software Development

Sara Waheed
1
,

Bushra Hamid

 2
, NZ Jhanjhi

3
, Mamoona Humayun

4
, Nazir A Malik

5

Department of Information Technology, PMAS Arid Agriculture University, Rawalpindi, Pakistan1, 2

School of Computing & IT (SoCIT), Taylor‟s University, Subang Jaya, Selangor, Malaysia3

College of Computer and Information Science (CCIS), Jouf University Al-Jouf, Saudi Arabia4

Department of Computer Science, Bahria University, Islamabad, Pakistan5

Abstract—Distributed Software Development has become an

established software development paradigm that provides several

advantages but it presents significant challenges to share and

understand the knowledge required for developing software.

Organizations are expected to implement appropriate practices

to address knowledge management. From the existing studies, it

is been analyzed that there were problems of collaboration

between distributed team members which effects knowledge

sharing. Documentation problem (such as missing, poor and

outdated documents) and knowledge vaporization (as much of

the conversation and communication is done via chat and

retrieving it later is a great headache) is a major challenge in

Distributed Software Development in knowledge sharing. Our

main objective is to improve knowledge sharing between

distributed team members and prevent knowledge vaporization

and reduced documentation problem that will help in improving

software development process in a distributed environment. To

eliminate these challenges we proposed a framework which deals

with documentation and knowledge vaporization problems and

evaluated it through industrial case study and evaluate the

framework performance in real-life context where actually the

problem arises, we conducted the interviews and analyzed the

data using thematic analysis and SUS questioner we came to the

conclusion on team members response that they are satisfied with

our proposed solution and it improved their knowledge sharing

process. Our intention was to improve the knowledge process

with our proposed solution and the evaluation showed that we

resolved these problems.

Keywords—Distributed software development; knowledge

sharing; knowledge management

I. INTRODUCTION

From few decades‟ creation maintenances and development
of software become advanced from being centralized (at one
location) to being dispersed at several locations [1], in
distributed development teams are scattered geographically at
multiple sites while working on the same product this concept
is known as Distributed Software Development (DSD).
Multiple sites include a different location such as different
cities in the same country or it may be scattered along with the
globe. DSD offers numerous benefits such as intense resource
pool, reduction in cost, less resource consumption, variety of
different skills and expertise around the world and continuous
working around the clock. These benefits overall increase the
quality of the software products [29]. Along with the several
advantages of DSD, it brings numerous challenges that are

geographically distributed teams may encounter such as
product quality compromise due to team dispersion,
Coordination, Communication and Collaboration challenges,
lack of face to face communication leads to non-trust worthy
behavior [2] and not sharing required knowledge. Many
techniques support DSD approach and literature presented
numerous ways to tackle these challenges but still, there is a
need of enhancement in some areas such as knowledge
management many existing techniques address knowledge
sharing but it lacks to some extent.

Knowledge management is considered to be the most
required resource of an organization [1]. Knowledge can be
explained as “Knowledge, while made up of data and
information, can be thought of as much greater understanding
of a situation, relationships, causal phenomena, and the
theories and rules (explicit and implicit both) that underlie a
given domain or problem” [30]. Knowledge management is
considered to be a very vast field, it provides ways to share
knowledge and aids in increasing mutual understanding solves
collaboration and coordination challenges [3]. In an
organization lots of knowledge resides in different software
processes, activates, organizational assets and methodologies,
environment, knowledge reside in team members mind. It is
very important to share and transfer the knowledge to deliver
the product to the customer which he/she requested knowledge
is needed to be managed shared and transferred from the
beginning to the end of SDLC (software development life
cycle) [4].

When the teams are geographically distributed they need to
share knowledge in explicit form for that documentation plays
an important role but in distributed development, there is a lack
of proper documentation [5], [6]. Most of the organization in
these days are using agile approaches which does not support
many docsumentation [7], [8] and they also focus on sharing
tacit knowledge there is a lack of creating and maintaining
explicit knowledge much of the product knowledge remains in
source code, test files, documentation remains outdated as
regard to the project the dispersed team members need proper
documentation for understanding the product knowledge
incomplete and abstract documents are not enough for effective
knowledge sharing from the literature documentation problems
(such as poor, missing and outdated documentation) is
identified [5], [6], [9]. Also agile and distributed development
often clashes due to their distant nature.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

435 | P a g e

www.ijacsa.thesai.org

Alongside documentation problem another issue is
knowledge vaporization local team members and remote
team members need to communicate to work together on the
same project much of the knowledge is existing in electronic
media such as during chat retrieving this knowledge is not easy
because it‟s not easily accessible at one place [7], [8], [10]. So
our main focus is to reduce these issues to facilitate knowledge
sharing in distributed development. In this paper, our main
objective is to improve knowledge sharing between distributed
team members and prevent documentation problem and
knowledge vaporization it will help in improving Software
Development Process in a distributed environment and help to
get more advantages of DSD. Therefore our study aimed to
explore the following research questions:

RQ1: What are the existing knowledge exchange/sharing
mitigation strategies in distributed development?

RQ2: What are the knowledge exchange/sharing issues and
challenges in distributed software development?

RQ3: Does the proposed solution overcome the knowledge
vaporization and documentation problem in distributed
software development?

In the next sections we will present a literature review and
then we will propose our solution and we will present its
evaluation and results followed by limitation, future work and
conclustion of the study.

II. LITERATURE REVIEW

In DSD multiple sites are involved in the development of a
certain product, DSD does not necessarily require multiple
number of organization, there can be one organization with
different branches that can be located in different cities either
in one country or in different countries when the organizations
are from around the globe there is a time zone difference as
well as cultural diversity arises because one organization share
the same culture where as multiple organizations do not share
the same culture, traditions and languages. So DSD provides
versatility in team members. In DSD the situation becomes
more problematic when the multiple team members from
different culture, language, time zone, and geographical
locations works at the same project [1], [2] communications
and collaboration among team members become a challenge
and knowledge sharing in this scenario seems totally
impossible.

In our research, our main focus is on knowledge sharing
when the teams are geographically distributed. The knowledge
management process includes knowledge creation, knowledge
store and retrieval, knowledge sharing and knowledge
application. Knowledge is categorized into two different levels
explicit knowledge and tacit knowledge. The Explicit type of
knowledge is in countable form like a written document,
books, any material which is in physical form, explicit
knowledge is easy to transfer, whereas tacit knowledge is the
knowledge resides in peoples mind, they can include skills,
thoughts, ideas, perceptions, values, and faiths so it is very hard
to share this type of knowledge [1], [11]. Knowledge sharing is
the process to transfer the knowledge of source to the

destination. The source and destination can be anything like
individual groups within the same company or different
companies where the team members are scattered [12].
Knowledge sharing is very essential for project success and for
teams to work together. And it is one of the key domain being
affected by the DSD. As the base of developing software relies
on sharing knowledge, and whose success factor is wholly
based on practical sharing of knowledge around software
developers of distributed teams. The most complicated phase is
to share both explicit and tacit knowledge among the
geographically distributed teams. In study [13], [14],
knowledge sharing is considered to be the essential process of
knowledge management. In DSD vendors usually have the
knowledge and technical expertise of a project, while the
clients hold the requisite and application domain knowledge. If
the clients and vendors are unable to share the product
knowledge, the clients may not suitably supply requirements
related to business and products domain so in the absence of
knowledge understating of the vendors without proper domain
knowledge causes negative effect on product development and
they cannot effectively and efficiently use their skills and
technical expertise to build the product effectively [15].

The use of approaches in Agile and importance on tacit
communication may perhaps negatively affect creating and
maintaining knowledge which is explicit [16], [17]. According
to studies [5], [17] describes much of the project knowledge
remained scattered in test cases and source code, documents
are not synced with the required and updated information
which is the reason for misunderstanding between distributed
teams who are looking for accurate knowledge. These studies
[5], [6], [16], [17], [18], [19], [20], [21] shed light on the effect
of the absence of proper and consistent documentation on
knowledge sharing in a distributed environment. Abstract
requirement description was not sufficient for offshore teams
it‟s another reason for causing misunderstanding [21], [22].
Study [21] Identified that requirements are written informally
on personal notebooks and whiteboards; this method found
considered improper and forbid knowledge transfer properly
because it was difficult for teams in offshore to make social
relations with the users in business [21]. Also most of the
companies in today‟s era are using agile methodology for
software development, agile focuses more on short iteration
and source code and less attention is paid to documents [7], [8],
whereas in DSD where teams are geographically distributed
they need to share the knowledge on a daily basis for that they
use synchronous and asynchronous means for communication.
Most of the communication is done via chats, emails, video
conferencing there is major issue of knowledge vaporization
because in many informal chats some important conversations
happen which becomes difficult to remember at the time of
need or when we want to retrieve it. Knowledge vaporization is
a major challenge because much of the knowledge is available
in unstructured electronic media retrieving this knowledge is
not easy because it‟s not easily accessible and a time
consuming process [7], [8], [20], [23], [24], [25]. There are
some knowledge sharing challenges and their mitigation
strategies are identified from the literature amd its answers
RQ1 and RQ2 [6], [9] and presented in Table I.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

436 | P a g e

www.ijacsa.thesai.org

TABLE. I. KNOWLEDGE SHARING CHALLENGES AND APPROACHES

Knowledge Sharing challenges in Distributed Software Development Knowledge Sharing Approaches in Distributed Software Development

Ch1: Knowledge sharing expenditure
Ch2: Workers turnover rate
Ch3: Lower priority recognition to sharing knowledge activities
Ch4: Structural hierarchy
Ch5: Ambiguous characterization of roles and responsibilities Ch6:
Problems in documentation
Ch7: The difference of contextual settings
Ch8: Variation in educational and technical expertise

Ch9: Social impediments, contextual and social impediments Ch10:
Technological and Organizational impediments
Ch11: Knowledge vaporization

Ch12: Flaws in retaining group awareness Ch13:
Technology and cultural impediments Ch14:
Knowledge storing issue
Ch15: Lack of knowledge awareness mechanisms Ch16:
Communication barriers due to distance

AP1: Bonus and motivation
AP2: Short term collocation
AP3: Flexible communication structure
AP4: Understandable work-structure AP5:
Combined work between sites AP6: The
documentation problem
AP7: Confirming common understanding between sites
AP8: The usage of boundary spanning roles
AP9: Forming virtual communities of practice

AP10: Continuous knowledge transfer process in the organizations AP11:
Knowledge sharing in agile virtual teams
AP12: Providing groupware

AP13: Success model for knowledge management AP14:
Efficient storage of knowledge
AP15: Novel Expertise and solutions
AP16: Raising team qualification and expertise

III. PROPOSED FRAMEWORK

The framework is presented in Fig. 1. In our research we
provide a solution for poor, missing, outdated documentation
problem and knowledge vaporization in dispersed teams. Our
framework deals with poor documentation problem by creating
documents artefacts(product specification, design specification,
development handbook, etc.), missing documentation is
facilitated by identifying related documents of the projects,
outdated documentation facilitated by the syncing mechanism
so that every team member have the latest document at their
workstation, knowledge vaporization is facilitated by tagging
mechanism following are the main phases of framework.

A. Actors Layer

Actor‟s layer characterizes the arrangement of the
distributed teams and interactions. In DSD there are onshore
and offshore companies working together on a product,
developers and managers act as the main actors for sharing the
artefacts. These artefacts are linked with the actors as there is a
client or vendor team working in site A and their offshore
vendor team working at site B. So the developers and managers
at site A use their own product specification and design
specification artefacts and share them because they are
colocated and they do not need to share with the vendor team
at site B, Then the managers at site A prepare product
specification and design specification artefacts for vendor team
developers and managers at site B which is specifically
prepared for them and shared between developer and managers
at site B and manager of site A. Information architecture and
development handbook artefacts shared between remote
location‟s developers and manager.

B. Artefacts Layer

To deal with the poor documentation artefact based knowl
edge sharing technique will resolve the problem of poor
documentation. Software Engineering is typically assisted by a

broad diversity of artefacts that documents numerous
knowledge types concerning to the software product being
created or maintained. Software documentation plays a very
vital role in sharing of knowledge especially when the teams
are geographically distributed and there is no way of face to
face interaction opportunity so in this case, the teams rely
heavily on documentation to develop a common understanding
about the product being developed. As agile practices are
becoming famous and adopted by many firms agile practices
promote and focuses on creating executables artefacts such as
source code rather than producing artefact that documents the
knowledge about requirements, architecture and design
decisions. We classified the artefacts as architectural
information specification document, product specification
document, and design specification document and development
standards handbook. Summary of these documents is given in
Table II.

TABLE. II. AN OVERVIEW OF DOCUMENT TYPES

Document

Artefacts
Description

Architecture

Information

Specification

Document

Contains snapshots drawings and sketches of flow of

information with relevant reviews and

comments.Represents user interface, business processes

and business domain knowledge.

Product

Specification

Document

Contains business logics and functional requirements of

the product.

Design

specification

Document

Contains design‟s detailed solution e.g. data models

reports, formats, field mapping, structures of database

etc

Development

Standard

Handbook

Contains architectural information and solutions, quality

checks, naming conventions, coding standards, database

design rules, tools configurations, repository

configurations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

437 | P a g e

www.ijacsa.thesai.org

Fig. 1. Propsed Framework

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

438 | P a g e

www.ijacsa.thesai.org

C. Activity Layer

 Knowledge Management Process: Knowledge
management process include knowledge creation,
retrieval, sharing and knowledge application. Our main
focus is on knowledge sharing process because the
development style we choose is not central it is
distributed the teams are geographically scattered at
different locations they need to share the extensive
amount of knowledge to develop a software product.

 Identification of missing documents: There is a
possibility that some team member create document in a
untracked directory and forgot to upload it so our
framework will provide a mechanism to resolve this
issue it identifies the relevant document and notifies the
team member about the relevant document which may
be needed for the desired project following are the
steps:

1) Normalized noun phases: Noun phases will be used in

the documentation as a feature for matching to a relevant

project The noun phrases are annotated and normalized by

applying a variety of Natural Language Processing (NLP)

techniques to mine the input text and generates all relevant

annotations, including sentence boundaries, tokenization, part-

of-speech tags, and phrase chunking. Noun phrases are

extracted based on a relatively simple pattern of part-of-speech

(POS) tag sequences.

2) Document matching: The Okapi BM25 algorithm is

used frequently for matching it is a technique of information

retrieval. The matching document is ranked conferring to

their relevance to a given document. The input will be a

document which is recently modified in the system this

modified document will be considered the document as input

and the output contains the ranked project which mostly

matches with the software project along with the scores which

were based on the input document text. We converted the

document text into normalizing noun phase‟s annotations for

the matching algorithm.

3) Relevant project ranking: The Okapi BM25 can be

described as below: Given an input text Q, containing noun

phrases q1.qn, the BM25 score of a paper D is: Where, f (q1, d)

is q1 ‟s frequency in

score(D,Q) ∑ IDF.
f (q

i,
D) .(k1 1)

f(q
i
,D) k1.(1 b b.

|D|
avgdl

)

n

i 1

Document D, |D| is the length of document D in noun
phrases, and avgdl is the weighted document length in the
project. The parameters ki and b allow for adapting the
algorithm to different use cases. In our case, used 1.5 for ki, 0.6
for b and measured 68 for avgdl as the average document
length The frequent term like “a”, “this”, “an”, “the text” etc.
may appear in every document they are not important terms to
eliminate these highly occurred terms in the document Inverse
document frequency formula is used to extract non frequent
terms because they are important in our case. We use IDF

described below for extracting non-frequent terms Formula of
Inverse document frequency is:

IDF(Q
i
) log

N n(q
i
) 0.5

n(q
i
) 0.5

Where „N‟ is the entire number of documents of the project
and n(qi) is the number of documents having qi (noun phases)
after this we get a ranked document list with a BM25 score for
each document that already exists in the project repository the
top document in the list is the document most related to the
input document

4) Recommended project list: The next step is to use

recommended project ranking algorithm which interprets the

scores of the individual document to scores for projects. Keep

all projects documents with the maximum BM25‟s score of the

ranked documents and extract the similarity of the input

document score with the existing project documents score,

calculate the average BM25 score of each project by averaging

the score of all documents in the project formula is:

score(F,Q)
∑ score(Di,Q)
NF

i 1

NP

we take the average to be precise for project size. The user
will get the recommended project on the basis of the matched
document.

 Document Sync: When the document is changed by
any team member it will be synced in all those team
members PC‟s who are the relevant users a notification
will be generated to let the team members know that
some latest document is uploaded and they should get
those update. In our case, we are using Git [26] for
document versioning control and for the remote
repository. When the document is matched and
copied/moved to the project documentation repository.
The person who is adding the document in the local
repository must have to push the branch (containing the
newly added document/ or updated document) to the
remote repository and raise a merge request for the
master branch. The responsible person (team lead)
review the merge request and either accepts or rejects
the request to merge the branch in the master branch if
the request is accepted and user branch is merged into
the master branch and the master branch got updated.

 Document update notification: A notification is
generated when the relevant documents got updated and
synced so team members will be aware of any changes
made to the documents.

 Conversation storage and retrieval by using Tagging
mechanism: To deal with knowledge vaporization can
be solved with the help of tagging mechanism. The
remote teams rely heavily on textual media for
interaction as IM chat reduces the communication gap
caused by linguistic differences. To deal with
knowledge vaporization these chats interactions can be
stored and retrieved later by using the tagging
mechanism. There is a list of tags already available

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

439 | P a g e

www.ijacsa.thesai.org

created by some responsible and experienced team
members. The user cannot add or delete the tag. The
tags are added by meeting by experienced members
when they think there is a need of adding or removing a
tag or a meta tag, So tags are maintained by the admin
panel. There are meta tags all the tags are related to this
meta-tag, f o r ex a mp l e a meta tag can be #code
and #javaTricks can a be tag related to the meta tag,
meta tag can be explained as parent tag and each parent
tag has some child tags which come under parent tag.
The advantage of using Meta tag or parent tag is when
the team member wants to retrieve some topic but was
not able to remember the exact tag he/she can search for
the parent tag initially and child tags are listed any child
tag can be selected and search can be initiated. The
main reason for using tagging is to restore knowledge at
later times, as in distributed development teams are
located at remote locations and working together on the
same project. They rely heavily on using IM tools
where some important knowledge existed in the team
member‟s conversation these conversation parts can be
stored by tags and these conversation act as an
important reviser of knowledge. User can search the
conversation via tag and gain the required knowledge
when needed also if the user does not initiate the tag
using # but uses the tag in the conversation the
conversation will be stored because of the automatic
tagging mechisam.

IV. EVALUATION AND RESULTS

The evaluation of our framework was done via a case study
and it answers our RQ3. It includes case study results and
expert review through interviews. This section also represents
the research findings and their discussion.

A. Case Study

To answer RQ3 we have taken a case study of DSD based
Software Company. Our research topic is focusing on DSD so
we selected a company which is distributed in nature. It is
located in Islamabad, Karachi, Lahore, Rawalpindi and it's
head quarter is in Karachi. The company started in 2001 and is
set out to redefine Pakistan computing industry. They offers a
complete range of technology services such as business
applications, Managed services, and IT infrastructure and
solutions. Our case study evaluation mainly focuses on to
improve knowledge sharing process with the help of our
proposed framework the case study used to evaluate the
proposed framework‟s impact on knowledge sharing. In
software engineering, the cases are contemporary phenomena
in software engineering in real life setting. We considered
development teams who are major source of knowledge
sharing and where there was a need to retrieve the knowledge
and the knowledge vaporization issue emerge from here also
the company we selected is distributed in nature so they face
documentation problem such as poor, missing and outdated
documents and knowledge loss due to knowledge vaporization
because the teams use chat tools for daily communication.

Our case study is a single case study and embedded in
design as we had three units of analysis first unit of analysis is

documentation problem and second unit of analysis is the
knowledge vaporization problem in distributed teams third and
the final unit of analysis is the overall case itself which is
knowledge sharing in distributed environments For data
collection set of semi-structured interviews were conducted
one prior to explaining the framework and one after describing
framework and a tool support is provided to aid the framework
and its work flow was described to the team members. At the
initial stage interview question were consisted of how they are
currently exchanging the knowledge and how they are
documenting and dealing with knowledge vaporization
problem and after two weeks another interview was con ducted
when the framework and tool workflow was explained and
used by the development team the interview question consisted
of how the framework helps them mitigate knowledge sharing
challenges is there any improvement in documentation and
knowledge vaporization problem. After data collection, next
phase was data analysis we analyze the interview data by using
qualitative data analysis method called thematic analysis.

After reviewing the interview data we performed coding on
that data. Coding was performed by extracting data chunks
pointing to the point where the employees describe the
proposed framework impact on their work, during an exchange
of knowledge via conversation and document creation and
sharing. We also coded scattered quotations referring to the
needs and motivation behind knowledge sharing certain
practices and associated challenges. The code resulted in
evolving themes in data collected. Knowledge sharing
practices of team members, the extent of knowledge shared.
Impact of our framework on their knowledge sharing activities,
etc.

B. Framework Tool Support (Blueprint)

We provide a prototype to support our framework and its
activities these are four document artefacts (as described in
Table II). We used Git as a remote repository to store the
documents so that the dispersed team members can access
them easily. When the main branch such as master is updated
Git does not notify the user that the new/updated content is
added but our system will alert the user as shown in Fig. 2
when the master branch got updated by any team member and
the user can pull the changes in by simply clicking the
notification bar. Sometimes the user creates documents in
another directory which is not tracking by Git such as he/she
writes a document in some folder and forgets to add this on
project repository our system will identify the document which
is modified in the system and will match with the documents of
project documentation repository a notification will be
generated shown in Fig. 3 that this document is related to that
specific project click on it to copy that document in the
specified project in the remote repository. Team members can
share the documents via our tool.

For tagging mechanism, the system had a pre-loaded list of
tags added by team leads during sprint meeting. Users can
initiate the tag using # pre-loaded list of tags will be displayed
then the user can select the relevant tag and continue chatting
this conversation will be stored. Tags needs to be used only
when the user thinks that the discussion needs to be saved that
may be needed later via search feature we can search the tags,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

440 | P a g e

www.ijacsa.thesai.org

auto complete list will be displayed to the user in the search bar
user can select the tag and search against that tag and the
related conversation will be displayed to the user including
sender name, date time and the conversation main interface is
shown in Fig. 4.

C. Case Study Results and Discussion

Our case study findings answers RQ3, we evaluated the
interviews data and coded the data using Nvivo12 tool. We
first created a mind map for our themes as shown in Fig. 5 and
then we identified several themes in our data based on coding.
The identified themes are “documentation problem”,
“knowledge vaporization issue”, ”reduced knowledge
vaporization problem”, “improved documentation”, “improved
knowledge sharing”, “framework correctness”. This theme
helped us to understand what knowledge sharing problems they
had and how they deal with it and what impact does our
framework had on the company‟s knowledge sharing process
Thematic analysis response is shown in Fig. 6.

By analyzing the data we had identified current knowledge
sharing techniques in the company the team members use IM
tools such as Slack and Email for communicating and sharing
of knowledge, for video conferencing they use skype. The
company faced documentation problem before presenting our
framework our analysis revealed they face problems in
documentation such as missing, poor and outdated documents.
“We normally come across situations like file or documents
placed somewhere in directories but we forget where we put
them in the first place. Sometimes we face document
inconsistency and redundancy because of no document
management tool” the team leads described “There is a
document management system missing in our company. As the
company is ISO certified so detailed documentation is
mandatory but an automated document management system is
missing because of which we only manage documents
manually, send them by emails and the manager store them in
repository manually.” They had outdated documents because
there was no mechanism to update the document periodically
the developers explained “we have to review old and new docs
to maintain consistency in documents and we have to cross
check our documents multiple times which is time taking also
we had to maintain directories and need to make sure manually
that everything is up to date and it wastes a lot of our energy.”
The company once used the Wiki as a repository but it did not
resolve their issue of outdated documents. Manager told us
“there are some outdated documents which we do not update
once they are made. They just stay in the repository Still, the
documents go missing.” one of their developers told us “We
use to face the problems like missing outdated and redundant
documents (in few cases). Sometimes, it‟s hard to find the
related document, as one couldn‟t recall the document name
exactly and every document has some issues which need to be
addressed. I review it several times.”

Knowledge vaporization also existed in the company
because they relied heavily on IM tools and sending/receiving
emails there is a high tendency of misplacing a relevant
document and when they need to recall some knowledge they
need to manually search the old conversation which is a time-
consuming process couple of developers told us “yes this is a

huge problem for us as there is no mechanism to retrieve
knowledge that is once shared in chats. we have to share it
again on chat messengers, as in the free version of slack chats
gets deleted when message limits to reachedto 10000, we either
copy important points to notepad or we have to re-share
them.”, “We do face vaporization of knowledge I use to save
the chats in notepad, we normally save important chats to
notepad for future reference.” Upon analyzing the data most of
team members showed interest in some kind of mechanism to
store and retrieve the knowledge to avoid knowledge
vaporization problem. The team members of the company used
our framework for two weeks and also they use scrum as an
agile methodology their sprint consists of two weeks so they
used our framework in their sprint session. The team members
gives feedback of our proposed framework regard to
documentation problem they described “it helps in reducing the
time to find any document that is already stored somewhere in
my system‟s hard disk by its document matching mechanism
and it helps in updating the documents and it keeps track of
every document and suggest the matching documents to save
us from reinventing the wheel It seems useful if it is strictly
followed by company. Otherwise, it will never give them
desired results.”, “it helps to reduce the redundancy of
documentation by introducing documents type documents are
always well managed and we can search them easily afterwards
keeping documents randomly made them messy”, “managing
documents in categories make them more organized these
document types are most common document types which are
needed most of the times. So it‟s worthy to use”. For
knowledge vaporization, the team member‟s gives feedback
after using the framework with a provided tool they described
“it become easy to search the relevant knowledge using tags.
shared knowledge can be retrieved from the tags which is very
helpful for us”, they said “somehow it solves the problem, but
there will be some issues for non-technical person I think”,
“tags search mechanism is good to find desired shared
knowledge it pretty much solves the problem by offering quick
retrieval of knowledge by introducing tagging mechanism by
using it we don‟t have to save chats in notepad”, “It has
allowed us to focus on development related problems. The
tagging mechanism is a good facility. It‟s just like tagging on
Facebook which make it easy to see only the tagged comment
from millions of comments.”, “I think so. Knowledge shared
by my seniors/supervisor when stored in the form of tags make
them more understandable and categorized, and to the extent
that you get everything written down instead of verbal or
informal communication.” We asked the team members about
any improvements they suggest so we can enhance the
solution we asked about proposed framework number of
activates what they think about it and what would they suggest
if something did redundantly or missing in the framework they
described “The proposed solution seems perfect when used
among technical people by technical it means IT professionals.,
its document matching mechanism and tags search have solved
many of our problems and it has increased our project
development pace”, “I think so knowledge vaporization is an
important problem especially for those team who needs to
work with other team members located at a remote location.”
The framework provides a centralized solution solving many of
the small problems. we asked them if anything is missing?

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

441 | P a g e

www.ijacsa.thesai.org

They described “it seems good with current features. But can
be improved for version controls (Git tracks the commits of
users and it can be used further).”, “This framework can be
improved by adding individual chat along with group chats and
I think we should be able to create different teams for different
projects in chats. Although searching can be made stronger by
providing more and more options that would be an extra
feature and not a missing thing.”, “I think Information
Architecture (IA) and Product Description (PD) will overlap at
some point and the features provided are good and not
redundant. Each one of them is important in their own.”, The
team lead identified “if someone keeps changing a file in GIT
repository, everyone will be pissed off from notifications with
too much complex scenarios and iterations, I think this will
lead to some redundancy on its own. Following improvements
would be plus e.g. Adding more Document types, dealing with

larger documents involving multiple tags search shared
knowledge efficiently, Integration with other applications e.g.
servers containing files and wikis There is always a place for
further improvement the framework provides good options
under one roof.” In terms of usability of our tool blueprint,
we obtained a SUS score of 83.6 (std =13.8), suggesting a
high usability perception on the knowledge sharing tool.
However, Fig. 7 presents this result using a curved grading
scale [27], where we observed that around 9% of the
participants perceived the knowledge sharing tool as having
low usability (C and D grades on Fig. 7). The SUS [28] result
suggests that participants perceived the knowledge sharing tool
as highly usable. Which is further strengthn its importance for
knowledge management as well [31-33] as explained by the
authors.

Fig. 2. Master Branch update Notification.

Fig. 3. File Identification Notification.

Fig. 4. Tool Support.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

442 | P a g e

www.ijacsa.thesai.org

Fig. 5. Mind Map.

Fig. 6. Interview Resoponses.

Fig. 7. SUS Result.

V. LIMITATION AND FUTURE WORK

The proposed solution is evaluated via case study and it
showed the positive results in improving knowledge sharing
process but we evaluated our solution in a single context results

may differ in other context because our solution is for
distributed eniornments and as a future work there is always a
possibility to improve the current solution to make it more
suitable for distributed teams and they can share knowledge
easily multi tags can be added for advanced search, documents
can be tagged to make it more organized and searchable.

VI. CONCLUSION

In this research work, we focused on knowledge sharing
which is an important phase of knowledge management the
knowledge sharing process is itself complex in nature and it
involves people, Knowledge sharing process becomes more
critical when the development teams are dispersed around the
globe. We identified several problems in knowledge sharing
process when the teams are distributed geographically among
all the challenges we identified documentation problem such as
missing, poor and outdated documents and knowledge
vaporization problem as much of the conversation and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 6, 2019

443 | P a g e

www.ijacsa.thesai.org

communication is done via chat and emails and retrieving them
later is a great headache. To eliminate these challenges we
proposed a framework which deals with documentation
problem and knowledge vaporization. We evaluated our
framework by case study to evaluate frameworks performance
in the real-life context, where actually the problem arises we
conducted the interviews before and after describing our
framework and came to the conclusion on team members
response that they are satisfied with our proposed solution and
it improved their knowledge sharing process. They indicated
documentation improvement by having well managed, updated
and complete documents and they also indicated reduced
knowledge vaporization problem they used the tags in their
daily conversation and retrieve these tags when required it
produces less vaporization of knowledge. All these
improvements positively increased knowledge sharing process
which leads to fast product development and information flow
in global software projects.

REFERENCES

[1] L. H. `Wong and R. M. Davison, "Knowledge sharing in a global
logistics provider: An action research project," Information &
Management, vol. 55, no. 5, pp. 547-557, 2018.

[2] B. Afsar, A. Shahjehan, S. I. Shah, and A. Wajid, "The mediating role of
transformational leadership in the relationship between cultural
intelligence and employee voice behavior: A case of hotel employees,"
International Journal of Intercultural Relations, vol. 69, pp. 66-75, 2019.

[3] D. Hislop, R. Bosua, and R. Helms, Knowledge management in
organizations: A critical introduction. Oxford University Press, 2018.

[4] I. Rus, M. Lindvall, and S. Sinha, “Knowledge management in software
engineering,” IEEE software, vol. 19, no. 3, pp. 26–38, 2002

[5] M. Zahedi and M. A. Babar, “Knowledge sharing for common
understanding of technical specifications through artifactual culture,” in
Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering. ACM, 2014, p. 11.

[6] R. Anwar, M. Rehman, K. S. Wang, and M. A. Hashmani, "Systematic
Literature Review of Knowledge Sharing Barriers and Facilitators in
Global Software Development Organizations Using Concept Maps,"
IEEE Access, 2019.

[7] G. Borrego, A. L. Moran, and R. Palacio, “Preliminary evaluation of a
´tag-based knowledge condensation tool in agile and distributed teams,”
in Global Software Engineering (ICGSE), 2017 IEEE 12th International
Conference on. IEEE, 2017, pp. 51–55.

[8] G. Borrego, A. L. Morán, R. R. Palacio, A. Vizcaíno, and F. O. García,
"Towards a reduction in architectural knowledge vaporization during
agile global software development," Information and Software
Technology, 2019

[9] M. Zahedi, M. Shahin, and M. A. Babar, “A systematic review of
knowledge sharing challenges and practices in global software
development,” International Journal of Information Management, vol.
36,no.6,pp. 995–1019, 2016.

[10] G. Borrego, “Condensing architectural knowledge from unstructured
textual media in agile gsd teams,” in Global Software Engineering
Workshops (ICGSEW), 2016 IEEE 11th International Conference on.
IEEE, 2016, pp. 69–72.

[11] H. Saint-Onge, “Tacit knowledge the key to the strategic alignment of
intellectual capital,” Planning Review, vol. 24, no. 2, pp. 10–16, 1996.

[12] E. D. Darr and T. R. Kurtzberg, “An investigation of partner similarity
dimensions on knowledge transfer,” Organizational behavior and human
decision processes, vol. 82, no. 1, pp. 28–44, 2000.

[13] C. Wei Choo and R. Correa Drummond de Alvarenga Neto, “Beyond
the ba: managing enabling contexts in knowledge organizations,”
Journal of Knowledge Management, vol. 14, no. 4, pp. 592–610, 2010.

[14] V. Santos, A. Goldman, and C. R. De Souza, “Fostering effective inter-
team knowledge sharing in agile software development,” Empirical
Software Engineering, vol. 20, no. 4, pp. 1006–1051, 2015.

[15] C. Ebert and J. De Man, “Effectively utilizing project, product and
process knowledge,” Information and Software Technology, vol. 50, no.
6, pp. 579–594, 2008.

[16] S. Sarker, D. Nicholson, and K. D. Joshi, “Knowledge transfer in virtual
systems development teams: An exploratory study of four key enablers,”
IEEE transactions on professional communication, vol. 48, no. 2, pp.
201–218, 2005.

[17] K. Stapel and K. Schneider, “Managing knowledge on communication
and information flow in global software projects,” Expert Systems, vol.
31, no. 3, pp. 234–252, 2014.

[18] A. Boden, G. Avram, L. Bannon, and V. Wulf, “Knowledge sharing
practices and the impact of cultural factors: reflections on two case
studies of offshoring in sme,” Journal of software: Evolution and
Process, vol. 24, no. 2, pp. 139–152, 2012.

[19] M. Bugajska, “Piloting knowledge transfer in it/is outsourcing
relationship towards sustainable knowledge transfer process: Learnings
from swiss financial institution,” AMCIS 2007 Proceedings, p. 177,
2007.

[20] A. L. Chua and S. L. Pan, “Knowledge transfer and organizational
learning in is offshore sourcing,” Omega, vol. 36, no. 2, pp. 267–281,
2008.

[21] J. W. Rottman and M. C. Lacity, “A us client‟s learning from
outsourcing it work offshore,” in Information Systems Outsourcing.
Springer, 2009, pp. 443–469.

[22] A. Boden, B. Nett, and V. Wulf, “Operational and strategic learning in
global software development,” IEEE software, vol. 27, no. 6, pp. 58–65,
2010.

[23] J. Bosch, “Software architecture: The next step,” in European Workshop
on Software Architecture. Springer, 2004, pp. 194–199.

[24] B. Kristjansson, R. Helms, and S. Brinkkemper, “Integration by
communication: Knowledge exchange in global outsourcing of product
software development,” Expert Systems, vol. 31, no. 3, pp. 267–281,
2014.

[25] A. Averbakh, E. Knauss, and O. Liskin, “An experience base with rights
management for global software engineering,” in Proceedings of the
11th International Conference on Knowledge Management and
Knowledge Technologies. ACM, 2011, p. 10.

[26] J. Loeliger and M. McCullough, Version Control with Git:
Powerfultools and techniques for collaborative software development. ”
O‟Reilly Media, Inc.”, 2012.

[27] J. Sauro and J. R. Lewis, Quantifying the user experience: Practical
statistics for user research. Morgan Kaufmann, 2016.

[28] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation of
the s{}`ystem usability scale,” Intl. Journal of Human–Computer
Interaction,vol. 24, no. 6, pp. 574–594, 2008.

[29] D. Damian and D. Moitra, “Guest editors‟ introduction: Global software
development: How far have we come?” IEEE software, vol. 23, no. 5,
pp. 17–19, 2006.

[30] R. F. Rich, “Knowledge creation, diffusion, and utilization: Perspectives
of the founding editor of knowledge,” Knowledge, vol. 12, no. 3, pp
319–337, 1991.

[31] Abbas, Syed Fakhar, Raja Khaim Shahzad, Mamoona Humayun, NZ.
Jhanjhi, and Malak Alamri. "SOA Issues and their Solutions through
Knowledge Based Techniques-A Review." International Journal of
Computer Science And Network Security vol. 19, no. 1, pp.8-21, 2019.

[32] M Humayun, NZ Jhanjhi, “Exploring The Relationship Between Gsd,
Knowledge Management, Trust And Collaboration”, Journal of
Engineering Science and Technology, vol. 14, issue 2,pp 820-843, 2019.

[33] S. S. A. Bukhari, M. Humayun, S. A. A. Shah and N. Jhanjhi,
"Improving Requirement Engineering Process for Web Application
Development," 2018 12th International Conference on Mathematics,
Actuarial Science, Computer Science and Statistics (MACS), Karachi,
Pakistan, 2018, pp. 1-5.

