
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 6, 2019

Introducing Multi Shippers Mechanism for
Decentralized Cash on Delivery System

Hai Trieu Le1, Ngoc Tien Thanh Le2, Nguyen Ngoc Phien*,3, Nghia Duong-Trung4,
Ha Xuan Son5, Thai Tam Huynh6, and The Phuc Nguyen7

1,2,4,5Cantho University of Technology, Can Tho city, Vietnam
*,3Center for Applied Information Technology, Ton Duc Thang University, Ho Chi Minh city, Vietnam

*,3Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh city, Vietnam
4,5Can Tho University of Technology, FPT University, Can Tho city, Vietnam

6Transaction Technologies PTE. LTD., Singapore
7University of Trento, Trento, Italy

Abstract—One of the major problems of e-commerce globally
is the selling and buying of goods among the parties over the
Internet in which the traders may not trust their partners.
Cash on delivery allows customers to pay in cash when the
product is delivered to their home or a location they choose.
This is sometimes called a payment system because customers
receive goods before making a payment. This paper investigates
a critical verification process issue in the cash on delivery system.
In particular, we propose a multi shippers mechanism, which
consists of blockchain technology, smart contracts and hyper-
ledger fabric platform to achieve distributed and trustworthy
verification across participants in the decentralized markets. Our
proposed mechanism is given to not only ensure the benefits
of the seller but also prevent shipper’s fraudulent. The solution
leverages the consistency and robustness of decentralized markets
where trust is flexible and effectively controlled. To demonstrate
the application and implementation of the proposed framework,
we conduct several case studies on real-world transaction datasets
from a local computer retailer. We also provide our sources codes
for further reproducibility and development. Our conclusion is
that the continued integration of multi-shipper mechanism and
blockchain technology in the decentralized markets will cause
significant transformations across several disciplines.

Keywords—Blockchain; smart contract; Cash on Delivery
(COD); hyperledger fabric

I. INTRODUCTION

A regular delivery transaction includes buyers and sellers.
The seller needs to transport the goods to the buyer, while
the buyer gives payment to the seller. However, both sellers
and buyers can cheat. Specifically, the seller is skeptical that
the buyer will receive the goods without payment, and the
buyer will doubt that the seller will receive the money and not
deliver the goods. In international transactions, this situation
is exacerbated by a slow and complicated transaction process.
Ordinary goods must be transported long distances and must
go through import and export procedures. The payment must
end up with barriers similar to currency changes and legal
regulations of each country.

Cash on Delivery (COD) allows customers to pay in cash
when the product is delivered to their home or a location they
choose. This is sometimes called a payment system because
customers receive goods before making a payment. COD has

become increasingly popular in recent years. However, most
published documents about COD have appeared in reports or
magazines or on the web, with a few scientific studies to date.
Among research articles, most investigated payment methods
in general, rather than focusing on COD in particular.

The commonly used transfer unit is postage, but usually,
consumer and business shipments will be sent to COD by
courier companies, commercial truck forwarders or organiza-
tions own delivery organizations. COD sales usually involve
a fee charged by the shipping agent and is usually paid by
the buyer. In retail and wholesale transactions, shipments are
made on a COD when the buyer does not have a credit account
with the seller and does not choose prepayment. The term
is also often used when the small amount involved and the
advance credit cost will be high in proportion to the size of
the purchase.

The rest of the paper is organized as follow. Section
2 presents some related works. Section 3 briefly describes
technical background. Section 4 presents our proposed COD
transport process. Section 5-6 describes experimental results.
Section 7 gives some conclusions.

II. RELATED WORK

One of the major problems of e-commerce globally is the
selling and buying of goods among the parties over the Internet
in which the traders may not trust their partners. Krishna-
machari et. al. [1] proposed the mechanism that executes a
transaction with any kinds of assets by using the digital key and
these processes do not need a trusted third-party. Additionally,
the authors describe a transaction method which signs dual
deposit for anti-fraud payment transactions and the delivery
between two parties in which the trader can use the digital
signature to verify. The seller and the buyer (customer) use
a pair of symmetric keys to verify goods. They use smart
contracts to decide and handle sellers and buyers by increasing
deposits. But this paper has not yet analysis on a problem of
shipping, if it is a physical product and the shipper fails to
comply with the commitment, then the system is not resolved.

Hasan [2] proposes a delivery process in which participants
(sellers, shippers and buyers) must mortgage an amount of

www.ijacsa.thesai.org 590 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 6, 2019

money. The mortgage is double the value of the goods shipped
if the contract value will be returned to the parties. They
provide a limited time solution to complete the contract. If
the delivery time fails, the system will automatically resolve
the dispute, based on the contract without the need for people.

Almost existing blockchain decentralized approaches still
contain limitations that need to be improved to be effective
and complete. Firstly, in [3], [4], [5] there is no incentive for
any participating entities to act honestly. Sellers, buyers and
carriers are fully believed. Secondly, [4], [5], [6], [7] depend
on TTP or trusted arbitrator to act as a deposit and keep all
the money from starting the sales process until the end. There
is a TTP that holds money that can be considered as one focus
point of failure. More, [2], [8] have no resolution mechanism
dispute if any happens. Therefore, there will be a loss for the
seller, buyer or both for any dishonest behavior.

Other researchers, Le et. al. [9] has proposed a mechanism
based on the Ethereum Blockchain [10] or Son et al. has
introduced a mechanism [11] based on Hyperledger Fabric
flatform [12] that relates to product transportation between
sellers and buyers. In their approach, the carrier plays an
important role. In our article, it is recommended that the
shipper join the system and mortgage a sum of money to
ensure the reliability of the system. Our process is given to not
only ensure the benefits of the seller but also prevent shipper’s
fraudulent. If the shipper has problems, such as loss of goods
then the goods of the seller sent at the carrier will still be
refunded in cash to the seller.

In this article, we review and summarize related work
mentioning delivery solutions and technical implementation
use blockchain technology. We also conducted decentralized
surveys market based on blockchain. In addition, we use
hyperledger fabric in the system to protect the rights of sellers.

III. MATERIALS AND TECHNICAL BACKGROUND

A. Blockchain and Blockchain-based Smart Contracts

Blockchain is a list of developing logs, called blocks,
linked by encryption. Each block contains the previous block’s
cryptographic hash function, timestamp, and transaction data.
Each block has a block header and a body containing data
and hash values of the previous block. The hash value is the
result of a hash function. The hash function transforms data of
any length into a fixed length string or numeric value, such as
256 bits (32 bytes) with SHA256. Blockchain is a technology
that allows secure data transmission based on an extremely
complex encryption system, similar to accounting books of a
company where cash is closely monitored. In this case, the
blockchain is an accounting ledger [13] that works in the
digital field. A special feature of blockchain is that transactions
are done at a high level of trust without disclosing information.

Blockchain-based smart contracts are proposed contracts
that could be partially or fully executed without human in-
teraction [14], [15], [16]. One of the main objectives of a
smart contract is an automated escrow. An IMF (International
Monetary Fund) staff discussion reported that smart contracts
based on Blockchain technology might reduce moral hazards
and optimize the use of contracts in general, but “no viable
smart contract systems have yet emerged”. Due to the lack

of widespread use, their legal status is unclear [17]. Smart
contract based on blockchain is being considered for many
different types of transactions, from ubiquitous devices to real-
time operational management structures for industrial products
and data transfer in some applications including transaction
finance. All types of business and management can participate
in the network and use the properties of the Blockchain system
to ensure transparency of stakeholders.

B. Smart Contracts

A cryptocurrency is a decentralized platform that a dis-
tributed ledger is used to interact with virtual money. A
contract is an instance of a computer program that executes
on the Blockchain. Users transfer money by publishing trans-
actions and interacting with contracts in the cryptocurrency
network where information is propagated, data is stored among
miners or network’s nodes. An underlying cryptocurrency
system supports the utilization of smart contracts. A smart
contract contains program code, a stored file and an account
balance. Any user can submit a transaction to an append-
able-only log. When the contracted is created, its program
code cannot be changed. An append-able-only log, called a
blockchain, which imposes a partial or total arrangement on
submitted transactions is the main interface provided by the
cryptocurrency. Fig. 1 presents the idea of a decentralized
cryptocurrency system and its components.

Fig. 1. An illustration of smart contracts and Blockchain in a decentralized
cryptocurrency system [18].

C. Hyperledger Fabric

Hyperledger Fabric [19], [20], [21] is an open source
distributed ledger platform, designed for developing permis-
sion application enterprise-grade. Fabric provides a platform
to build instant, efficient and secure enterprise blockchain
applications. Hyperledger Fabric is a platform for distributed
ledger solutions underpinned by a modular architecture deliv-
ering high degrees of confidentiality, resiliency, flexibility, and
scalability. It is designed to support pluggable implementations
of different components and accommodate the complexity and
intricacies that exist across the economic ecosystem.

www.ijacsa.thesai.org 591 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 6, 2019

IV. PROPOSED COD TRANSPORT PROCESS

In this section, the authors introduce a general overview of
the architecture with a highlight of the idea of multi-shipper.
Then, we discuss the proposed architecture in more details.
Finally, we present an important algorithm that serves as the
backbone of our proposed architecture.

A. General COD Process

The authors start this session by presenting a general
description of COD transport process. The general procedure
is illustrated in Fig. 2. First, buyers create an order and send
to the seller (2), meanwhile the order details are encrypted
and sent to the delivery company which and the seller began
to agree on time constraints and delivery prices (3). Before
the order can be delivered, the shipper of a delivery company
will carry out identity verification by an ID and a hash code
order (4). If the first step finishes successfully, the shipper
authentication process is notified and verified to the delivery
company and the buyer (5). Next, the order’s goods will be
shipped via a shipper and/or various shippers. Each time the
carrier is changed, the two shippers carry out the authentication
by an ID and a hash code of the order. The authentication
information is returned to allow the next shipper or notify
whether the order is illegally intervened. If the authentication
process is successful, the next shipper continues to ship the
order to another shipper (if any) (6). Finally, the remaining
shipper will authenticate the order with the buyer by encrypting
the details of the order. In addition, the buyer must verify the
identity by the ID to prove that he or she has ordered (7).

Fig. 2. General description of our proposed COD transport process.

B. Detailed COD Design

In this section, we describe how the authentication pro-
cess between multi-shippers is done. The detailed procedure
of multi-shippers authentication is illustrated in Fig. 3. The
previous shipper will provide an ID and an asset hash code or
each asset in the order (in the case of multiple asset orders)
(1). The next shipper will enter the ID and the hash code
into the system (2). Then, the system compares the hash code
provided by the shipper with the hash code has been previously
stored in the database (3). If the hash code does not match,
the system will store the authentication information with the

status “FAILED” (4) - (5.1) - (6). Consequently, the next
shipper refuses such products (7) - (8.1). In case two hash
codes match, the system will store authentication information
with the status “SUCCESSFUL” (4) - (5.1) - (6). After that,
the shipper continues to process the order delivery (7) - (8).

Algorithm 1 describes the authentication process between
two shippers. First, the ID and hash of the asset are provided,
the system checks the hash code stored in the database to
make sure that it matches the hash code provided with the
same ID of the asset. If the pair information does not match,
the actual status will be immediately stored with “FAILED”
state. Hence, the next shipper has the right to refuse the
order’s shipment. Otherwise, if the two hash codes match each
other, the authentication information will be stored with the
status “SUCCESSFUL”, the next shipper accepts the assets
and continues the order delivery process.

Algorithm 1 verifyShipper
1: for each asset given by the previous shipper do
2: Get the asset to encrypt’s data
3: if The hash strings do not match then
4: Store authentication information with ”FAILED”

status
5: Next shipper refuses to get the asset
6: else
7: Store authentication information with ”SUCCESS-

FUL” status
8: Next shipper gets asset
9: Next shipper transports asset to the buyers or to

another shipper(s) on the chain if any
10: end if
11: end for

V. EXPERIMENTAL SETUP

A. Dataset Collection

The experimental datasets, see Table I, have been crawled
from a local computer score that the authors use to demonstrate
how the system works. There is one thing to note is that the
price of products is in Vietnamese Dong (VND). The currency
exchange rate when the paper is conducted is that 100 USD
equals 2.300.000 VND.

B. Experimental Scenarios

1) Scenario 1: A buyer creates an order; successful verifi-
cation between seller - shipper, shipper - shipper and shipper
- buyer pairs.

Step 1: The buyer initiates the order information, the
createOrder() function is called to perform this task and stores
the information of the order into the distributed ledger. At this
step, the createAssetHash() function is also called to encrypt
the order and store the encrypted string into the database. An
example of the createOrder() and createAssetHash() functions
are presented in Tables II and III.

Step 2: Next, the process of verifying information between
the seller and shipper begins. The encryptAsset() function is
called to encrypt the commodity information. The encrypted
string will be compared to the hash code and shipper holding

www.ijacsa.thesai.org 592 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 6, 2019

Fig. 3. Detailed design of our proposed COD transport process.

to confirm the order. The result of calling the encryptAsset()
function is described in Table IV.

Step 3: After completing the authentication process with
the seller, the shipper proceeds to authenticate each other dur-
ing the shipment process. The verifyshipper() function is used
to store the authentication information with “SUCCESSFUL”
status from which the shipper can decide to continue shipping
packages. The result of calling the verifyShipper() function is
described in Table V.

Step 4: Delivery of the goods after being verified and
shipped to the buyer. The shipper will eventually use the
encryptAsset() function to encrypt the product information. The
hash code after being generated coincides with the hash code
that the buyer has. The authentication process is successful,
and hence the buyer proceeds to pay for the delivered product.
The result of calling the encryptAsset() function is presented
in Table VI.

2) Scenario 2: A buyer creates an order; successful verifi-
cation between seller - shipper pair; unsuccessful verification
between shipper - shipper pair.

Step 1: The buyer initiates the order information, the
createOrder() function is called to perform this task and stores
the information of the order into the distributed ledger. At this
step, the createAssetHash() function is also called to encrypt
the order and store the encrypted string into the database. An
example of the createOrder() and createAssetHash() functions
are presented in Tables VII and VIII.

Step 2: Next, the process of verifying information between
the seller and shipper begins. The encryptAsset() function is
called to encrypt the commodity information. The encrypted
string will be compared to the hash code and shipper holding
to confirm the order. The result of calling the encryptAsset()
function is described in Table IX.

Step 3: At this step, the shipper proceeds to authenticate
orders together during exchanging the goods. The previous
shipper will not be able to change the delivered items because
this information is kept private. In addition, the shipper is
completely unaware of the product inside the package. Any
behaviors that deliberately change the details will cause the
hash code to be generated because the last shipper’s hash code
is completely different from the hash code held by the buyer.
The shipper authenticates the items with the ID and hash code
of the product. If the hash codes do not match, the system will
store authentication information with the “FAILED” status.
The next shipper will refuse to accept the goods. The process
of calling the verifyShipper() function is presented in Table X.

3) Scenario 3: A buyer creates an order; unsuccessful
verification between seller - shipper pair.

Step 1: The buyer initiates the order information, the
createOrder() function is called to perform this task and stores
the information of the order into the distributed ledger. At this
step, the createAssetHash() function is also called to encrypt
the order and store the encrypted string into the database. An
example of the createOrder() and createAssetHash() functions
are presented in Tables XI and XII.

Step 2: If the seller deliberately changes the product
structure after the buyer has ordered, the hash code generated
during the authentication period between the shipper and the
seller will be different from the hash code that shipper is
keeping (note that the seller does not know this hash code
before). Since then, the shipper can determine that the product
code has been changed by the seller and has the right to
refuse to receive the package. The authentication information
is also stored with ”FAILED” status. The process of calling
the encryptAsset() function is presented in Table XIII.

www.ijacsa.thesai.org 593 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 6, 2019

TABLE I. EXPERIMENTAL DATASET TAKEN FROM A LOCAL RETAIL STORE.

No. Product name Product details Price (in VND)

1 AsusX441MAN5000 (GA024T) display:14inch,HD; CPU:PentiumN5000,1.10GHz; RAM:4GB;
HDD:1TB; graphics:IntelHDGraphics; OS:Windows10; DVD:no 7.190.000

2 AsusVivoBookX441MAN5000 (GA004T) display:14inch,HD; CPU:PentiumN5000,1.10GHz; RAM:4GB;
HDD:500GB; graphics:IntelHDGraphics; OS:Windows10; DVD:no 7.490.000

3 AsusVivoBookX407UAi36006U (BV129T) display:14inch,HD; CPU:i3-6006U,2.0GHz; RAM:4GB;
HDD:1TB; graphics:IntelHDGraphics; OS:Windows10; DVD:no 9.690.000

4 AsusX407UAi37020U (BV351T) display:14inch,HD; CPU:i3-7020U,2.3GHz; RAM:4GB;
HDD:1TB; graphics:IntelHDGraphics; OS:Windows10; DVD:no 10.090.000

5 AsusX507UAi37020U (EJ727T) display:15.6inch,FullHD; CPU:i37020U,2.3GHz; RAM:4GB;
HDD:1TB; graphics:IntelHDGraphics620; OS:Windows10,DVD:no 10.590.000

6 AsusVivoBookX540UBi36006U (DM024T) display:15.6inch,FullHD; CPU:i3-6006U,2.0GHz; RAM:4GB;
HDD:1TB; graphics:NVIDIAMX110,2GB; OS:Windows10; DVD:support 10.790.000

7 AsusVivoBookA411UAi38130U (EB688T) display:14inch,FHD; CPU:i3-8130U,2.2GHz; RAM:4GB;
HDD:1TB; graphics:IntelUHDGraphic620; OS:Windows10; DVD:no 11.290.000

8 AsusA510UAi38130U (BR333T) display:15.6inch,HD; CPU:i3-8130U,2.2GHz; RAM:4GB;
HDD:1TB; graphics:IntelUHDGraphics620; OS:Windows10; DVD:no 11.390.000

9 AsusVivoBookX507UFi38130U (BR203T)
display:15.6inch,HD; CPU:Corei3CoffeeLake,2.20GHz; RAM:4GB;
HDD:1TBSATA3; graphics:NVIDIAMX130,2GB; OS:Windows10HomeSL;
DVD:no

11.990.000

10 AsusVivoBookS15S510UAi38130U (BQ222T) display:15.6inch,FHD; CPU:i38130U,2.2GHz; RAM:4GB;
HDD:1TB; graphics:IntelHDGraphics620; OS:Windows10; DVD:no 12.890.000

11 AsusA411UAi58250U (EB678T) display:15.6inch,FHD; CPU:i38130U,2.2GHz; RAM:4GB;
HDD:1TB; graphics:IntelHDGraphics620; OS:Windows10; DVD:no 13.490.000

12 AsusX407UAi58250U (BV485T) display:14inch,HD; CPU:Corei5CoffeeLake,1.60GHz; RAM:4GB;
HDD:1TB; Optane16GB, graphics:IntelHDGraphics620; OS:Windows10Home 13.690.000

13 AsusA510UAi58250U (EJ1215T) display:15.6inch,FullHD, CPU:Corei5CoffeeLake,1.60GHz; RAM:4GB;
HDD:1TB; graphics:IntelUHDGraphics620; OS:Windows10HomeSL 13.790.000

14 AsusX507UFi58250U4GB1TB (EJ121T)
display:15.6inch,FullHD; CPU:Corei5KabylakeRefresh,1.60GHz; RAM:4GB;
HDD:1TBSATA3,slotsupportSSDM.2; graphics:NVIDIAMX130,2GB;
OS:Windows10HomeSL

14.590.000

15 AsusVivoBookS15S510UAi58250U (BQ414T) display:15.6inch,FullHD; CPU:i5KabylakeRefresh,1.60GHz; RAM:4GB;
HDD:1TB; graphics:UHDGraphics620; OS:Windows10; DVD:no 15.490.000

16 AsusVivoBookS510UNi58250U (BQ276T)
display:15.6inch,FullHD; CPU:Corei5CoffeeLake,1.60GHz; RAM:4GB;
HDD:1TBSATA3; graphics:NVIDIAMX150,2GB; OS:Windows10HomeSL;
DVD:no

16.790.000

17 AsusVivobookS15S530UAi58250U (BQ290T) display:15.6inch,FHD; CPU:i5-8250U,1.6GHz; RAM:4GB;
HDD:1TB; graphics:IntelUHDGraphics620; OS:Windows10 17.390.000

18 AsusZenBookUX433FAi58265U (A6061T) display:14inch,FullHD; CPU:Corei5CoffeeLake,1.60GHz; RAM:8GB;
SSD256GBNVMePCIe; graphics:IntelUHDGraphics620; OS:Windows10Home 22.990.000

19 AsusFX504GEi58300H (E4138T)
display:15.6inch,FullHD; CPU:Corei5CoffeeLake,2.30GHz; RAM:8GB;
HDD:1TB, supportSSDM.2PCIe; graphics:NVIDIAGeForceGTX1050Ti,4GB;
OS:Windows10HomeSL

23.490.000

20 AsusFX505GEi78750H (BQ037T)
display:15.6inch,FullHD; CPU:Corei7CoffeeLake,2.20GHz; RAM:8GB;
SSD128GBM2PCIe,HDD:1TBSATA3; graphics:NVIDIAGeForceGTX1050Ti,
4GB; OS:Windows10Home

27.990.000

TABLE II. THE CREATEORDER() FUNCTION: A BUYER CREATES AN ORDER AND THE SYSTEM CREATES ORDER’S DATA.

orderID buyerID sellerID deliverID Product name Quantity Price (in VND) Status Execution time
order001 customer001 seller001 delivery001 AsusX441MAN5000(GA024T) 1 7.190.000 waiting 1.008266524s
order002 customer002 seller002 delivery002 AsusVivoBookX441MAN5000(GA004T) 1 7.490.000 waiting 1.003088932s
order003 customer003 seller003 delivery003 AsusVivoBookX407UAi36006U(BV129T) 1 9.690.000 waiting 1.006305223s
order004 customer004 seller004 delivery004 AsusX407UAi37020U(BV351T) 1 10.090.000 waiting 1.003237888s
order005 customer005 seller005 delivery005 AsusX507UAi37020U(EJ727T) 1 10.590.000 waiting 1.002595092s

TABLE III. CREATEASSETHASH(): THE SYSTEM CREATES ORDER’S HASH.

orderID sellerID Product name Quantity Price (in VND) Execution time
order001 seller001 AsusX441MAN5000(GA024T) 1 7.190.000 1.003257091s
order002 seller002 AsusVivoBookX441MAN5000(GA004T) 1 7.490.000 1.002689831s
order003 seller003 AsusVivoBookX407UAi36006U(BV129T) 1 9.690.000 1.002950846s
order004 seller004 AsusX407UAi37020U(BV351T) 1 10.090.000 1.003001433s
order005 seller005 AsusX507UAi37020U(EJ727T) 1 10.590.000 1.002540695s

VI. REMARKS

The implementation of our approach is deployed on Ubuntu
19.04 machine with 2.53GHz CPU and 8GB of RAM. Tables

II, III, IV, V, and VI show the performance of functions in
the Cash on Delivery system, in which the input data and

www.ijacsa.thesai.org 594 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 6, 2019

TABLE IV. ENCRYPTASSET(): THE SELLER ENCRYPTS ASSET TO VERIFY ORDER TO THE SHIPPER.

sellerID Product name Quantity Price (in VND) Execution time
seller001 AsusX441MAN5000(GA024T) 1 7.190.000 1.000282933s
seller002 AsusVivoBookX441MAN5000(GA004T) 1 7.490.000 1.000271937s
seller003 AsusVivoBookX407UAi36006U(BV129T) 1 9.690.000 1.000289196s
seller004 AsusX407UAi37020U(BV351T) 1 10.090.000 1.000244656s
seller005 AsusX507UAi37020U(EJ727T) 1 10.590.000 1.000368499s

TABLE V. VERIFYSHIPPER(): THE SHIPPER ENCRYPTS ORDER’S DATA TO THE NEXT SHIPPER.

orderID Hash Location Execution time
order001 bdd736bba7e3b336d5bed8b08fe503c7afeb1b6e621b1a439566ef6e46b96e30 cityAlpha 1.024215124s
order002 5f2fe095759f31b2d91819f8df0602601758394d287fb63d92effa84e6679a02 cityAlpha 1.023620744s
order003 d873b49bc5aeee5ee1d4e7cffff02aca09a91c739a72867e77eb70e5a8403499 cityAlpha 1.021422615s
order004 21fbd6ee92b9ca5446409690136f65493572863fe8eea836df424d3328e0a1ac cityAlpha 1.018266805s
order005 00631c0bdd93ec1014bbf7290d0e43fa189c94b71af5ecef7ea187a548c2fc74 cityAlpha 1.016574424s

TABLE VI. ENCRYPTASSET(): THE SHIPPER ENCRYPTS ORDER’S DATA TO VERIFY TO THE BUYER.

sellerID Product name Quantity Price (in VND) Execution time
seller001 AsusX441MAN5000(GA024T) 1 7.190.000 1.000329441s
seller002 AsusVivoBookX441MAN5000(GA004T) 1 7.490.000 1.000292817s
seller003 AsusVivoBookX407UAi36006U(BV129T) 1 9.690.000 1.000285833s
seller004 AsusX407UAi37020U(BV351T) 1 10.090.000 1.00029968s
seller005 AsusX507UAi37020U(EJ727T) 1 10.590.000 1.000230017s

TABLE VII. CREATEORDER(): THE BUYER CREATES ORDER AND THE SYSTEM CREATES ORDER’S DATA.

orderID buyerID sellerID deliverID Product name Quantity Price (in VND) Status Execution time
order006 customer006 seller006 delivery006 AsusVivoBookX540UBi36006U(DM024T) 1 10.790.000 waiting 1.002387767s
order007 customer007 seller007 delivery007 AsusVivoBookA411UAi38130U(EB688T) 1 11.290.000 waiting 1.002605573s
order008 customer008 seller008 delivery008 AsusA510UAi38130U(BR333T) 1 11.390.000 waiting 1.002959993s
order009 customer009 seller009 delivery009 AsusVivoBookX507UFi38130U(BR203T) 1 11.990.000 waiting 1.002753797s
order010 customer010 seller0010 delivery010 AsusVivoBookS15S510UAi38130U(BQ222T) 1 12.890.000 waiting 1.002916293s

TABLE VIII. CREATEASSETHASH(): THE SYSTEM CREATES ORDER’S HASH.

orderID sellerID Product name Quantity Price (in VND) Execution time
order006 seller006 AsusVivoBookX540UBi36006U(DM024T) 1 10.790.000 1.002827145s
order007 seller007 AsusVivoBookA411UAi38130U(EB688T) 1 11.290.000 1.003145603s
order008 seller008 AsusA510UAi38130U(BR333T) 1 11.390.000 1.003106346s
order009 seller009 AsusVivoBookX507UFi38130U(BR203T) 1 11.990.000 1.00231202s
order010 seller0010 AsusVivoBookS15S510UAi38130U(BQ222T) 1 12.890.000 1.002822286s

TABLE IX. ENCRYPTASSET(): THE SELLER ENCRYPTS ASSET TO VERIFY ORDER TO THE SHIPPER.

sellerID Product name Quantity Price (in VND) Execution time
seller006 AsusVivoBookX540UBi36006U(DM024T) 1 10.790.000 1.000223568s
seller007 AsusVivoBookA411UAi38130U(EB688T) 1 11.290.000 1.000244662s
seller008 AsusA510UAi38130U(BR333T) 1 11.390.000 1.000268549s
seller009 AsusVivoBookX507UFi38130U(BR203T) 1 11.990.000 1.000184843s
seller0010 AsusVivoBookS15S510UAi38130U(BQ222T) 1 12.890.000 1.000358836s

TABLE X. VERIFYSHIPPER(): THE SHIPPER ENCRYPTS ORDER’S DATA TO VERIFY TO THE NEXT SHIPPER.

orderID hash Location Execution time
order006 c40e97a57e66ed09388476a09571bfd513df6f2fd72dfc57b473fd5af2097a00 - a cityAlpha 1.015158103s
order007 495f2a8e0e61732764c8b03e832cf0735bb07551b6388b89d2c20474e0ba094f - b cityAlpha 1.013581844s
order008 b85c9b9c7772b17b2c5641a75dc19bd448d386afb5dbdeaca8fbbddebd3ca468 - c cityAlpha 1.019617637s
order009 29e869390120de9cda8bfd910701225a1ba0de37b9f5b77d5cf7fb1284570d48 - d cityAlpha 1.013978084s
order010 08b640f9f41e83ce466de42251d19f80253b9af854688375f374f67ab7fa0581 - e cityAlpha 1.012554071s

www.ijacsa.thesai.org 595 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 6, 2019

TABLE XI. CREATEORDER(): THE BUYER CREATES ORDER AND THE SYSTEM CREATES ORDER’S DATA.

orderID buyerID sellerID deliverID Product name Quantity Price (in VND) Status Execution time
order011 customer011 seller011 delivery011 AsusA411UAi58250U(EB678T) 1 13.490.000 waiting 1.003676700s
order012 customer012 seller012 delivery012 AsusX407UAi58250U(BV485T) 1 13.690.000 waiting 1.001928328s
order013 customer013 seller013 delivery013 AsusA510UAi58250U(EJ1215T) 1 13.790.000 waiting 1.001924617s
order014 customer014 seller014 delivery014 AsusX507UFi58250U4GB1TB(EJ121T) 1 14.590.000 waiting 1.002541236s
order015 customer015 seller015 delivery015 AsusVivoBookS15S510UAi58250U(BQ414T) 1 15.490.000 waiting 1.002492703s

TABLE XII. CREATEASSETHASH(): THE SYSTEM CREATES ORDER’S HASH.

orderID sellerID Product name Quantity Price (in VND) Execution time
order001 seller011 AsusA411UAi58250U(EB678T) 1 13.490.000 1.002169191s
order002 seller012 AsusX407UAi58250U(BV485T) 1 13.690.000 1.003219684s
order003 seller013 AsusA510UAi58250U(EJ1215T) 1 13.790.000 1.003060215s
order004 seller014 AsusX507UFi58250U4GB1TB(EJ121T) 1 14.590.000 1.003002701s
order005 seller015 AsusVivoBookS15S510UAi58250U(BQ414T) 1 15.490.000 1.002834664s

TABLE XIII. ENCRYPTASSET(): THE SELLER ENCRYPTS ASSET TO VERIFY ORDER TO SHIPPER.

sellerID Product name Quantity Price (in VND) Execution time
seller011 AsusA411UAi58250U(EB678T) 1 13.490.000 1.000232470s
seller012 AsusX407UAi58250U(BV485T) 1 13.690.000 1.000262189s
seller013 AsusA510UAi58250U(EJ1215T) 1 13.790.000 1.000224077s
seller014 AsusX507UFi58250U4GB1TB(EJ121T) 1 14.590.000 1.000301122s
seller015 AsusVivoBookS15S510UAi58250U(BQ414T) 1 15.490.000 1.000283559s

execution time of the two main functions of the system (Verify
and Encrypt) that describe in Tables IV, V, and VI. According
to the measured data in the tables, we conclude that our method
does not require high-configuration equipment for deploying
but it still ensures system performance (approximately 1 sec-
ond/function). In addition, the level of complexity algorithm
verifyShipper() is n where n is the number of products in a
package and that of encryptAsset() is 1, this function does not
depend on the input data. Moreover, our proposed approach
supports the decentralized architecture based on Blockchain,
users do not need cryptocurrency units to execute transactions
(such as Ethereum systems) that significantly reduce risks
such as vector attack. The peer on the network verify the
request by identity information of the users and it prevents the
act of installing/launching malicious smart contracts to query
illegal data. On the other hands, our proposal mechanism does
not require complex encryption or authentication algorithms
whenever verifying the information of the user, thus saving
more than non-distributed Blockchain-based systems. Hence it
easily deployed in an enterprise environment. We encourage
further reproducibility and implementation by providing our
sources codes freely accessed on our Github repository1.

VII. CONCLUSION

As we have demonstrated, the introduction of multi-shipper
mechanism applied in any cash on delivery systems is very
beneficial. Our process is given to not only ensure the benefits
of the seller but also prevent shipper’s fraudulent. We have pro-
vided a transparent verification that works across participants.
Several case studies have demonstrated the feasibility of the
proposed mechanism in achieving trustworthy and transparent
verification for the COD systems. The solution leverages the
consistency and robustness of decentralized markets where

1https://github.com/xuansonha17031991/CashOnDelevery-Chaincode

trust is flexible and effectively controlled. To the best of
our knowledge, there have not been any research papers that
exploit and implement a mechanism of multi-shipper in the
COD system. We believe that the continued integration of
multi-shipper mechanism and blockchain technology in the
decentralized markets will cause significant transformations
across several disciplines, bringing about new business applica-
tions and having us reconsider how the existing COD systems
are developed.

REFERENCES

[1] A. Asgaonkar and B. Krishnamachari, “Solving the buyer and seller’s
dilemma: A dual-deposit escrow smart contract for provably cheat-proof
delivery and payment for a digital good without a trusted mediator,”
arXiv preprint arXiv:1806.08379, 2018.

[2] H. R. Hasan and K. Salah, “Blockchain-based solution for proof of
delivery of physical assets,” in International Conference on Blockchain.
Springer, 2018, pp. 139–152.

[3] “Two party contracts,” Feb 2015. [Online]. Available: https://
dappsforbeginners.wordpress.com/tutorials/two-party-contracts/

[4] “How our escrow smart contract works,” Oct 2017. [Online]. Available:
https://blog.localethereum.com/how-our-escrow-smart-contract-works/

[5] “Sites like ebay or etsy but decentralized - our features.” [Online].
Available: https://openbazaar.org/features/

[6] [Online]. Available: https://www.syscoin.org/home.html
[7] J. Sidhu, “Syscoin: A peer-to-peer electronic cash system with

blockchain-based services for e-business,” in 2017 26th international
conference on computer communication and networks (ICCCN). IEEE,
2017, pp. 1–6.

[8] “Double deposit escrow.” [Online]. Available: https://bitbay.market/
double-deposit-escrow

[9] N. T. T. Le, Q. N. Nguyen, N. N. Phien, N. Duong-Trung,
T. T. Huynh, T. P. Nguyen, and H. X. Son, “Assuring non-
fraudulent transactions in cash on delivery by introducing double
smart contracts,” International Journal of Advanced Computer
Science and Applications, vol. 10, no. 5, 2019. [Online]. Available:
http://dx.doi.org/10.14569/IJACSA.2019.0100584

www.ijacsa.thesai.org 596 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 6, 2019

[10] “Ethereum project.” [Online]. Available: https://ethereum.org/
[11] H. X. Son, M. H. Nguyen, N. N. Phien, H. T. Le, Q. N. Nguyen,

V. D. Dinh, P. T. Tru, and P. Nguyen, “Towards a mechanism
for protecting seller’s interest of cash on delivery by using smart
contract in hyperledger,” International Journal of Advanced Computer
Science and Applications, vol. 10, no. 4, 2019. [Online]. Available:
http://dx.doi.org/10.14569/IJACSA.2019.0100405

[12] “Hyperledger fabric.” [Online]. Available: https://hyperledger-fabric.
readthedocs.io/

[13] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[14] T. Hamid, “Cash on delivery the biggest obstacle to
e-commerce in uae and region,” May 2014. [Online].
Available: https://www.thenational.ae/business/technology/
cash-on-delivery-the-biggest-obstacle-to-e-commerce-in-uae-and-region-1.
604383

[15] F. Idelberger, G. Governatori, R. Riveret, and G. Sartor, “Evaluation of
logic-based smart contracts for blockchain systems,” in International
Symposium on Rules and Rule Markup Languages for the Semantic
Web. Springer, 2016, pp. 167–183.

[16] M. Alharby and A. van Moorsel, “Blockchain-based smart contracts: A

systematic mapping study,” arXiv preprint arXiv:1710.06372, 2017.
[17] D. He, K. F. Habermeier, R. B. Leckow, V. Haksar, Y. Almeida,

M. Kashima, N. Kyriakos-Saad, H. Oura, T. S. Sedik, N. Stetsenko
et al., “Virtual currencies and beyond: initial considerations,” 2016.

[18] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi, “Step
by step towards creating a safe smart contract: Lessons and insights
from a cryptocurrency lab,” in International Conference on Financial
Cryptography and Data Security. Springer, 2016, pp. 79–94.

[19] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference.
ACM, 2018, p. 30.

[20] P. Thakkar, S. Nathan, and B. Viswanathan, “Performance bench-
marking and optimizing hyperledger fabric blockchain platform,” in
2018 IEEE 26th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS).
IEEE, 2018, pp. 264–276.

[21] F. Benhamouda, S. Halevi, and T. T. Halevi, “Supporting private data on
hyperledger fabric with secure multiparty computation,” IBM Journal
of Research and Development, 2019.

www.ijacsa.thesai.org 597 | P a g e


