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Abstract—Complex Binary Number System (CBNS) is (-1+j)-
based on binary number system which facilitates both real and
imaginary components of a complex number to be represented as
single binary number. In this paper, we have presented three
designs of nibble-size complex binary adders (ripple-carry,
decoder-based, minimum-delay) and implemented them on
various Xilinx FPGAs. The designs of base2 4-bit binary adder
have also been implemented so that statistics of different adders
can be compared.
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I.  INTRODUCTION

Complex numbers play important roles in various areas of
electrical and computer engineering but their representation
and treatment in the realm of computing are based on a divide-
and-conquer technique wherein real part of the complex
number is dealt with separately and imaginary part of the
complex number is handled separately. Thus, addition of two
complex numbers (a+jb) and (c+jd) involves two separate
additions: (a+c) for the real parts and (b+d) for the imaginary
parts. To facilitate single-unit representation of a complex
number which will ultimately result in the reduction of
arithmetic operations for the real and imaginary components of
complex numbers, Complex Binary Number System (CBNS)
with (-1+j)-base has been proposed in the scientific literature
[1-4]. In this paper, we are going to present three designs of
nibble-size complex binary adder circuits and their
implementations on various Xilinx FPGAs. For the sake of
comparison, we’ll also present implementation of base2 nibble-
size adder so that relative complexity of different adder designs
can be appreciated.

Il. CoMPLEX BINARY NUMBER SYSTEM

A. Binary Representation

The value of an n-bit binary number with base (-1+j) can be
written in the form of a Eower series as follows: a,.4(-1+j)"* +
Bno(-1H])™? + By g(-14))™ + L+ ap(-14])* +au(-14])" +ag (-1+)°
where the coefficients a,.1,a,.2,an.3,- . .,a2,a1,89 are binary (either
0 or 1). This is analogous to the ordinary binary number system
power series Of a,1(2)"+ an2(2)"%+ ans(2)™ + ... +ay(2)?
+a,(2)! +a, (2)° except that the bases are different. Details
about how to convert a given complex number into (-1+j)-base
complex binary number representation can be found in [1-4].
By the application of the conversion algorithms mentioned in
these publications, a given complex number can be represented

as a single binary entity. For example, the complex number
2019+j2019 has the binary representation in base (-1+j) as:
1110100000001110100001100110.

B. Addition Algorithm

The binary addition of two complex binary numbers
follows these rules: 0 +0=0;0+1=1;1+0=1;1+1=
1100. These rules are very similar to the traditional binary
arithmetic except for the last case when two numbers with 1s in
position n are added, this will result in 1s in positions n+3 and
n+2 and 0s in positions n+1 and n in the sum. Similar to the
ordinary computer rule where 1+111 ... (to limit of machine)
=0, we have 11 + 111 = 0 [Zero Rule].

I1l. ADDER DESIGNS

A. Ripple-Carry

The block diagram of a 4-bit Complex Binary Ripple-Carry
Adder (CBRCA) is shown in Fig. 1 [5].

The adder performs the addition of two 4-bit complex
binary numbers A (a;a,a;a0) and B (bzb,b;bp) and generates a
4-bit (-1+j)-radix result (Sum) and up to 8 Extended-Carries. It
consists of the Addition Unit, the Extended-Carry Generation
Unit, the Zero Detection Unit, and the Output Generation Unit.
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Fig. 1. Block Diagram of a 4-bit Complex Binary Ripple-Carry Adder [5].
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The Addition Unit is structured from 4 semi-cascaded
stages. Each stage is responsible of generating one of the bits
of the result (So-S3). The carry generated from the addition of
two bits in (-1+j) radix representation at stage i produces a
carry that should be propagated to stages i+2 and i+3. Since no
carry-in(s) to the adder is assumed, stages 0 and 1 are easily
implemented using two half-adders. Stage 2 is implemented
using a full-adder with a carry-in generated from stage O.
While for stage 3, a specially designed 4-input binary variables
adding component is implemented [6]. Stage 3 performs the
addition of bits bs and a; of the Addend and Augend with
possible two carries referred to by Ks; and Ks,, which may be
generated from stages 0 and 1, respectively. Stage 3 produces
bit S; of the result and two carry bits, C; and Qs, according to
the 4 binary variables truth table for the addition stage. C; is a
normal carry due to adding three ones (1+1+1), and Qs is an
extended carry due to adding four ones (1+1+1+1) in (-1+j)
radix representation. C; should propagate to stages 5 and 6, and
Qs to stages 7, 9, 10, and 11. Since the adder performs 4-bit (-
1+j)-base complex number addition, the carries C,, Cs, and Q3
are taken to the inputs of the Extended-Carries unit, in order to
generate all the necessary carries. All carries generated by
stages 2 and 3 are handled by dummy stages in the Extended-
Carry Generation Unit, referred to by stages 4 to 11. Each stage
of the Extended-Carries Unit is responsible of generating one
Extended-Carry bit. The Boolean equations for stages 0, 1, and
2 are obvious from the use of half-adders and full-adder
circuits. For stage 3, the Boolean equations of the outputs are
found from the minimization of 4-variable Karnaugh maps.
These are,

Sy =a; ®b; @Ky ®Kay

@)

Cy = 83Ky;Kagy +b3K3 Ky, + 305Ky, +
a3K 31 K3y +83h3Ks; +bsKg1Ks, )
Qs = a3bgK3,K3, ©)

The S; expression is a 4-input odd function that can be
implemented by EXCLUSIVE-OR gates, the Qs expression is
a 4-input AND function, and the C; is a sum-of-product
expression that can be implemented by a two-stage logic (e.g.,
AND-OR, or NAND-NAND).

The Extended-Carry Generation Unit consists of 8 dummy
stages, 4-11. They handle the propagated carries from stages 2
(C,) and 3 (Cs, Qs) in the Addition Unit. The Dummy stages 4,
5, 6, and 8 are implemented using half adders, and dummy
stages 7, 9, 10, and 11 are implemented using full-adders. The
unit would generate the extended carries (C4-Cy;) as inputs to
the Output Generation Unit.

The Zero Detection Unit determines the conditions
necessary to generate special output results based on the
recognition of specific patterns for the Addend and the
Augend. All conditions considered are based on the Zero Rule
for the (-1+j) radix number representation. Assuming 4-bit (-
1+j) radix numbers, the unit receives inputs for the Addend (bs
b, by by) and the Augend (az a;, a; ag), and generates five
control signals: CS0, CS1, CS3, CC5, and Z_ALL. The five
control signals are generated based on the patterns detected for
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the Addend (bsb,b;bg) and the Augend (asa,a;ap), which satisfy
the Zero Rule. Table 1 lists all the minterms of the input that
will generate special output results.

The Boolean expressions characterizing each control output
are defined below.

1) CSO0 Control Output: CSO controls the summation bit Sy
according to table 1. Its Boolean expression is described as:
CS0=>(111,126, 231, 239, 246, 254)

CS0=(a, a4 b, Q)(%bs by +ag bs g+
agh; (ag ®hy)) ()

2) CS2 Control Output: CS2 controls the summation bit S,
according to table 1. Its Boolean expression is described as:
CS2=7"(119,127, 247, 255)

CS2= ®)
=(a, 8,89 by by by)

3) CS3 Control Output: CS3 controls the summation bit S;
according to table 1. Its Boolean expression is described as:

(63,123,127,183, 238, 239,
cs3=Y
243, 247, 254)

CS3 = (a, by )(ag 8 by b, by + a5 a5 b b, by +
aza, b b, %4'%32 ag by by +

az a, aogb0+a3 a, %bsbz) (6)

4) CC5 Control Output: CC5 controls the extended carry
bits Cs and Cg according to table 1. Its Boolean expression is
described as:

CC5 =73 (191 251, 255)
CC5=(agay,a,ay byb by +aza; ay byb, b by) )

5) Z_ALL Control Output: Z_ALL controls generating all
zeros in the sum and extended carry bits according to Table 1.
Its Boolean expression is described as:

Z ALL=Y (55 110,115, 230)
Z _ALL = (a,by)(a3 2 by by (2, ®by) +
a %bz @(as ®by)) (8)

The Output Generation Unit receives the control signals,
(CSO, CS2. CS3, CC5, Z_ALL), from the Zero Detection Unit,
the result of addition (Sq-Ss) and the extended-carries (C4-Cyq).
Then it determines the actual Sum bits (Sumg-Sumsg) and the
actual Extended-Carry bits (T4-T1;) according to the control
signals described above.

B. Decoder-Based

The design of a nibble-size decoder-based adder involves
the following steps[7]: (i) Generation of a truth table with two
4-bit operands --- operand A with azaya;a, bits and Operand B
with bsb,b;by bits --- addition of these two operands produces
twelve outputs which are labeled as €11C19CyCaC7C6C5C4S3525150-

253|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

The truth table (Table 2) has a total of 28 = 256 minterms. (ii)
We have used a 8x256 decoder to implement this truth table.
For this purpose, we expressed each output in sum-of-minterms
form as shown on the next page. (iii) Finally, these expressions
have been implemented using the decoder and OR gates as
shown in Fig. 2.

TABLE.l.  APPLICATION OF THE ZERO RULE TO 4-BIT ADDITION
OPERANDS
MINTERM  |23828180D3babiby  |C1iC10CeCeCiCsCsCy S55:5:50
(Hex.) (Hex.) (Hex.)
(Dec.)
55 37 00 0
63 3F 00 8
110 6E 00 0
111 6F 00 1
115 73 00 0
119 77 00 4
123 7B 00 4
126 7E 00 1
127 7F 00 C
183 B7 00 8
191 BF 06 0
230 E6 00 0
231 E7 00 1
238 EE 00 8
239 EF 00 9
243 F3 00 8
246 F6 00 1
247 F7 00 C
251 FB 06 0
254 FE 00 9
255 FF 06 4
aza2a1ao > Minterm 0
e
bsbabibo 5 8x256 Decoder Minterm 255
i [ - | -
OR gates%‘ Lv
C11 So
Fig. 2. Block Diagram of a 4-bit Complex Binary Complex Binary Adder

using Decoder.
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Cu=2 (187)

Cg =X
(29,31,61,89,91,93,95,121,125,149,151,157,159,181,189,
204,205,206,207,209,211,213, 215,217, 219,220,221,222,223,
236,237,241,245,249,252,253)

c7=2 (29,31,61,89,91,93,95,102,103,118,121,125,149,151,157,
159, 181,187,189,204, 205,206,207,209,211,213,215,217,219,
220,221,222,223, 236,237,241, 245,249,252,253)

Cs = X (25,27,29,31,42,43,46,47,51,57,58,59,61,62,89,91,93,
95,102,103,106,107,118,121,122,125,136,137,138,139,140,
141,142,143,145,147,149,151,152,153,154,155,156,157,158,
159,162,163,166,167,168, 169,170,171,172,173,174,175,177,
178,179,181,182,184,185,186,188,189,190,191,200,201,202,
203,204,205,206,207,209,211,213,215,216,217,218,219,220,
221, 222,223,226, 227,232,233,234,235,236,237,241,242,245,
248,249,250,251,252, 253,255)

Cs = X (21,23,25,27,42,43,46,47,51,53,57,58,59,62,68,69,70,
71,76,77,78,79,81,83,84,85,86,87,92,94,100, 101,102,103,
106,107,108,109,113,116,117,118,122,124,136,137,138,139,
140,141,142,143,145,147,152,153,154,155,156, 158,162,
163,166,167,168,169,170,171,172,173,174,175,177,178,179,
182,184,185,186,188,190,191,196,197,198,199,200, 201,202,
203,212, 214,216, 218,226,227,228, 229,232,233,234,235,
242,244,248,250,251,255)

Cs= X(21,23,29,31, 34,35,38,39,42,43,46,47,50,51,53,54,58,
59,61,62,68,69,70,71,76,77,78,79, 81,83,84,85,86,87,89,91,92,
93,94,95,98,99,100,101,106,107,108,109,113,114,116,117,
121,122,124,125,149,151,157,159,162,163,166,167,170,171,
174,175,178,179, 181,182,186,187,189,190, 196,197,198,
199,204,205,206,207,209,211,212,213,214,215,217,219,220,
221, 222, 223,226,227, 228,229,234,235,236,237,241,242,
244,245,249,250,252,253)

s3= X (8,9,10,11,12,13,14,15,17,19,21,23,24,26,28,30, 34,35,
38,39,40,41,44,45,49,50,53,54,56, 59,60,63,72,73,74,75,76,
77,78,79,81,83,85,87,88,90,92,94,98,99,102,103,104,105,
108,109,113,114,117,118,120,123,124,127,128,129,130,131,
132, 133,134,135,144,146,148,150,153,155,157, 159,160,161,
164,165,170, 171,174,175,176,179,180,183,185,186,189,190,
192, 193,194,195,196,197,198,199,208,210,212,214,217,219,
221,223,224,225,228,229,234,235,238,239,240,243,244,247,
249, 250,253,254)

;= ¥ (4,5,6,7,12,13,14,15,17,19,20,22,25,27,28,30,36,37,38,
39,44,45,46,47,49,51,52,54,57, 59,60,62,64,65,66, 67,72,73,
74,75,80,82,85,87,88,90,93,95,96,97,98,99,104,105,106,107,
112, 114,117,119,120,122,125,127,132,133,134,135,140,141,
142,143,145,147,148,150,153, 155,156, 158,164,165,166,167,
172,173,174,175,177,179,180,182,185,187,188,190, 192,193,
194,195,200, 201,202,203,208,210,213,215,216,218,221,223,
224,225,226,227,232,233,234,235,240,242,245, 247,248,250,
253,255)

s1 = %(2,3,6,7,10,11,14,15,18,19,22,23,26,27,30,31,32,33,36,
37,40,41,44,45,48,49,52,53,56,57, 60,61,66,67,70,71,74,75,
78,79,82,83,86,87,90,91,94,95,96,97,100,101,104,105,108,
109,112, 113,116,117,120,121,124,125,130,131,134, 135,138,
139,142,143,146,147,150,151,154,155,158,159,160,161,164,

Co=2Z (187) Co= 2 (187)
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165,168, 169,172,173,176,177,180,181,184,185, 188,189,194,
195,198,199,202, 203,206,207,210,211,214,215,218,2109,
222,223,224,225,228,229,232,233,236,237,240,241,244, 245,
248, 249,252,253)

so= 2 (1,3,5,7,9,11,13,15,16,18,20,22,24,26,28,30,33,35,37,39,
41,43,45,47,48,50,52,54,56,58,60,62,65,67,69,71,73,75,77,79,
80,82,84,86,88,90,92,94,97,99,101,103,105,107,109,111,112,
114,116,118,120,122,124,126,129,131,133,135,137,139,141,
143,144,146,148,150,152,154,156,158,161,163,165,167,169,
171,173,175,176,178,180,182,184,186,188,190,193,195,197,
199,201,203,205,207,208,210,212,214,216,218 220,222,225,
227,229,231,233,235,237,239,240,242, 244,246,248, 250,252,
254)

C. Minimum-Delay

The truth table of the 4-bit complex binary adder, given in
Table 2, was entered, one output at a time, into online
Karnaugh Map [8] and simplified Boolean expression for each
output was obtained. To facilitate use of online K-Map, the
inputs were labeled as ABCD for the augend and EFGH for the
addend. The outputs were labeled as JKLMPRSTUWYZ. The
simplified expression for each output was implemented on
Xilinx FPGAs and statistics for the circuit were obtained.

The simplified expressions obtained for outputs are:
] =K =L=ABCDEFGH

M = CDEFH + DEFGH + BCDEH + ACDFH + ADFGH
+ ABCEF + ABEFG + ABCDH + ABDGH

P = CDEFH + DEFGH + BCDEH + BDEGH + ACDFH
+ ADFGH + ABCEF + ABEFG + ABCDH
+ ABDGH + ABCDEFG + ABCEFGH
+ ABCDEFGH

R = ACE + AEG + CDEH + DEGH + ACDH + ADGH
+ ABEF + BCDEG + CDEFG + BCEGH
+ CEFGH + ADEFH + ABCDG + ACDFG
+ ABCGH + ACFGH + ABDEFH
+ ABCDFGH + ABCDEFG + ABCEFGH

S = ABDE + ADEF + ABEH + AEFH + BCDEG
+ CDEFG + BCEGH + CEFGH + ABCDF
+ ABDEF + BCDEF + ABDFG
+ BDEFG + ABCFH + ABEFH
+ BCEFH + ABFGH + BEFGH
+ ABCEF + ABEFG + ABCDG + ACDFG
+ ABCGH + ACFGH + ACDEFH
+ ADEFGH + ABDEFH + ABDEFH
+ ABCEFG + ABCDFGH + ABCDEGH
+ ABCDEGH + ABCDEGH + ACDEFGH
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T = BCF + BFG + CDFH 4+ DFGH + BCDG + BCFG
+ CDFG + BCGH + CFGH + BCDGH
+ BCDEH + BCDGH + ABCDH
+ ABCDEGH

U = ACDE + ADEG + ACEH + AEGH + ACDE + ADEG
+ ACEH + AEGH + ACDEH + ADEGH
+ ACDEG + ACEGH + ACDEH
+ ADEGH + ACDEG + ACEGH
+ ACDEGH + ACDEGH + ABCDFGH
W = BDF + BFH + ABFH + BEFH + BFGH + BDFH
+ BCFH + BDFG + BDEF + BDFH
+ BCDF + ABDF + ACDEFGH
+ ABCEFGH

Y =CG+CG + ABCEFH
Z =DH + BDH + DGH + DFH + DEH + CDH + ADH
+ ABCDEFG
The logic diagram of minimum-delay complex binary
adder is given in Fig. 3.

The logic diagram of each adder output (J,K,L,M,P,R,S,T,
U,W,Y,Z) is shown in Figs.4-15.

J

=
K

JKLM PRST UGYZ
o)

Fig. 3. Block Diagram of a 4-bit Complex Binary Minimum-Delay Adder.
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TABLE. Il.  TRUTH TABLE OF A 4-BIT COMPLEX BINARY ADDER 128 10000000 000000001000 192 11000000 000000001100
(MINTERM: A3A2A1A0 ADD B3B;B1B) =C11C10CoCsC7CsC5C4S3525150) 120 10000001 000000001001 193 11000001 000000001101
130 10000010 000000001010 194 11000010 00000000110
0 (0000000 000000000000 6 (1000000 000000000100 13 10000011 COU0000L0LL 1% 11000011 00000000LIL
1 00000001 00000000000 & 00000t G0000000001 12 10000100 000000001100 19 11000100 0000011000
2 00000010 000000000010 & (OooID Q0e000000LD 133 10000101 000000001101 197 11000101 000OOLL100L
3 (O0000LL 00000000001 67 (1000011 000000000LLL 131 10000110 CO00N00LLIO 16 11000110 0O0000LLI00
4 (O000OL0D 000000000100 63 (1000100 000000110000 1% 10000111 COT000OLLIL 19 11000111 COU0O0LLIOL
5 (0000L0L00000000OLO0L 6 (1000101 000000110001 1% 10001000 COOLI00000 20 11001000 000001100100
6 (000010 00000000010 70 (1000110 000000110010 137 10001001 CODOLI00001 0 11001001 00000T10010L
7 Coooom1.oooooooo it 71 CIO00TLL C0O0DOTIO0LL 138 10001010 000001100010 20 11001010 000001100110
8 (0001000 0000001000 72 (1001000 000000001400 139 10001011 000001100011 28 11001011 000001100111
9 00001001 000000001001 73 (01001001 000000001101 140 10001100 000001100100 204 11001100 000111010000
10 00001010 000000001010 74 01001010 000000COLLL0 141 10001101 00000100101 206 11001101 000111010001
1 00001011 0000000101 75 01001011 000000001111 142 10001110 000001100110 206 11001110 000111010010
12 00001100 000000001100 76 01001100 000000111000 143 10001111 000001100111 207 11001111 000111010011
13 (000L0L CO000000LOL 77 (1001101 000000LLI00L
1% OOOLL0 CO000000LLIO 7 0000110 C0M00LLI0N 144 10010000 000000001001 208 11010000 000000001101
5 COOOLTLL COUDO0ONLLIL 79 CIODLILL COOU0OTLIOL 145 10010001 000001100100 20 11010001 000111010000
146 10010010 00000000101 20 11010010 00000000L1L
16 (0010000 000000000001 € 0101000000000000010L 147 10010011 000001100110 211 11010011 000111010010
7 (0010001 000OO00DLI00 8l (1010001 00000OLLI000 18 10010100 COT0MOLIOL 22 11010100 CO00OLLIO0L
18- 00010010 C00OOO0O00L & 01010010 000000000111 149 10010101 000111010000 23 11010101 000111010100
19 00010011 0000000110 8 (1010011 000000111010 150 10010110 00000000111 214 1010110 000000111011
20 (0010100 00000000010 8 (1010100 000000110001 5 10010111 C00LLI0I0I0 25 11010711 CO0LLI0I000
21 0010101 00000011000 & (1010101 0000001100 15 10011000 COU0OLI00001 216 11011000 000001100101
2 00010110 000000000111 8 01010110 000000110011 153 10011001 000001101100 217 11011001 000111011000
2 (0010111 00000011010 & (1010111 0000001110 54 100711000 COMOO00L 218 11011010 CO00TI001L1
24 (0011000 000000001001 8 01011000 000000001101 1% 10011011 CO00TI01110 219 11011011 001110100
S Ooomoot o0oot00i00 & OI0To0 G00TT1010000 15 10011100 000001100101 20 11011100 000111010001
% oonmooooooan 9 0I0T10N0 C000OMIATL 157 10011101 000111011000 21 11011101 000L1011100
27 00011011 Q00001100110 9 Clomom cootioioo 158 10011110 000001100111 22 1011110 000111010011
2 000w ooooouaLiol 9 OIOTI100 G00000TLA001 150 10011111 000L1011010 23 11011111 (0011011110
29 (00LU0L 000111010000 @ 01001101 000111010100
0 O00ITLI0 00000011 o QI01L110 COO00TIONL 160 10100000 000000001010 24 11100000 00000000110
3 OODLLLIL COOILI0IO0I0 S 0L COOMICION0 161 10100001 00000000101 25 11100001 00000000L1L
18 10100010 000001110000 26 11100010 000001110100
32 00100000 000000000010 % (1100000 000000000110 163 10100011 000001110001 27 11100011 000001110101
33 (0100001 000000000011 97 01100001 000000000111 164 10100100 000000001110 28 11100100 000000111010
3 (0100010 000000011000 % (L0010 000000011100 165 10100101 000000001111 29 11100101 000000111011
35 (0100011 000000011001 9 (OLO0011 000000011101 166 10100110 000001110100 230 11100110 000000000000
3% (0100100 000000000110 100 (1100100 000000110010 167 10100111 000001110101 231 11100111 000000000001
37 (0100101 000000000111 101 OHO0101 0000COLLO0LL 168 10101000 00000L00010 22 11101000 000001100110
38 (0100110 000000011100 102 01100110 000011101000 169 10101001 00000100011 233 11101001 000001100111
3 (0100111000000011101 108 01100111 000011101001 170 10101010 000001111000 24 11101010 000001111100
40 00101000 000000001010 164 01101000 00000000LLL0 171 10101011 000001111001 235 11101011 000001111101
41 (0101001 000000001011 106 (U01001 0000000DL1L 172 10101100 COMOTO0LI0 76 11101100 CO0LLI0IO0IO
42 00101010 000001110000 106 01101010 000001110100 173 10101101 000001100111 237 11101101 000111010011
43 00101011 000001110001 107 QL0101 0000010101 174 10101110 000001111100 238 11101110 000000001000
44 (0101100 000000001110 108 01101100 000000111010 175 10101111 000001111101 239 11101111 000000001001
45 (00101101 000000001111 109 OUOLOL 000000LL01L
& OO0 0000000 10 0107110 00000000000 176 10110000 00000000101 240 11110000 00000000LL1L
4 OOMOTLL Oo00oLc0L 11 OM0TILL 000000000001 77 10110001 000001100110 241 11110001 000111010010
178 10110010 000001110001 22 11110010 000001110101
48 (0110000 000000000011 112 (1110000 000000000111 179 10110011 000001111100 243 11110011 000000001000
49 (00110001 000000001110 113 01110001 000000111010 180 10110100 000000001111 244 11110100 000000111011
50 (0110010 000000011001 114 (LU10010 0000000LUOL 181 10110101 COOLLII00I0 5 110101 CO0LLI0IONO
5L 00110011 00000LLLOL00 115 01110011 000000000000 18 10110110 000001110101 246 11110110 00000000000L
52 (0110100 000000000111 116 01110100 000000110011 18 10110111 000000001000 247 11110111 00000000LI00
5 000101 000000LU0I0 117 L0101 000000LL1I0 184 10111000 COMOMO00I 28 11111000 000001
54 01010 000000011101 118 0110110 000011101001 185 10111001 000001101110 249 11111001 000111011010
% QOL0LLL 000000000000 119 QLUOL11 000000000100 1% 10011010 CO0OLLLI001 %0 1111010 00000111101
5% (00111000 000000001011 120 (01111000 000000001111 187 10111011 111010010100 x1 11111011 000001100000
57 (OLU100L 0000OLL0010 L1 U001 000111010010 188 10111100 COMNLIO0NIL % 11111100 CO0LLIOI00L
53 (OLL010 000001110001 122 QLLL0I0 00000LL0101 1% 10011101 CO0LLIOLI0I0 %3 111101 00LLIOL0
59 (00111011 000001111100 123 01111011 000000001000 190 10111110 000001111101 254 11111110 000000001001
60  (OLL1100 00000000111 4 OU11100 000000LUON 190 10011111 COMOLION00m %% 11111111 00001100100
6l OOLLIOL 000111010010 15 QU101 000111010110
&  OLLI110 000001110101 16 (L1110 00000000000
6 O0L11111 000000001000 17 OU11111 00000000100
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IV. RESULTS

Complex binary adder designs presented in the previous section have been implemented on Xilinx[9] FPGAs and various
statistics pertaining to each design are given in Tables 3-5.

TABLE. Il

FPGA IMPLEMENTATION RESULTS OF COMPLEX BINARY RIPPLE-CARRY ADDER (CBRCA) AND BASE 2 ADDER [5]

Complex Binary Ripple-Carry Adder Implementations on FPGA Devices

Base 2 Ripple-Carry Adder
ImplementatioN

XC 4003E Spartan XCS05 Virtex XCV50 Virtex XCV50
Number of external IOBs® 20/80 (32%) 20/80 (32%) 20/94 (21%) 13/94 (13%)
Number of CLBs® (Slices®) 24/100 (24%) 24/100 (24%) 31/768 (4%) 6/768 (1%)
Number of 4 input LUTs® 42/200 (21%) 42/200 (21%) 59/1536 (3%) 9/1536 (1%)
Number of 3 input LUTs 13/100 (13%) 13/ 100 (13%)
Number of bonded 10Bs 20/61 (32%) 20/ 61 (32%) 20/ 94 (21%) 13/94 (13%)
Gate count 310 310 354 54
Average connection delay (ns) 2.808 3.506 1.640 1.525
Maximum combinational delay (ns) 35.680 45.995 24.839 15.389
10Bs: Programmable Input/Ouput Blocks.
°CLBs:  Configurable Logic Blocks.
°Slice:  Each Virtex CLB contains 4 logic cells organized in two similar slices.

9LUTs:  Lookup Tables.

TABLE. IV. FPGA IMPLEMENTATION RESULTS OF COMPLEX BINARY DECODER-BASED ADDER AND BASE 2 ADDER [5]

Complex Binary Decoder-based Adder Implementation on

FPGA Device Base 2 Decoder-based Adder Implementation

Virtex V50CS144 Virtex V50CS144

Number of external 10Bs 20/94 (21%) 13/94 (13%)
Number of CLBs(Slices) 455/768 (59%) 391/768 (50%)
Number of 4 input LUTs 857/1536 (55%) 755/1536 (49%)
Number of bonded 10Bs 20/94 (21%) 13/94 (13%)
Gate count 5142 4530

Average connection delay (ns) 3.179 3.169
Maximum combinational delay (ns) 32471 28.442
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TABLE.V. FPGA IMPLEMENTATION RESULTS OF COMPLEX BINARY
MINIMUM-DELAY ADDER [10]
Complex Binary Minimum-Delay Adder
Implementations on FPGA Devices

Virtex4 Virtex5 Virtex

XC4VLX15 XC5VLX30 XCV100
Number of 0 0 20/180
external I0Bs 20/240 (8%) 20/220 (9%) (11%)
Number of 0 o 27/1200
CLBs(Slices) 2716144 (>1%) 25/19200 (1%) 2%)
Number of 4 input 0 52/2400
LUTs 52/12288 (>1%) 0/27 (2%)
Number of 0 0 20/180
bonded 10Bs 20/240 (6%) 20/220 (9%) (11%)
Gate count 330 175 330
Maximum net 5.028 2.790 8.856
delay (ns)
Maximum
combinational 7.827 4.776 17.001
delay (ns)
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