
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

22 | P a g e

www.ijacsa.thesai.org

Detecting Inter-Component Vulnerabilities in Event-

based Systems

Youn Kyu Lee

Multimedia Processing Lab

Samsung Advanced Institute of Technology, Suwon, Republic of Korea

Abstract—Event-based system (EBS) has become popular

because of its high flexibility, scalability, and adaptability. These

advantages are enabled by its communication mechanism—

implicit invocation and implicit concurrency between

components. The communication mechanism is based on non-

determinism in event processing, which can introduce inherent

security vulnerabilities into a system referred to as event attacks.

Event attack is a particular type of attack that can abuse,

incapacitate, and damage a target system by exploiting the

system's event-based communication model. It is hard to prevent

event attacks because they are administered in a way that does

not differ from ordinary event-based communication in general.

While a number of techniques have focused on security threats in

EBS, they do not appropriately resolve the event attack issues or

suffer from inaccuracy in detecting and preventing event attacks.

To address the risk of event attacks, I present a novel

vulnerability detection technique for EBSs that are implemented

by using message-oriented middleware platform. My technique

has been evaluated on 25 open-source benchmark apps and eight

real-world EBSs. The evaluation exhibited my technique's higher

accuracy in detecting vulnerabilities on event attacks than

existing techniques as well as its applicability to real-world EBSs.

Keywords—Event-based system; program analysis; software

security

I. INTRODUCTION

Event-based systems (EBSs) implemented by using MOM
platforms are widely used. They are implemented in various
types of systems such as web apps or SOA-based systems by
using different types of MOM platforms such as Prism-MW
[1], Java Message Service [3], and Siena [10]. EBSs have
become popular because of its high flexibility, scalability, and
adaptability. These advantages are enabled by its reliance on
implicit invocation and implicit concurrency. Specifically, in
EBSs, components may not know the consumers of the events
they publish, nor do they necessarily know the producers of
events they consume. However, this communication
mechanism is based on non-determinism in event processing,
which can introduce inherent security vulnerabilities into a
system referred to as event attacks. For example, developers
may build EBSs by utilizing externally developed components
that contain malicious code, and users may use those EBSs
comprising malicious components. For those cases, malicious
components can launch unintended behaviors through event
communication, such as eavesdropping on events to steal
sensitive information or exploiting the information in events to
hijack the system's functionalities.

Existing system analysis techniques neither focus on event
attacks nor correctly detect vulnerabilities across components
[5,6,7,23]. Specifically, existing vulnerable-flow analysis
techniques do not support implicit invocation between
components and are not scalable to analyzing systems
comprising large numbers of components [6,7,12]. While a
large body of research has studied detecting vulnerabilities that
expose Android apps to event attacks [9,11,12,13], they cannot
be directly applied to other types of EBSs, because Android
uses its system-specific communication model, APIs, and
component life-cycles. Thus a generalized solution is required
to protect other types of EBSs.

To overcome aforementioned challenges and the
shortcomings of the existing approaches, I designed a
technique that automatically detects target EBS’s
vulnerabilities that expose the system to event attacks. My
solution statically inspects target EBS in order to identify
security vulnerabilities that expose the system to event attacks.
It performs vulnerable-flow analysis and pattern matching on
event communication channels between components. My
technique is distinguished from prior works because (1) it
detects potential risks of event attack in EBSs more accurately
than existing techniques, (2) it supports multiple types of
MOM platform, and (3) it enables a scalable analysis of EBSs
comprising a large number of components and methods.

This paper makes the following contributions: (1) I
proposed a novel technique that identifies security
vulnerabilities from multiple types of EBSs; (2) I developed a
prototype tool that implements the proposed technique; (3) I
provided the results of evaluations that involve real-world
EBSs and comparable techniques. Section 2 illustrates event
attacks in EBSs, which motivate my research. Section 3 details
my approach and Section 4 presents the evaluations of my
technique. A discussion of related work is provided in Section
5, and my conclusions are presented in Section 6.

II. MOTIVATING EXAMPLE: WEB APPLICATIONS

In this section, I will present a simplified example of event
attack which can be launched on event-based web apps. Fig. 1
and 2 illustrate eavesdropping attack. An app App1 follows
event-based communication model and is implemented by
using Java Message Service [3], a Java MOM platform for
message-based communication between components. App1 is
corrupted to contain an unintended component Mal (in Fig. 2)
so that event attacks can be launched. Fig. 1 and 2 show where
App1’s vulnerability resides. In this app, all events are
published through ―CustomTopic‖.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

23 | P a g e

www.ijacsa.thesai.org

Fig. 1. Component Vic in App1.

Fig. 2. Component Mal in App1.

Component Vic in App1 (in Fig. 1) publishes an event e1
through CustomTopic without any particular protection such as
access restrictions. e1 has two attributes— one with the name
―Name‖ (whose value is ―ReplyInfo‖) and one with the name
―StringProperty‖ (whose value is ―Sensitive‖)—while
containing sensitive information (i.e., s). By listening to
―CustomTopic‖ and declaring attributes ―ReplyInfo‖ and
―Sensitive‖, Mal can eavesdrop on the event sent from Vic and
obtain the sensitive information.

As shown in this example, since event attacks appear to be
ordinary event interactions, existing malware inspection
techniques, especially the techniques that rely on signature-
based detection [23], may not be able to detect event attacks.
Moreover, since publishing and consuming events can be
processed via ambiguous interfaces, existing flow-analysis
techniques will be unable to accurately analyze implicit
invocation between components. Furthermore, since routing
event is performed in an invisible and non-deterministic way, it
is difficult to expect when and where the event attacks are
actually launched.

III. SOLUTION

My proposed solution basically considers three main
challenges as follows: (1) ambiguous event communication
channels: EBS’s inherent attributes hamper the extraction of
event communication channels via which events are exchanged
between components. Specifically, implicit invocation between
components makes it difficult to determine where each event
will flow into, and EBS’s event interfaces do not explicitly
reveal the events to be consumed. Furthermore, depending on

the types of MOM platform, different event interfaces can be
used. To handle this, my technique leverages Eos [4], a
technique that statically extracts event types and their attributes
based on the characteristics of underlying MOM platform; (2)
scalable flow analysis: To check whether sensitive data leaks
or unintended access to sensitive functionality can be launched,
control-/data-flow analysis on methods in each component is
required. However, in case when an EBS comprises a large
number of components and methods, flow analysis on every
method in the EBS may not be scalable. According to prior
research. [8], on average, EBSs contain over 35 methods to be
analyzed, which could consume hours for a real-world EBS.
Although several flow-analysis techniques have been proposed
for Android apps [12,19], considering the fact that mobile
platforms limit the size of apps, those techniques may not scale
with large-scale EBSs containing methods with larger size and
higher complexity. My technique provides a size reduction
algorithm which enables its analysis to scale well with
identifying vulnerabilities from large-scale EBSs; (3)
inconstant distinction of components. Event attacks are
launched across the components that have different trust level.
Although Android uses a consistent mechanism for
distinguishing among the trust levels of app components (i.e.,
each ―app‖ has different trust level), other EBSs may use
different types of distinction depending on their system
configuration. For example, the trust level of externally-
developed components can be different from that of component
developed in-house. To handle this, my technique introduces
the concept of trust boundaries. A trust boundary is defined as
a unit for dividing components based on each component’s

1 public class Vic {

2 ...

3 String s = getSensitiveInfo();

4 Topic topic = (Topic)ctx.lookup("CustomTopic");

5 TopicConnection con = factory.createTopicConnection();

6 TopicSession session = con.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

7 TopicPublisher publisher = session.createPublisher(topic);

8 Message e1 = session.createMessage();

9 e1.setJMSType("TextMessage");

10 e1.setName("ReplyInfo");

11 e1.setStringProperty("Sensitive", s);

12 publisher.publish(e1);

13 }

1 public class Mal {

2 ...

3 String m;

4 Topic topic = (Topic)ctx.lookup("CustomTopic");

5 TopicConnection con = factory.createTopicConnection();

6 TopicSession session = con.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

7 TopicSubscriber subscriber = session.createSubscriber(topic);

8 subscriber.setMessageListener(new MessageListener(){

9 protected void handleMessage(Message e2){

10 if (e2.getName().equals("ReplyInfo")){

11 m = e2.getStringProperty("Sensitive");

12 }}}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

24 | P a g e

www.ijacsa.thesai.org

trust level. Components that have the same trust level belong to
the same trust boundary, and a trust boundary can be set per
each component as well as a group of components.

My solution operates in three phases—Extraction,
Reduction, and Identification—and uses three types of inputs:
the target EBS's (1) implementation, (2) configuration, and (3)
sensitive APIs. The configuration includes the information
regarding the underlying MOM platform (i.e., the methods for
event communication and the base class for events) and trust
boundaries. The information of underlying MOM platform can
be derived from the API specification of the platform, which
only needs to be identified once per platform. Considering the
existing platforms, such information has been publicly
accessible. Trust boundaries can be easily derived by clustering
components based on a developer's trust level regarding each
component. While a set of sensitive APIs relies on the
expectation that developers can provide accurately, it is fairly
straightforward to identify them. Because so far as the
components developed in-house are concerned, they might
know particular APIs that handle important data or sensitive
functionalities. Furthermore, even if a developer is not fully
knowledgeable about the sensitive APIs in the target system,
she can refer to the existing sets of APIs [2] which are
generally considered as sensitive. According to the results of
evaluation in Section 4, relying on setter and getter methods
which are generally considered as sensitive, indicated a fairly
high precision (=85.67%) in identifying vulnerabilities. In the
remainder of this section, I will discuss each of three phases in
detail.

Extraction - In this phase, target system's implementation is
inspected in order to extract two different information: (1) The
first information includes published event types (PET) and
consumed event types (CET) accessed by each component,
which can be used to infer event communication channels
between components [8]. By using static flow-analysis on the

target system's implementation, every component's PET and
CET are extracted along with corresponding attributes from the
system implementation. In Fig. 1, an example of PET
published at line 12 is {(Name: "ReplyInfo"), (StringProperty:
"Sensitive")}; (2) The Second information is the location
where each sensitive API is accessed or called. For each
method in a given list of sensitive APIs, the components where
the method is called are identified along with their location in
the system implementation.

Reduction-To identify vulnerable event communication
channels, both inter- and intra-component flows are considered
by combining the extracted event types with each component's
control-flow graph (CFG). However considering a large-scale
EBS, it may not be scalable to generate and traverse every
component's CFG. To address this, we build an event flow
graph (EFG), which provides a macro perspective of target
EBS (see Fig. 3), and examines the EFG in order to prune the
components that are unnecessary for subsequent analyses.

In an EFG, components are connected by the edges that
represent event communication channels between pairs of
components. An edge is determined by matching PET and CET,
while having a direction to which an event is being sent. For
the component where a sensitive API is called, my solution
checks if its sensitive API is reachable from or to its event
interfaces—consuming event interface (CEI) and publishing
event interface (PEI)—via its call graph (CG). If yes, the
component is labeled as a sensitive component (see Fig. 3).
The components that form an event communication channel
across trust boundaries are labeled as boundary components. If
a boundary component’s PEI for event communication across
trust boundaries is reachable from its CEI or sensitive API via
CG, its attribute is set to be outflow-boundary (OB).
Conversely, if its CEI for event communication across trust
boundaries is reachable to its PEI or sensitive API via CG, its
attribute is set to be inflow-boundary (IB).

Fig. 3. An Event Flow Graph.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

25 | P a g e

www.ijacsa.thesai.org

Algorithm 1. Identification of Vulnerable Communication
Channels

Input: G an EFG

Output: VulCF a set of vulnerable event communication

channels

1 Let SG be a set of sensitive components in G

2 Let OBG be a set of outflow-boundary components in G

3 Let IBG be a set of inflow-boundary components in G

4 Let SMc be a set of sensitive methods in a component c ∈ G

5 Let l = [c1, c2, ... cn] be a list of connected components

 from component c1 ∈ SG to component cn ∈ OBG or

 from component c1 ∈ IBG to component cn ∈ SG

6 Let t ∈ (PETc ∪ CETc) where ∀c ∈ G

7 foreach l ∈ G do

8 if ((c1 ∈ SG) ∧ (cn ∈ OBG)) then

9 foreach s ∈ SMc1 do

10 t identifyFlow(c1, s, PEIc1, ―out‖, l.remove(c1))

11 add getOutFlowChannel(t) to VulCF

12 if ((cn ∈ SG) ∧ (c1 ∈ IBG)) then

13 foreach s ∈ SMcn do

14 t identifyFlow(cn, s, CEIcn , ―in‖, l.remove(cn))

15 add getInFlowChannel(t) to VulCF

16 return VulCF

My solution prunes the components that are not associated
with vulnerable event communication. For example, in Fig. 3,
component s1 publishes two different types of events (i.e., a
and c) each of which initiates different subsequent event
communication (i.e., b and d-e, respectively). Considering the
fact that event attacks exploit (1) event communication across
trust boundaries and (2) event communication that flows into
or from sensitive APIs, event communication channels for c, d,
and e are not essentially vulnerable to event attacks, because
they are not involved in the event communication across trust
boundaries. Thus, the components that are connected with
those event channels are removed (i.e., components c1, c2, and
c3) from EFG in order to reduce the overhead in subsequent
flow analyses.

Identification-Vulnerable event communication channels
are identified by implementing Algorithm 1 on the pruned
EFG. Algorithm 1 iterates over each list of connected
components (i.e., l in G), which directs from a sensitive
component to a boundary component or reverse (lines 7-15).
Two cases are considered depending on the direction of l:

(1) For l which directs from a sensitive component to an
outflow-boundary component (lines 8-11), Algorithm 1 checks
if an intra-component flow exists between a sensitive methods
and PEI of c1 (=the starting component of l) by calling
identifyFlow with the flag as "out" (line 10). To illustrate this
case, consider the component Vic in Fig. 1. Since Vic is a
sensitive component and an out-flow boundary component,
Algorithm 1 checks if an intra-component flow exists between
its sensitive method getSensitiveInfo and its PEI publish by
calling identifyFlow. identifyFlow checks if a given component
contains an intra-component flow between given two methods
(i.e., m1: s and m2: PEIc1). In case when a given flag is "out", it
inspects every node in the CFGs of m1 and m2, and checks if a
node in m2 is dependent on a node in m1. If yes, it recursively

checks an intra-component flow from CEIs to PEIs of
subsequent components in l. If the flows exist throughout every
component in l, it returns PET which can be published via m2;
Otherwise it returns null. For the reverse case when flag is "in",
it checks the flow from nodes in m2 to node in m1, and
recursively identifies intra-component flows from PEIs to CEIs
of subsequent components in l. If the flow exists through every
component in l, it returns CET, which can be consumed via
m1; Otherwise, it returns null. If identifyFlow returns PET (i.e.,
t) which is not null, Algorithm 1 identifies the event
communication channel where the returned PET is published
by calling getOutFLowChannel, and add the channel to VulCF,
a set of vulnerable event communication channels (lines 10-
11). Coming back to the example in Section 2, since Vic
contains an intra-component flow from getSensitiveInfo to
publish, the PET (i.e., {(Name: "ReplyInfo"), (StringProperty:
"Sensitive")}) will be returned by Algorithm 1. Finally, the
communication channel between Vic and Mal will be added to
VulCF.

(2) The second case is for l which directs from an inflow-
boundary component to a sensitive component (lines 12-15).
Algorithm 1 checks if an intra-component flow exists between
a sensitive method s and CEI of cn (=the last component of l)
by calling identifyFlow with the flag as "in" (line 14). If
identifyFlow returns CET (i.e., t) which is not null, Algorithm
1 identifies the event communication channel where the
returned CET is consumed by calling getInFlowChannel, and
add the channel to VulCF (line 15).

My solution also performs pattern analysis on the event
communication channels in EFG based on the previously
identified patterns [9]. Four different patterns are considered as
follows: (c: a component, T: a trust boundary, x y: an event
communication channel exists from x to y).

(1) For components c1 and c2 ∈ T1, c3 ∈ T2; c1 = c2 = c3:
(c3 c2) ∧ (c1 c2)

(2) For components c1 and c2 ∈ T1, c3 ∈ T2; c1 = c2 = c3:
(c1 c3) ∧ (c1 c2)

(3) For components c1 ∈ T1; c2 and c3 ∈ T2; c1 = c2 = c3:
(c1 c2) ∧ (c2 c3) ∧ ¬(c1 c3)

(4) For components c1 and c2 ∈ T1, c3 ∈ T2; c1 = c2 = c3:
(c1 c2) ∧ (c2 c3) ∧ ¬(c1 c3)

The patterns are based on the assumption that event
communication within the same trust boundary is intended
access, but event communication across the boundaries can be
unintended access from a malicious component. Specifically,
in case of the pattern (1), c3 c2 can be spoofing. For the
pattern (2), c1 c3 can be interception or eavesdropping. For
the pattern (3) and (4), c1 c2 c3 can be confused deputy
or collusion. If a given EFG contains event communication
channels that match any of these patterns, the corresponding
channel(s) to VulCP (i.e., a set for vulnerable event
communication channels) are returned. Finally, all the
identified event communication channels in VulCF and VulCP
are returned. While the channels belonging to both sets can be
considered as the most vulnerable, other ones also need to be
inspected and protected in order to minimize the threats of
event attacks in a target EBS.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

26 | P a g e

www.ijacsa.thesai.org

IV. EVALUATION

I have implemented the prototype of my solution as a
stand-alone Java app which combines approximately 2,000
newly written SLOC with the off-the-shelf tools, Eos [4] and
Soot [21]. Eos is used in the extraction phase to extract PET
and CET from target EBS. Soot is used to generate CGs and
CFGs of the components within a target EBS. The prototype
was empirically evaluated in terms of its accuracy,
applicability, and performance in detecting vulnerabilities from
a target EBS's byte-code.

A. Accuracy

This evaluation targeted vulnerability detection tools for
web apps, because they fall under a particular type of EBS
which can be implemented by using MOM platforms. Among
the state-of-the-art static analysis tools for detecting security
vulnerabilities in web apps, three tools were executable while
supporting Java-based systems: Xanitizer [7], Owasp Orizon
[6], and SonarQube [5]. I evaluated my prototype's accuracy in
identifying vulnerable event communication channels by
comparing its results against those three tools.

Since existing test benchmarks for web apps neither target
EBSs nor event attacks, I have created a test benchmark for
evaluating security analysis techniques for EBSs. To minimize
internal threats to the validity of results, I asked graduate
students at USC to build a set of apps that implement event
attacks based on the published literature [9]. They built 20
distinct event-based apps by using two representative types of
MOM platforms (10 apps for each): (1) Java Message Service
[3], the widely adopted Java-oriented middleware; and (2)
Prism-MW [1], a research-off-the-shelf middleware platform
for distributed software systems. Every app was designed to
contain a malicious component that had the sole purpose of
launching an event attack. The benchmark also comprises five
"trick" apps containing vulnerable but unreachable
components, whose identification would be a false warning.
This yielded a total of 25 event-based apps containing 20
vulnerable event communication channels.

I ran the three tools on my test benchmark and measured
their (1) precision, i.e., identified vulnerabilities that were
actually vulnerable to event attacks, and (2) recall, i.e., the ratio
of identified vulnerabilities to all those exposed to event
attacks. My prototype detected vulnerable event
communication channels with 100% precision and recall,
correctly ignoring all "trick" cases. However, other tools (i.e.,
Xanitizer, Owasp Orizon, and SonarQube) were unable to find
any of the vulnerabilities related to event attacks from the
benchmark. Specifically, Xanitizer did not return any
vulnerability. While Owasp Orizon and SonarQube reported
some security warnings (e.g., potential dangerous keyword in
the method), they are not directly related to the vulnerabilities
caused by event attacks. This is primarily because these three
tools neither target event attacks nor support inter-component
flow analysis.

B. Applicability

To assess if my solution is applicable to real-world EBSs, I
selected eight EBSs from the test suite which have been used in
evaluating prior research [4]. While all subject systems are

implemented in Java, they are from different app domains (e.g.,
game, simulator, and chat system), of different sizes (5K-
247IK SLOC), and use different underlying mechanisms (e.g.,
JMS [3], Prism-MW [1], and REBECA [16]) for event
communication. Since the list of sensitive APIs and trust
boundaries were not provided for those systems, I have used
the configuration that every 'getter' or 'setter' method was a
sensitive method and every component belonged to different
trust boundaries. According to the well-known sensitive API
list for Android [18], 81% of sensitive methods are eight
getters or setters (getter: 97%, setters: 65%), which implies that
getters and setters are more likely to be sensitive to security
attacks compared to other methods. However, it is important to
note that this does not necessarily meant that all getters and
setters are always sensitive methods. Among the eight subject
systems, my prototype flagged 25 vulnerable event
communication channels in three systems (Dradel: 12, ERS:
11, KLAX: 2). On average, the precision of result was 85.67%
(Dradel: 75%, ERS: 82%, KLAX: 100%). Every false positive
was caused by the prototype's inaccuracy in identifying
control-flows between sensitive methods and event interfaces.
For those three systems, Xanitizer reported 83 security
warnings such as "may expose internal representation by
returning reference to mutable object" and "IO Stream
Resource Leaks" (Dradel: 6, ERS: 62, KLAX: 15). However
only seven of them (8.43%) were related to the vulnerabilities
that expose the system to event attacks. Owasp Orizon and
SonarQube returned 13 (Dradel: 9, ERS: 1, KLAX: 3) and 95
(Dradel: 17, ERS: 73, KLAX: 5) implementation bugs,
respectively, indicated as "empty catch detected" and "found
potential dangerous keyword". But none of them were related
to the vulnerabilities that expose the system to event attacks.
Those three tools also did not return any such vulnerability
from the other five subject systems. Although my prototype
outperformed the three tools in this evaluation, it is to be noted
that they detected additional types of vulnerabilities my
prototype does not target.

I also tested my prototype on the event-based apps
comprising different numbers of components. I created four
distinct apps by adding different numbers of components (i.e.,
25, 50, 75, 100, respectively) to an app randomly selected from
my benchmark. To check the prototype's best-case perfor-
mance overhead, each of the added components is designed to
have a minimized architecture—containing one method for
communicating with at most two other components (55
SLOC)—which would induce the shortest analysis time while
connected with other components. The size of the apps
spanned 2.8K-7K SLOC. None of the added components are
involved in the vulnerable event communication channels so
that they can be pruned in Reduction phase. Then I measured
the analysis time for each app both "with" and "without" the
Reduction phase. The result (see Fig. 4) indicates that as the
number of added components increased, the difference of
analysis time between "with" and "without" Reduction phase
also increased. This result confirms that my solution minimizes
the potential overheads in its analysis by introducing the
pruning operation. Considering the fact that the added components
are designed to have a minimized architecture, the effectiveness of
pruning will drastically increase in the case of large-scale EBSs
comprising a number of components with higher complexity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

27 | P a g e

www.ijacsa.thesai.org

Fig. 4. Performance on different Number of Components.

V. RELATED WORK

Several approaches have targeted the security in EBSs
[15,17,20,22,25]. Simeon et al. [25] examined the security
vulnerabilities of event-driven systems and defined the
conditions that produce them. In general, existing security
solutions for EBS employ encryption, static code analysis,
and/or runtime access control techniques.

Encryption is widely used technique for securing not only
general software systems, but also EBSs. EventGuard [22]
proposes encryption for publish/subscribe systems in which
each component encrypts events through event broker network.
Publishers sign events and encrypt them with a random key,
while the signature itself is encrypted with a topic-specific key
and is attached to the event. However, encryption techniques
increase the risk of compromised keys and may cause
unacceptable performance overhead. Furthermore, key
distribution is in appropriate when it is not determined which
component will comprise the system.

Static code analysis is a popular technique for inspecting
security flaws in target systems. SABER [14] is a static
analysis tool that detects common design errors based on the
instantiations of error pattern templates. Andromeda [27]
inspects data-flow propagations on demand, while supporting
apps written in Java, .NET, and JavaScript. Xanitizer [7]
statically detects security vulnerabilities such as injections and
privacy leaks by using taint-flow analysis. Owasp Orizon [6] is
a source code security scanner designed to spot vulnerabilities
in J2EE web apps by using pattern matching. SonarQube [5] is
an open source platform for inspection of code quality to detect
security vulnerabilities.

Runtime access control is another popular technique for
securing EBSs. Alex et al. [24] proposed a policy model and
framework for content-based publish/subscribe systems.
DEFCon [26] is a middleware that applies an information flow
control model which tracks the event flows through a complex,
heterogeneous event processing system and constrains
undesirable event flows that could potentially violate security
policy. However, aforementioned techniques are more focused
on other types of security issues than event attacks.
Furthermore, since those techniques do not fully support event-
based communication model, they may suffer from inaccuracy
and scalability problems in analyzing large-scale web apps
comprising a number of components.

VI. CONCLUSION

While event-based communication model enables highly
decoupled, scalable, and easy-to-evolve systems, the non-
determinism in event processing can be exploited by event
attacks. Existing solutions for general software systems cannot
be directly applied to resolve event attacks because they do not
support event-based communication model. Furthermore,
existing security solutions targeting EBSs do not appropriately
resolve event attacks or suffer from inaccuracy in detecting
event attacks.

To minimize the risk of event attacks, this paper presented
a novel vulnerability detection technique for EBSs that are
implemented by using MOM platforms. My technique
statically analyzes vulnerabilities by examining inter-
component flows and event communication patterns. It
improves upon existing techniques in detecting vulnerabilities
that expose the system to event attacks from a given EBS,
while supporting multiple types of MOM platforms and
increasing the coverage, accuracy, and scalability of
vulnerability detection. My empirical evaluation demonstrates
that my technique is more accurate in identifying vulnerable
event communication channels from 33 EBSs compared to the
state-of-the-art vulnerability detection techniques for web apps.
The result of performance analysis shows that my technique is
scalable to large-scale EBSs.

Future studies can focus on building a runtime-access
controller which controls runtime event communication based
on the statically-analyzed vulnerabilities. Also I can apply a
visualization technique which can display the identified
vulnerabilities between components in order to help engineer's
understanding.

REFERENCES

[1] Prism-MW-Architectural Middleware for Mobile and Embedded
Systems. http://sunset.usc.edu/~softarch/Prism/, 2001.

[2] Which methods should be considered ―Sources‖, ―Sinks‖ or
―Sanitization‖? http://thecodemaster.net/methods-considered-sources-
sinks-sanitization/, 2015.

[3] Java Message Service (JMS). http://www.oracle.com/technetwork/java
/jms/index.html, 2016.

[4] Automated Recovery of Software System Designs.
https://softarch.usc.edu/projects/automated-recovery-of-software-
system-designs/, 2016

[5] Continuous Code Quality | SonarQube. https://www.sonarqube.org/,
2017.

[6] Owasp Orizon. https://www.owasp.org/index.php/Category:OWASP
_Orizon_Project, 2017.

[7] Xanitizer. https://www.rigs-it.net/index.php/product.html, 2017.

[8] DEvA, http://www-scf.usc.edu/~gsafi/FSE2015Replication/, 2015.

[9] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner.
Analyzing Inter-Application Communication in Android. In Proceedings
of the 9th International Conference on Mobile Systems, Applications,
and Services (MobiSys), pages 239–252, 2011.

[10] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. 2001.
Design and evaluation of a wide-area event notification service. ACM
Trans. Comput. Syst. 19, 3, pages 332-383, 2001.

[11] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer.
Android Taint Flow Analysis for App Sets. In Proceedings of the 3rd
International Workshop on the State of the Art in Java Program Analysis
(SOAP), pages 1–6, 2014.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

28 | P a g e

www.ijacsa.thesai.org

[12] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien
Octeau, and Patrick Mcdaniel. IccTA: Detecting Inter-Component
Privacy Leaks in Android App. In Proceedings of the 37th International
Conference on Software Engineering (ICSE), pages 280–291, 2015.

[13] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex:
Statically Vetting Android Apps for Component Hijacking
Vulnerabilities. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), pages 229–240, 2012.

[14] Darrell Reimer, Edith Schonberg, Kavitha Srinivas, Harini Srinivasan,
Bowen Alpern, Robert D. Johnson, Aaron Kershenbaum, and Larry
Koved. SABER: Smart Analysis Based Error Reduction. In Proceedings
of the 2004 ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), pages 243–251, 2004.

[15] Leonardo Aniello, Roberto Baldoni, Claudio Ciccotelli, Giuseppe
Antonio Di Luna, Francesco Frontali, and Leonardo Querzoni. The
Overlay Scan Attack: Inferring Topologies of Distributed Pub/Sub
Systems Through Broker Saturation. In Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems (DEBS),
pages 107–117, 2014.

[16] . M hl et al. Distributed Event-Based Systems. Springer-Verlag New
York, Inc., 2006.

[17] Fabio Petroni, Leonardo Querzoni, Roberto Beraldi, and Mario Paolucci.
Exploiting User Feedback for Online Filtering in Event-based Systems.
In Proceedings of the 31st Annual ACM Symposium on Applied
Computing (SAC), pages 2021–2026, 2016.

[18] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A Machine-Learning
Approach for Classifying and Categorizing Android Sources and Sinks.
In Proceedings of the 21st Annual Network & Distributed System
Security Symposium (NDSS), 2014.

[19] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden,
Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and
Patrick McDaniel. Flowdroid: Precise Context, Flow, Field, Object-
Sensitive and Lifecycle-Aware Taint Analysis for Android Apps. In
Proceedings of the 35th annual ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI), pages 259–
269, 2014.

[20] Brian Shand, Peter Pietzuch, Ioannis Papagiannis, Ken Moody, Matteo
Migliavacca, David Eyers, and Jean Bacon. Security Policy and
Information Sharing in Distributed Event-Based Systems. Reasoning in
Event-Based Distributed Systems, pages 151–172, 2011.

[21] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. Soot - a Java Bytecode Optimization
Framework. In Proceedings of the 1999 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON), pages 13–,
1999.

[22] Mudhakar Srivatsa, Ling Liu, and Arun Iyengar. EventGuard: A System
Architecture for Securing Publish-Subscribe Networks. ACM
Transactions on Computer Systems (TOCS), 29(4):10:1–10:40,
December 2011.

[23] Handong Wu, Stephen Schwab, and Robert Lom Peckham. Signature
based network intrusion detection system and method, September 2008.
US Patent 7,424,744.

[24] Alex Wun and Hans-Arno Jacobsen. A Policy Management Framework
for Content-based Publish/Subscribe Middleware. In Proceedings of the
ACM/IFIP/USENIX 1907 International Conference on Middleware
(Middleware), pages 368–388, 2007.

[25] Simeon Xenitellis. Security Vulnerabilities in Event-Driven Systems. In
Proceedings of the IFIP TC11 17th International Conference on
Information Security: Visions and Perspectives (SEC), pages 147–160,
2002.

[26] Peter Pietzuch. Building Secure Event Processing Applications. In
Proceedings of the First International Workshop on Algorithms and
Models for Distributed Event Processing (AlMoDEP), pages 11–11,
2011.

[27] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and
Salvatore Guarnieri. ANDROMEDA:Accurate and Scalable Security
Analysis of Web Applications. In Proceedings of the 16th International
Conference on Fundamental Approaches to Software Engineering
(FASE), pages 210–225, 2013.

