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Abstract—Hexagonal cells are applied in various fields of 

research. They exhibit many advantages, and one of the most 

important is their possibility to be closely packed and to form a 

hexagonal grid that fully covers the Region of Interest (ROI) 

without overlaps or gaps. ROI can be of various geometrical 

shapes, but this paper deals with the circular or hexagonal ROI 

approximations. The main purpose of our research is to provide 

a short review on the literature concerning the hexagonal grid, 

summarizing the existing state-of-the-art approaches on 

embedding hexagonal cells in the targeted ROI shapes and 

offering application-specific advantages. We report on formulas 

and algebraic expressions given in the existing researches that 

are used for calculating the number of embedded inner 

hexagonal cells or their vertices and/or edges. We contribute by 

integrating all researches in one place, finding a connection 

between previously unrelated applications concerning the use of 

embedded hexagonal grid and extracting commonality between 

previous researches on whether it provides the formulas on 

calculating the inner hexagon cells. In case only the number of 

edges or vertices is provided for the targeted application, we 

derive formulas for calculating the number of inner hexagons. 

Therefore, our survey results with the overview on solving the 

problem of embedding hexagonal cells in the desired circular or 

hexagonal ROI. The contribution of the review is the following: 

first it provides the existing and the derived formulas for 

calculating the embedded hexagons and second, it provides a 

theoretical background that is necessary to encourage further 

research. Namely, our main motivation, that is the geometrical 

design of the one of the world’s largest CERN particle detectors, 

Compact Muon Solenoid (CMS) is analyzed as a source for the 

future research directions. 

Keywords—Detector design; hexagon tessellation; region of 

Interest; regular grid 

I. INTRODUCTION 

Hexagonal grids are used in many different scientific fields, 
due to its advantages compared to other approaches. According 
to some researches, it has been found that using a hexagonal 
instead of a traditional square grid provides better results in 
digital image and signal processing [1-7]. In biological 
application, the advantage of using hexagons is present in 
observations, simulations and experiments, with a special 
benefit provided in biological modelling [8]. 

Many authors prompt the hexagonal grid usage, especially 
in cartography, because of the possibility to derive smaller 
resolutions by applying decomposition of the larger cells into 
smaller ones [9, 10]. The use of a hexagonal cells is inevitable, 

since hexagonal grid offers many general advantages compared 
to other regular grids that use square or rectangular arrays. 
First, resource savings can be obtained. For example, when 
applied in engineering, hexagonal sensor shape enables 
reduced material waste when it is produced from a circular 
silicon wafer [11, 12]. Also, the data processing is faster with 
the hexagonal structure and the needed memory usage for data 
storage is decreased (13.4% compared to rectangular grid 
[13]). Also, the processing resources are reduced [14, 15]. 

Besides, important advantage of a hexagonal grid is that the 
nearest cells are equidistant from a single rounded cell, such 
that the nearest neighbor finder algorithm is less ambiguous 
than with using squares or rectangles [8, 15, 16]. Another 
advantage of the hexagonal grid is the possibility to fully cover 
the Region of Interest (ROI) without void or gaps. The 
increased area usage is shown with hexagons compared to 
other polygon shapes [17, 18]. 

There are many applications of the general hexagon usage, 
but not so many address a specific problem of embedding the 
hexagonal cells in a selected ROI. Also, according to our 
knowledge, no paper based on the general survey on the former 
question is found in the existing literature. Therefore, the aim 
of this paper is to provide a short review on the current topic. 
We concentrate on a specific case where ROI is approximated 
with a circular or a hexagonal shape. We classify the papers 
from the literature in two main classes depending on the ROI 
used. Next, subclasses are derived based on the practical 
application or the certain field of research. Further and final 
categorization is done based on the mathematical formulas that 
are provided in the paper, whether for the calculation of the 
total number of hexagonal cells embedded in the ROI, or the 
number of the corresponding inner hexagon vertices and edges. 

In case that the number of inner hexagonal cells is not 
provided in the referent papers, we derive formulas for the total 
number of hexagons embedded in the ROI. The goal of this 
overview is to provide the existing mechanisms of hexagon 
cells calculation in the hexagonal and circular ROI, with the 
aim to develop a framework for sensor modelling in the 
sensing region. Our targeted application is the Compact Muon 
Solenoid (CMS) detector geometry, which should be designed 
and analyzed. The basic intention is to calculate the total 
number of hexagonal sensors needed to cover a sensing layer 
in the hexagonal modular and circular detector region to enable 
the evaluation of the sensor production cost in the future work. 
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The paper is organized as follows. In Section II, 
methodology for the survey is given with the posed research 
questions and context. Also, the search and selection result of 
the literature papers is summarized in tables based on the pre-
defined categorization strategy. Section III deals with the 
theoretical background on the hexagonal grid and the ROI 
definition. A short review on the hexagonal cells embedded in 
the circular and hexagonal ROI is given in Section IV. The 
research findings are summarized in Section V. Definition of 
the new CMS detector geometry model is presented in Section 
VI and the future research directions are derived. Section VII 
concludes the paper followed by references used. 

II. METHODOLOGY 

A. Research Questions 

With this survey, we intend to answer the following 
research questions: 

 RQ1: Which applications can be found in the literature 
that deal with embedding the hexagonal cells in 
circular or hexagonal ROI? 

 RQ2: Are there algebraic expressions provided in the 
literature that calculate the number of the ROI-
embedded hexagonal cells and/or the number of their 
vertices and edges? 

 RQ3: How to derive formulas which provide 
calculation of the embedded inner hexagonal cells in 
the ROI? 

B. Research Context 

The search strategy was applied to find the relevant papers 
published in conferences and journals. Hence, a manual and 
automatic search was done by using the IEEE Xplore and 
Google Scholar. A search concatenated string used as a basic 
criterion for the paper collection was: “hexagon”, “region of 
interest”, “packing” and “circle”. Only studies published in 
English were included in the review and rejected otherwise. 

When the initial set of papers is obtained, we excluded the 
duplicates. Each papers’ title, abstract and keywords were 
analyzed to evaluate its relevance. Papers were kept if they 
addressed the RQs and excluded otherwise. The total collection 
of papers divided into conferences (5 papers) and journals (37 
papers) is given in Table I. 

C. Paper Search and Selection Result 

Papers were divided in two basic classes depending on 
whether a circular or a hexagonal ROI is used. Next, the papers 
from each class are separated based on the specific application. 
The search and selection results are given in Table II for 
circular and Table III for hexagonal ROI shape. 

TABLE I.  PAPERS DIVIDED BY TYPE 

Paper type 
Extracted papers 

References  Total #papers 

Conferences [1], [4], [7], [16], [32] 5 

Journals [2], [3], [5], [6], [8-15], [17-31], [33-42] 37 

Total #papers 42 

TABLE II.  PAPERS USING CIRCULAR ROI (CLASS 1) 

Application 
Provided Mathematical Formulas 

#hexagonal cells #vertices #edges 

Sensor manufacturing [12] [] [] 

WSN [21] [] [] 

Total #papers 2 

TABLE III.  PAPERS USING CIRCULAR ROI (CLASS 2) 

Application 

Provided Mathematical Formulas 

#hexagonal cells #vertices #edges 

Interconnection 

networks 
[22], [24] [22-24] [22], [23] 

Discrete applied 

mathematics 
[25] [25-28] [25], [26] 

Silicate Networks [] [29], [30] [29], [30] 

Wireless Sensor 

Networks (WSN) 
[32], [34-36] [32] [] 

Hierarchical grids [8], [9], [37], [40] [] [] 

Total #papers 17 

We further categorized the papers from each application in 
sub-classes depending on whether authors provide formulas on 
how to calculate the total number of embedded hexagonal 
cells, their vertices or edges. 

III. THEORETICAL BACKGROUND 

A. Hexagonal Grid 

Hexagonal grid is formed by a regular tessellation of 
hexagonal cells used to cover the ROI without overlaps or gaps 
([19]). 

The hexagonal coordinate system can be defined by using 
various definitions [20], and we present the basic one with 
using two coordinate axes at π⁄3 angle so that a discrete 
indexation of each hexagonal cell becomes possible, as shown 
in Fig. 1. 

B. ROI Definition 

ROI can be approximated by any geometrical shape, but in 
this paper, we are interested in applications where ROI is a 
circle or a hexagon. 

 

Fig. 1. An Array of Cells in the Hexagonal Grid. 
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Fig. 2. Hexagonal Grid Embedded in the Centered Circle. 

Based on the conducted survey, there are more papers 
dealing with hexagonal ROI application, even though ROI 
approximation with a circle is more appropriate because of the 
simplicity of the mathematical calculations. The process of 
embedding hexagonal grid into circle can be equaled by the 
intent to encircle the hexagonal cells in the grid, where the 
circle center is shared with the central hexagonal cell in the 
coordinate system origin (0, 0). However, there are many 
possible ways of grid encircling, as given on Fig. 2. 

Also, ROI can be approximated by some other geometrical 
shape such as a polygon rather than circle, and we concentrate 
on the applications where ROI is a hexagon. The selection of 
these two ROI shapes is application-driven, as we target a 
potential geometry model for a specific application such as 
CMS detector sensing layer design. Our goal is to explore the 
state-of-the-art mathematical formulas provided in the 
literature or derived from the findings. Hence, in this paper, a 
short comprehensive review was conducted to describe, 
compare, and analyze the existing approaches or a related work 
on embedding hexagons into hexagonal or circular ROI. These 
are discussed thoroughly in the next section. 

IV. REVIEW ON HEXAGONS EMBEDDED IN THE ROI 

A. ROI Approximated by a Circle 

In sensor manufacturing, circular ROI is a silicon wafer 
from which hexagonal sensors are fabricated. In WSN, 
network sensing field or covered range can be depicted by a 
circle of a given radius, which is a ROI in the current context. 

Embedding hexagonal grid in the circular geometrical 
shape is interesting to study because of the many ways it can 
be encircled. The number of hexagonal cells embedded in the 
ROI must be calculated and adjusted accordingly, so that they 
are entirely contained inside a circle, or some compromises 
must be agreed on the ROI border. 

1) Sensor manufacturing: Bothra [11] considered forming 

semiconductor dies from smaller hexagonal sensor cells 

embedded on the circular wafer. Author used a hexagonal grid 

embedded into a circular ROI, to show that larger area can be 

used on wafer with using hexagons compared to other 

geometrical shapes. The waste of the silicone material thrown 

away is reduced as well as the total production cost. 

There is an attempt from Davis and Sinha [12] on forming 
the central hexagonal polygon dies, and several smaller outer 
polygons arranged around the central die (Fig. 3). Authors 
show that hexagonal grid enables more polygon sensors to be 
produced compared to a square grid when the wafer radius is 

constant. Authors provide examples on calculating the total 
number of embedded sensor cells in Table IV but do not 
provide formulas for their calculation. 

We reconstruct the total inner hexagonal or squared cells 
number according to Table IV as: 

         ( )    
       

        ( )    
              (1) 

In both cases, parameter k is number of “rings”, or 
maximum number of dies from the central die to the border (if 
there is central die in the tessellation like in hexagonal case, 
counting starts from 0, otherwise it starts from 1). If the full 
tessellation does not place all the full dies on the wafer, some 
dies in the most outer ring are cut out by the wafer radius. 
Those dies are taken out from the total number of embedded 
sensor cells given by the formulas. 

2) WSN: Unlike other grid-based regular deployment 

patterns in WSN, it is shown that hexagonal grid provides 

better coverage efficiency since it can cover the sensing area 

better than triangles and squares [17]. Kim et al [21] use a 

hexagonal grid with an ideal cell size to deploy the underwater 

WSN. Authors show that for a circular ROI, one can calculate 

number of hexagon rings needed to fully cover the disk of a 

given radius (Fig. 4). 

TABLE IV.  CALCULATING #SENSOR CELLS [12] 

Side length 

a [mm] 

Area per die 

[   ] 
# square dies 

# equivalent 

hexagon dies 

10 100 594 649 

20 400 148 151 

30 900 52 61 

 

Fig. 3. Calculating #Sensor Cells (Adjusted from [12]). 

 

Fig. 4. Hexagon Ring Calculation in WSN (Adjusted from [21]). 
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The applied formula to calculate the number of embedded 
hexagonal cells is the following [21]: 

          {

(    ) 

 
                         

 √(    )   

 
                 

          (2) 

Therefore, the total number of hexagon rings is denoted by 
q, and the small hexagon side length is given by l. To calculate 
q needed to fully cover the ROI of radius R, relation (2) must 
be satisfied. The number of hexagons in each hexagon ring   is 
given by the following formula [21]: 

                                 (3) 

Equation (3) enables one to calculate the number of 
hexagon rings. For example, having ROI of radius       
and given the cell size        , the number of hexagon rings 
   . Thus, we can calculate the number of hexagonal cells 
need to be fit inside a pre-defined circular ROI. 

B. ROI Approximated by a Hexagon 

1) Interconnection networks: Interconnection network 

consists of nodes processing the data in parallel. It is often 

modelled by the honeycomb network (HN) or the hexagonal 

network (HX) naturally contained into a hexagonal ROI. The 

various topology characteristics are studied depending on the 

application. For example, authors derive formulas to calculate 

the number of smaller hexagons inside the larger one, as well 

as the number of inner small hexagon edges or vertices. 

The basis is the work of Stojmenovic [22], presenting the 
problem of building a hexagonal grid or how to construct a 
honeycomb network. Example of HN(t), where the radius t is 
the number of hexagon rings between the network center and 
the ROI border is shown on Fig. 5. We can see how a 
honeycomb hexagonal mesh network is contained or embedded 
inside a regular hexagonal ROI. 

The total number of vertices of HN(t), is calculated as     
and the total number of edges is       . The diameter (the 
largest distance between two nodes) is       . These 
parameters are important for evaluating the network 
performance and cost influenced by the total number of 
network parallel nodes and links. 

We derive the size of the HN(t) in terms of total number of 
hexagons: 

            
                   (4) 

Chen et al. [23] proposed how to count the number of 
nodes n as a function of a given distance t from the center node 
to the network vertex in a hexagonal network HX(t) presented 
on Fig. 6. The total number of nodes of HX(t) is       

    , the total number of edges is defined as      –    
 . The diameter (number of links on the hexagonal ROI 
circumscribed circle) is       . 

Authors did not provide formulas for calculating the total 
number of embedded hexagonal cells. Therefore, we derive the 
formula based on the total edges/vertices count: 

         ( )    
                 (5a) 

All inner nodes in the network can represent the center of 
one hexagonal cell, so if overlapping is allowed, the number of 
hexagons is provided by (5a). Number of hexagons in non-
overlapping case can be calculated with the following formula, 
where t                 *   +: 

          {
                 

                        
         (5b) 

All parameters n, e, d and the number of hexagons is 
considered as a function of t, representing the size of the 
network [24]. Honeycomb network HC(n) is obtained from 
HC(n−1) by adding a ring of hexagons around the boundary of 
HC(n−1) [25]. It means that the number of nodes in each 
hexagon ring up to t equals (3), and the total number is again a 
cumulative sum (4). 

2) Discrete applied mathematics: We can consider a 

problem of defining hexagonally shaped honeycomb and 

hexagonal networks to be the same as embedding hexagonal 

cells in a hexagonal ROI. This is a well-known problem in 

applied discrete mathematics, where a connection between 

hexagonal and honeycomb networks is studied. By the 

definition, every honeycomb network HN(t-1) is contained 

inside some hexagon network HX(t) [25, 26]. Considering the 

example on Fig. 7, it is clearly indicated that, to embed a 

hexagonal grid in the hexagonal ROI, one needs to find its 

dual HX. Also, in the opposite procedure, the dual HN 

embedded in the HX of the ROI can be examined. The number 

of hexagons is again (4). 

 

Fig. 5. Honeycomb Network HN (3) (Adjusted from [22]). 

 

Fig. 6. Hexagonal Network HX (3) [23]. 
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Fig. 7. HN (3) is Contained Inside HX (4) (Adjusted from [26]). 

A mathematical problem of embedding a hexagonal grid 
into a bounding hexagon is presented in the literature as a 
degree diameter problem considering a graph as being 
embedded in host graph such as honeycomb network. This 
problem involves finding the largest sub graph in terms of the 
number of vertices subject to constraints on the degree and the 
diameter [27]. Diameter D is total number of edges on the 
circumscribed circle diameter of the hexagon by which the 
graph is encircled (Fig. 8). 

In the former context, a host graph is encircled by a 
hexagonal ROI with the size given by D. Formulas are 
developed to find the total number of inner vertices, divided 
into classes based on the odd and even diameter size [27]: 

| (  
 )|  {

                       

                       

                      
                    

           (6) 

In the above formulas, H is the honeycomb grid, where   
  

denotes a largest subgraph of H of diameter D        
               *       +  Depending on the ROI size, for it 
to be a hexagonal shape, the diameter must be even. Also, for 
    , ROI is a regular hexagon and for       , ROI is 
an irregular hexagon. Fig. 8 gives an example for both. Authors 
in [27] do not provide the total number of hexagons embedded 
inside the ROI. We derive the former with the following 
formulas: 

          {
                                 
 (    )         

           (7) 

There is a similar attempt to solve the degree diameter 
problem while counting the total number of vertices of the sub-
graph based on the triangular grid which is the basis for 
hexagonal networks [28]. It is expressed as a function of 
diameter, defining two classes of architectures, depending on 
weather the diameter is even or odd: 

  ( )  {

 

 
   

 

 
  

 

 
              

 

 
   

 

 
                  

           (8) 

Again, even diameter size architecture explicitly touches 
upon an issue of embedding hexagonal grid into a hexagon. 
Also, even diameter size is implying a regular hexagonal ROI, 
while the odd diameter size is used when ROI is the irregular 
hexagon (Fig. 9). Equation (8) enables one to calculate the total 
number of inner cells’ vertices [28]. We derive formulas to 
calculate the total number of inner hexagons: 

           {

 

 
(   )  

 

 
(   )  

 

 
           

 

 
(   )  

 

 
(   )               

    (9a) 

Formula (9a) allows overlapping hexagons. If overlapping 
is not allowed, and D                  the total number of 
hexagons is given by: 

           {

                                   
                                 
                         
                         

        (9b) 

3) Silicate networks: There are researches in which 

embedding of the honeycomb and hexagonal networks into 

silicates are studied. Naturally, a hexagonal ROI shape is used. 

For example, Manuel et al. [29] show a silicate network can 

be constructed from hexagons. Authors calculate the total 

number of hexagon nodes and edges in the network. HX (n) 

node labeling before a silicate network construction is given 

on Fig. 10. 

One can see on the figure that hexagons are clearly 
emphasized inside a hexagonal ROI. However, authors do not 
provide their total number. We derive the former with the 
following expression: 

          
 

 
   

 

 
              (10) 

 

 

Fig. 8. Honeycomb Grid with D = 8 and D=6 (Adjusted from [27]). We 

Added the Light Gray Border to Visualize the ROI Shape. 

 

Fig. 9. The Graphs for D = 3, 4, 5, 6 (Adjusted from [28]). 
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Fig. 10.  HX Node Labeling [29]. White Nodes Represent Centers and Black 

Nodes are Vertices of the Inner Hexagonal Cells. 

Parameter t in the upper formula (10) is a total number of 
vertices from the central node to the network vertex. 

In the former context, there are some other papers 
addressing the construction of the new, not only hexagon-like 
structures, derived from hexagonal and honeycomb networks 
with using graph operations. Basic properties of the defined 
topologies are investigated, such as the total number of 
hexagon vertices and edges [30]. 

4) WSN: To enable an efficient area coverage in WSN, it 

is not enough to position sensors only at vertices of the 

hexagon cells in a hexagonal grid. When covering a large 

hexagonal or circular area with WSN, sensors should also be 

placed at the centers of hexagon cells to eliminate voids. 

The total number of hexagons can be calculated with a 
known formula for centered hexagonal numbers (4) [31]. 

Parameter n in formula (4) can be perceived as      ring of 
hexagons [32]. As given on Fig. 11, authors place sensors on 
hexagon vertices and centers to form a hexagonal WSN grid. 

Also, a total number of deployed sensors or nodes marked 
in Fig. 11, is calculated by the equation below [32]: 

           ∑ (   (   ) ) 
            (11) 

In (11), N is number of hexagon rings required for the 
coverage,     as equal to the innermost ring where total 
number of sensors is 7, b constant in the relation adds 6 
hexagons with 4 nodes per hexagon i.e., total number of nodes 
is 24. Constant    , because for each ring, the multiple of 6 
hexagons is added. Constant    , because for each added 
hexagon, 3 additional nodes are added. 

Another example of embedding hexagonal cells into a 
hexagonal ROI can be found in WSN clustering example. It is 
shown that this structure provides better connectivity, where 
the sensing nodes are deployed at the vertices and centers of 
each hexagon cell [33]. Fan has shown that calculating not only 
number of cells in the ROI, but also the cell area in a hexagonal 
cluster group is interesting [34]. The total number of hexagonal 
clusters is     and the number of hexagonal clusters in each 

ring is defined with the following formula, where i is the     
ring from the center [34, 35]: 

   {
                           

 (   )             
          (12) 

There are a lot of benefits for WSN by using hexagonal 
clusters [36]. The idea of the subdivision, illustrated in Fig. 12 
(a), is to divide a hexagonal ROI into a set of smaller sub-

hexagon cells, for example a subdivision R/3 into a group of 7 
sub-hexagons and 6 third sub-hexagons, which is in total 9 
hexagons. Deeper subdivision example is shown on Fig. 12 (b), 
a subdivision R/4 into 13 sub-hexagons and 6 half sub-
hexagons. Authors show that for subdivision R/n total number 
of equal hexagonal cells is   . 

5) Hierarchical hexagonal grids: The use of hierarchical 

grids is common in cartography and biological modelling, 

where the basic intention is to simplify a grid by reducing its 

resolution [8]. There are several papers trying to modify the 

resolution of a grid by decomposing larger cells into smaller 

ones. Authors describe scaling schemes in which the use of 

partial hexagons is of interest. 

Sahr et al. [37] have shown earlier that a large hexagon 
cannot be composed of entire smaller hexagons. Hexagonal 
grids need to have a combination of hexagonal and non-
hexagonal composition. As visualized on Fig. 13, one uses 4 
hexagons (1 full and 6 border hexagon halves) and the other 
has 9 hexagons (7 full hexagons and 6 border hexagon thirds). 

Ben et al. [38] derived the possibility of ROI rotation. They 
develop two specific definition schemes for embedding 
hexagonal grid in the hexagonal ROI (Fig. 14). The approach 
for the inner scheme is presented also by Kumar et al. [39]. 
While both former papers provide a model for embedding 
hexagons into hexagons, no formulas are derived for the total 
number of inner hexagon cells. 

 

Fig. 11. WSN using Hexagonal Grid Deployment. 

 

Fig. 12. WSN Cluster Subdivision (a) R/3 (b) R/4 (Adjusted from [36]). 

  
(a)    (b) 

Fig. 13. Decomposition of Hexagonal ROI in: (a) 4; (b) 9 Hexagons [8, 37]. 
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Fig. 14. Embedding Hexagons Into a Hexagonal ROI (Adjusted from [38]). 

Sahr et al. [9] calculate the ratios between cell areas at a 
given grid resolution and the next larger scale grid resolution. 
They show that N hexagon cells at each finer resolution of a 
grid have 1/N the area of the next larger grid. 

Examples of 1/3, 1/4 and 1/7 fraction are given in Fig. 15. 
These examples are referred to as centered, meaning that small 
cells share their centers with larger resolution cells. Vertex-
sharing variants are given by [40]. An example of the 1/4 
fraction is presented on Figure 15 (d), whereas the vertices are 
shared among the small and large hexagonal cells. 

          
(a)     (b) 

          
(c)     (d) 

Fig. 15. Hexagonal Resolutions. Center Sharing (a) Fraction 1/3 (b) Fraction 

1/4 (c) Fraction 1/7 (d) Vertex Sharing Fraction 1/4 ([9], [40]). 

V. EVALUATION 

The short overview presented in the previous section 
provides a state-of-the-art on embedding hexagonal cells in the 
targeted ROI. The literature study revealed the following: 

 Each specific application can consider the number of 
hexagon cells, hexagon vertices and/or centers. In case 
only vertices or edges are calculated, one can derive 
the total number of inner hexagons. 

 Each application can consider the embedded hexagons 
to be overlapping or non-overlapping, regarding their 
total number. 

 Inner hexagons can be full or partial ones, especially at 
the border, and their total number can be calculated 
separately. 

 In some applications, the compromises are considered 
on the ROI outer border for the cells to be completely 
contained inside the circular or hexagonal region. 

A. Summarized Review Findings 

The summarized researches are complemented based on 
their basic purpose when hexagons are embedded in the ROI. 
Hence, authors in the papers are: 

 Providing models on how to design a specific structural 
scheme that we are interested in for the CMS geometry 
application, but with no derived algebraic expressions 
for calculating the inner cells’ total number ([38, 39]). 

 Providing formulas for the inner hexagonal cells’ 
number calculation inside a larger hexagon, but: 

o using a well-known formula (1) that is usually 

applied for the honeycomb network design [22, 

24, 25, 34, 35] 

o only providing examples on how to calculate the 

total number of inner hexagons including the 

hexagonal parts such as halves of thirds but with 

no generalized approach [8, 9, 36, 40] 

 Calculating the total number of inner hexagons’ 
vertices and/or edges, and the total hexagon number 
can be derived based on the provided expressions [23, 
27-29] 

VI. FUTURE RESEARCH DIRECTIONS 

A. CMS Detector Design Upgrade 

The previously summarized review findings can be used as 
guidelines for the further studies. The source of research is 
CMS detector, which is a famous general-purpose instrument 
for studying proton-to-proton collisions in the Large Hadron 
Collider (LHC) experiment at CERN [41]. 

 

Fig. 16. Hexagonal Structure in the CMS ECAL Upgrade. 
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Detector is continuously being improved, basically for two 
main reasons: development of new technologies and replacing 
parts of the detector which are damaged by very high levels of 
radiation. In the second phase of the LHC physics program, the 
upgrades are foreseen by the CMS technical proposal [42]. The 
most important part of the CMS detector being replaced is 
electromagnetic calorimeter (ECAL) end-caps since its 
material gets most damaged by the high levels of radiation. The 
new sampling ECAL design is proposed, being circular in 
shape and several layers deep [42]. Each layer should be 
covered in hexagonal sensor modules (SM) that consist of the 
inner hexagonal sensor cells (SC) and cover the detector 
circular end-cap layer (Fig. 16). 

B. CMS as a Source for Future Research 

As a main future research direction, we are interested in the 
geometry studies with the aim of the SM design for CMS. The 
result of the provided literature review enables the overview of 
the existing models for embedding hexagonal SCs into a 
hexagonal SM for CMS, which is a hexagonal ROI in the 
current context. Also, as hexagonal modules are embedded on 
the circular detector layer, the existing ways of embedding 
hexagons into a circular shape is interesting. Basic goal of the 
future study is the calculation of the total number of the inner-
ROI hexagonal cells whether circular or hexagonal, to evaluate 
the embedding efficiency. 

VII. DISCUSSION 

In Table V, the comparison between papers in the review is 
given based on the targeted future research. We discuss the 
potential of applying the state-of-the-art calculations in our 
targeted application-specific context. 

We define several criteria for comparison, such as: 

 the total number of hexagonal SCs in the hexagonal 
SM, 

 the total number of hexagonal SMs in the circular 
detector layer, 

 the provided geometrical model for embedding 
hexagonal grid in the ROI, 

 the identification of the partial SCs at the ROI border. 

As given in Table V, all selected references provide a 
possible geometry model for the design of the CMS detector 
sensing layer. However, not all of them provide the possible 
formulas for the number of SMs inside a circular sensing 
region, or the number of SCs in the hexagonal ROI. Even 
though some basic formulas are derived from the literature 
findings, there are only few papers in the evaluation part of our 
conducted review with the potential of having the border SC 
types identified. Certainly, there is a clear indication for further 
research on detector sensing layer geometry, in contrast to the 
summarized review findings. Namely, the total number of 
inner SCs should be calculated with the objective to estimate 
the overall SM production cost. 

A. Limitations of the Study 

Some limitations of the conducted literature survey should 
be noted. This is a rather short review where we concentrate 

only on typical applications found in the literature where 
hexagons need to be embedded in the ROI. There may be other 
approaches with the similar objective, but we omit it from the 
review if it does not trigger the potential geometry model for 
our targeted application. Also, every class of applications in the 
review could be classified based on various criteria that are 
application-specific. However, we classify papers only based 
on the provided formulas used to calculate the number of inner 
hexagon cells, their edges and vertices. The reason is again the 
general purpose of the review, to examine the existing 
formulas on calculating the number of embedded hexagons 
inside circular or hexagonal area. Also, hexagons can be 
embedded in other geometrical shapes, while again, the 
selected ROI shapes are application driven. 

TABLE V.  COMPARISON BASED ON THE FUTURE RESEARCH 

Ref. 
CMS Geometry Application 

#SMs inside 

detector layer 

#SCs inside 

SM 

Geometry 

model 

Border SCs 

identified 

[1]     

[2]     

[3]     

[4]     

[5]     

[6]     

[7]     

[8]     

[9]     

[10]     

[11]     

[12]     

[13]     

[14]     

[15]     

[16]     

[17]     

[18]     

[19]     

[20]     

[21]     

[22]     

[23]     

[24]     

[25]     

[26]     

[27]     

[28]     

[29]     

[30]     

[31]     

[32]     

[33]     

[34]     

[35]     

[36]     

[37]     

[38]     

[39]     
[40]     
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VIII. CONCLUSION 

In this paper, the contribution is threefold. First, we provide 
an overview on embedding hexagonal cells in the circular and 
hexagonal ROI, integrating papers from different fields of 
research. We classify the papers based on the ROI type and the 
specific application used. We find connections between 
previous work, concentrating on the need for embedding 
hexagons into circles or hexagons in the mentioned 
application-specific context. Next, we report on the existing 
formulas for calculating the number of inner hexagonal cells, 
or their vertices and/or edges. Finally, in case only the number 
of edges or vertices is provided for the targeted application, we 
contribute by deriving formulas for calculating the number of 
inner hexagons. 

As the overall conclusion derived by our review, there are 
studies from various research domains dealing with how 
smaller hexagons can be embedded into larger shapes such as 
circular or hexagonal region. The importance of calculating the 
total number of inner hexagons is clearly emphasized in the 
literature, as well as the potential problems that arise on the 
outer ROI border in the packing process. Concluded by the 
conducted review, there exists a theoretical background for the 
future CMS detector geometry studies, where a hexagonal SM 
is designed containing hexagonal SCs, and SMs are tessellated 
on the circular detector sensing layer. Hence, some basic 
guidelines for the future research on the CMS geometrical 
structure is provided, together with the existing formulas and 
algebraic expressions that could be applied or derived from the 
literature findings. As a next step in our research, we intend to 
derive a framework of architectures that can be used for the 
hexagonal SM design, with the aim to efficiently embed the 
inner hexagonal SCs. The total sensor production cost will be 
evaluated. Possibly, the solution will be found for solving the 
problem of packing border cells, at the same time identifying 
the various sensor shapes that need to be produced. 
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