
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 7, 2019 

374 | P a g e  

www.ijacsa.thesai.org 

Entanglement Classification for a Three-qubit System 

using Special Unitary Groups, SU(2) and SU(4) 

Siti Munirah Mohd
1
 

Advanced Technology and Sustainability 

Research Group PERMATA Insan College 

Universiti Sains Islam Malaysia, Bandar Baru Nilai 

71800 Nilai, Negeri Sembilan, Malaysia 

Bahari Idrus2 

Center for Artificial Intelligence Technology 

Faculty of Information Science and Technology 

Universiti Kebangsaan Malaysia 

43600 Bangi, Selangor, Malaysia 

Hishamuddin Zainuddin
3 

Laboratory of Computational Sciences and Mathematical 

Physics, Institute for Mathematical Research 

University Putra Malaysia 

43400 UPM Serdang, Selangor, Malaysia 

Muriati Mukhtar4 

Center for Software Technology and Management 

Faculty of Information Science and Technology 

Universiti Kebangsaan Malaysia 

43600 Bangi, Selangor, Malaysia 

 

 
Abstract—Entanglement is a physical phenomenon that links 

a pair, or a set of particles that correlates with each other, 

regardless of the distance between them. Recent researches 

conducted on entanglement are mostly focused on measurement 

and classification in multiqubit systems. Classification of two 

qubits will only distinguish the quantum state as either separable 

or entangled, and it can be done by measurement. Meanwhile, in 

a three-qubit system, it becomes more complex because of the 

structure of the three qubits itself. It is not sufficient to do 

measurement because the states are divided into three types, 

including fully separable state, biseparable state, and genuine 

entangled state. Therefore, the classification is needed to 

distinguish the type of states in the three-qubit system. This study 

aims to classify the entanglement of three-qubit pure states using 

a combination model of special unitary groups, SU(2) and SU(4), 

by changing the angle of selected parameters in SU(4) and acting 

on the separable pure state. The matrix represents SU(2) is     

matrix while matrix for SU(4) is 4    matrix. Hence, the 

combination of SU(2) and SU(4) represent 8   matrix. This 

classification uses the von Neumann entropy and three tangle 

measurements to classify the class, respectively. The results of 

this study have indicated that the three-qubit pure state has been 

successfully classified into different classes, namely, A-B-C, A-

BC, C-AB, GHZ, and W, with A-B-C being a fully separable state, 

A-BC and C-AB are biseparable states, and GHZ and W are 

genuine entangled states. The results show that this model can 

change separable pure states to other entanglement class after 

transformation is done. 

Keywords—Quantum entanglement; multiqubit entanglement; 

entanglement classification; special unitary group; three-qubit 

system; quantum information 

I. INTRODUCTION 

The application of entanglement concept is known to be 
predominant in quantum computers. This research focuses on 
three qubits based on the knowledge that the structures of the 
qubits are more complex and applicable in actuality. This is 
due to the fact that in reality, quantum computers require more 
than three qubits to access data during high capacity 

information transmission. It is shown in the current recent, 20 
qubits [1] and 50 qubits have been built and tested by IBM [2]. 
Throughout the time of entanglement concept’s emergence, 
scientists initially rejected the idea because they were not 
convinced that entanglement could solve computer problem 
involving numerous data. However, entanglement became 
evident in the problem of quantum theory after Einstein, 
Podolsky, and Rosen (1935) [3-7] succeeded in describing the 
mysterious phenomenon inherent in quantum mechanics by 
initiating an experiment, known as the EPR paradox. Despite 
that, Einstein had doubted the concept of entanglement 
because the idea did not obey the limit of the speed of light. 
An assumption was made that the theory of quantum 
mechanics was incomplete at that time, supported by the fact 
that he made the second assumption about the existence of 
hidden variables which were yet to be found. It was also 
reported that Einstein's assumptions were proven wrong when 
John Bell [8] succeeded in proving the existence of 
entanglement in an experiment conducted in 1964 [3, 8, 9]. 

This research focuses on the classification of entanglement 
states in a multiqubit system [10-12] for the reason that 
normal measurements are unable to precisely differentiate the 
states. Previous research by Yang et al. [3] had only succeeded 
in classifying the quantum states into either separable, or 
entangled states due to the nature of structure in two qubits are 
simpler compared to the structure of multiqubit. Therefore, 
this research extends the inclusion of three qubits based on the 
fact that the classification of three qubits takes into 
consideration three types of state conditions known as fully 
separable, biseparable, and genuine entangled states [4, 13]. It 
is a known knowledge that the structure of the three-qubit 
system [14] is more complicated than the two-qubit system 
due to the additional parameters in each qubit. Furthermore, it 
is still equivocal whether the three-qubit structure can or 
cannot be transformed using local unitary. In order to classify 
the three-qubit state, various methods were used in the 
previous study such as the Generalized Schmidt 
Decomposition (GSD) [5], inductive method [6], special 
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unitary group (SU), and special linear group (SL) [9, 11, 14, 
15]. In spite of that, the classification of three-qubit systems 
using SU groups is not widely used at current, especially using 
SU(2) and SU(4). Although classification using SU(2) has also 
been done on two qubits and three qubits, studies utilizing the 

(2) (2) (2)SU SU SU  combination, however only represent 

one qubit, which could only perform local operations for each 
qubit without affecting the other one. In addition, the six 
parameters used in previous study did not allow the selection 
of parameters to be done [15, 16]. Nonetheless, a complete 
classification was made for selected simple cases, for example, 

the 2 2 n  . SU(4) system [17, 18] was found to be able to 

represent two qubits. That being said, the classification of the 
three-qubit system [19, 20] has not been performed using the 
combination of SU(2) and SU(4). 

Therefore, based on the situations mentioned above, in this 
paper, the classification of three qubits is presented using 
SU(2) and SU(4) under local unitary transformation with 
selected parameters in specific angles from SU(4). This study 
employs two types of measurements specifically to detect the 
state either entangled or separable during the classification. 
First, the von Neumann entropy [19, 21] is given as 

( ) Tr log( )S      and the second is the three-tangle [22] 

measure, 3  or also known as the residue entanglement. Three-

tangle measure,  3  is often used to differentiate between the 

GHZ-state and the W-state when these states become genuine 
entangled state [23, 24]. The three-tangle measure used in this 

paper is given as,   2 2

3 0 44    , with λ representing the 

eigenvalues [16, 17]. 

II. MATERIAL AND METHOD 

A. Modeling Process 

This section explains the process of developing the 
combination model of       and        in details. The step 
by step process is implemented according to the four main 
steps as follows: 

1) Understand the formula used and the range of angle for 

each parameter in       parameterisation and       
parameterisation. The generator for each parameter used in 

      and       also has been studied. 

2) Select six variable parameters from       
parameterisation based on the generator used with a fixed 

parameter used in      . The chosen generator was based on 

matrix characterisation, which is appropriate to enable the 

model to be developed. The selected parameters are combined 

using inner product operation. The range of angle for the 

parameter was based on the minimum and maximum range for 

an each of the parameter selected in        Four combination 

angles from the range of angles of each parameter are fixed 

based on these lists: 

 Both parameter angles are small, i.e., 
 

  
. 

 The first parameter angle is small, i.e., 
 

  
 and the 

second parameter angle is large, i.e., 
 

 
. 

 The first parameter angle is large, i.e., 
 

 
 and the second 

parameter angle is small, i.e., 
 

  
 

 Both parameter angles are large, i.e., 
 

 
 

3) Develop a matrix for the combination model of       
and       operators, i.e.,             and       
     . The operation between       and       is a tensor 

product between the parameter. 

4) Develop the operator models             and 

           , which are implemented on fully separable 

pure states. The process begins by first combining fully 

separable pure states with              and then combines 

with             to entangle the three qubits. 

B. SU(2) Parameterisation 

The       parameterisation [19] is two complex 
dimensions that describe two level in the quantum system that 
represented with the     matrix. The       
parameterisation is given as, 

                                       (1) 

with           representing parameters that satisfy the 

range of rotation angle,          , and      
 

 
, with 

three generators, known as the Pauli matrix: 

   (
  
  

)     (
   
  

)     (
  
   

)            (2) 

C. SU(4) Parameterisation 

The       parameterisation, as proposed by [18], is 
written as, 
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with               representing the generators. 
Parameters    until     are rotation angles of qubits in Hilbert 
space that satisfy the range: 

             (4) 

D. Selection of Parameter 

This study selected two parameters from operator       
based on the reasoning that they can affect two qubits that are 
correlated to each other. The two chosen parameters were a 
combination of six selected parameters, namely; 
                      based on the             generators 
with selected angles. Some parameters were not chosen in 
      since they do not influence other qubits. Besides, the 
qubit in       did not have any correlation to the parameters 
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in        Parameters that used generators 3 8 15
  , ,  were not 

considered since the solution was trivial. Constant parameters 
were fixed with the value of   to ensure that each parameter 
represented a real number. 

E. Matrix Development of Combination Model       
      and             

This section describes the process of developing the matrix 
for models             and            . Figure 1 
illustrates the three main steps to develop the matrix. 

1) Matrix Development for SU(2) and SU(4) 

Matrix multiplication for       as an example for 3 1i
e
 

:

           (5) 

 and matrix multiplication for       as an example for
2 2ie  

 

using generator 

2

0 0 0

0 0 0

0 0 0 0

0 0 0 0

i

i


 
 
 
 
 
   

             (6) 

In this paper, other exponents that were calculated the 

same as equation (6) were 8 2 4 5 10 5 6 102 2 12 2i i i ii ie ,e ,e ,e ,e ,e
          

 

 

Fig. 1. Steps of Matrix Development. 

2) Matrix Development for Two Parameters in SU(4) 

From the six selected parameters, two parameters were 
combined to produce 30 combinations of parameters, as 
shown in Table I. 

An example of matrix multiplication for parameters 
2  and 

4  from two matrixes is as follows, 4 52 2 ii
e .e

    
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For matrix development of the tensor product for       
      and            , an example for the parameter 2

4  with matrix identity,    for             in equation (8). 

The calculation for             in equation (9) using same 
the  parameter of 

2 4  with matrix identity,   . 

       (8) 

               (9) 

The remaining parameters in Table I has been developed 
by the same multiplication in equation (8) and equation (9) 
using MATHEMATICA software. 

F. Operating Flow Chart of Combination Model on Fully 

Separable Three Qubit Pure State 

Figure 2 shows the flowchart of notation     being used 
to represent (4) (2)SU SU and     for (2) (4)SU SU on 

fully separable three-qubit pure states. The fully separable 

three-qubit pure states are represented by 000  and the time 

interval used is every 10 second. 
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TABLE. I. COMBINATIONS OF TWO PARAMETERS IN       

No. Combination No. Combination   No. Combination 

1. 2 4,   11. 6 2,    21. 10 2,   

2. 2 6,   12. 6 4,    22. 10 4,   

3. 2 8,   13. 6 8,    23. 10 6,   

4. 2 10,   14. 6 10,    24. 10 8,   

5. 2 12,   15. 6 12,    25. 10 12,   

6. 4 2,   16. 8 2,    26. 12 2,   

7. 4 6,   17. 8 4,    27. 12 4,   

8. 4 8,   18. 8 6,    28. 12 6,   

9. 4 10,   19. 8 10,    29. 12 8,   

10. 4 12,   20. 8 12,    30. 12 10,   

The step by step flowchart in Figure 2 is described as 
follows: 

1) Evolution started at      , with 42 000U  and the 

first combination of parameters 2
 , 4

  , with the angle of 

2
12


   and 4

12


   

2) At       , 24U   began to evolve until       , 

with the same angle in step (i). The newly obtained state was 

measured using von Neumann entropy and three tangle 

measurements, which was classified in the list given in Table 

II. Range value for the von Neumann entropy is ( )0 1S r£ £  

for all values of the density matrix, r  with zero value 

indicating a separable state and one indicating maximum 

entanglement. For the three-tangle measurement, zero value 

indicated the W-state, while a positive value indicated the 

GHZ state. 

 

Fig. 2. Operating (2) (4)SU SU and (4) (2)SU SU  on Fully 

Separable States. 

TABLE. II. VON NEUMANN ENTROPY VALUE AND THREE-TANGLE 

MEASUREMENT 

Class 
Qubit A,

AS  

Qubit B,

BS  

Qubit C, 

CS  

Three 

tangle,
3  

A B C   0  0  0  0  

A BC  0  0  0  0  

B AC  0  0  0  0  

C AB  0  0  0  0  

W 0  0  0  0  

GHZ 0  0  0  0  

3) Steps (i) and (ii) were repeated with three other angles 

for the same parameters’ combination: 

 
2

12


 

 and 
4

2


 

 

 
2

2


 

 and 
4

12


 

 

 
2

2


 

 and 
4

2


 

 

4) Step (i) until (iii) were repeated for all parameters 

combination, as shown in Table I. 

III. RESULTS AND ANALYSIS 

The results from the operation of the model to the fully 
separable states were analysed based on the patterns of von 
Neumann entropy and values shown in Table II. 

A. Patterns of von Neumann Entropy, Before and After the 

Operation with       𝑋       

Table III presents the categories for the 30 parameter 
combinations, which are divided into eight groups, as 
determined by pattern values of the von Neumann entropy in 
each combination of parameters in Table I. 

B. Classification of Fully Separable Three-qubit Pure State 

Following Operation by the Model of the Operator 

            

The results of this study have indicated that the three-qubit 
pure state has been successfully classified into different 

classes, namely; ,A B C  ,A BC ,C AB  GHZ, and W, 

with A B C   being a fully separable state, A BC  and 

C AB  are biseparable states, and GHZ and W are genuine 

entangled states. Prior to being combined with 
(2) (4),SU SU  the three-qubit pure state could only exist in 

two types of classes, namely, (i) fully separable state 

( A B C  ) and (ii) biseparable state ( C AB ). After the 

combination with (2) (4)SU SU , the state is turned into five 

classes, namely, A B C  , A BC , C AB , GHZ, and W. 

At combination angles of &
2 2

 
, the state of the three-qubit 

is classified into A B C  , before and after being combined 

 operating on fully separable state , 

 and obtain new state  

 

At 𝑡    𝑠,  operating on ,  

At 𝑡    𝑠, new state obtained from  , which is 

 , used to determine the type of classes under local 

unitary transformation classification for pure states 
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with (2) (4)SU SU . The combination angles &
12 12

 
 

transformed the state from fully separable to genuine 
entangled state for all groups, except for group 3 and group 7. 
Group 7 gives a classification class of fully separable states 
for any combination angles of parameters. Table IV 
summarises the types of classifications for the pure state of 
three qubits, before and after being combined with 

(2) (4)SU SU comprising eight groups and four types of 

combined angles. 

TABLE. III. GROUPS OF PARAMETERS COMBINATION 

Group Parameters combination 

1 4 2,  , 
4 8,  ,

4 12,  ,
10 2,  ,

10 8,  ,
10 12,   

2 2 4,  ,
2 10,  ,

8 4,  ,
8 10,  ,

12 4,  ,
12 10,   

3 2 8,  ,
2 12,  ,

8 2,  ,
8 12,  ,

12 2,  ,
12 8,   

4 6 2,  ,
6 8,  ,

6 12,   

5 6 4,  ,
6 10,   

6 2 6,  ,
8 6,  ,

12 6,   

7 4 10,  ,
10 4,   

8 4 6,  , 
10 6,   

TABLE. IV. CLASSIFICATIONS OF THREE-QUBIT PURE STATE BEFORE AND 

AFTER COMBINATION WITH (2) (4)SU SU  

Angle 

Group 

BEFORE COMBINATION WITH 

            

AFTER COMBINATION WITH 

            

 

  
  

 

  
 

 

 

  
  

 

 
 

 

 
  

 

  
 

 

 
  

 

 
 

 

  
  

 

  
 

 

  
  

 

 
 

 

 
  

 

  
 

 

 
  

 

 
 

1 C-AB 
A-B-

C 
C-AB 

A-B-

C 
GHZ 

A-B-

C 
W A-B-C 

2 C-AB 
A-B-

C 
C-AB 

A-B-

C 
GHZ 

A-B-

C 
GHZ A-B-C 

3 A-B-C 
A-B-

C 

A-B-

C 

A-B-

C 
A-BC A-BC A-BC A-B-C 

4 C-AB 
A-B-

C 

A-B-

C 

A-B-

C 
GHZ 

A-B-

C 

A-B-

C 
A-B-C 

5 C-AB 
A-B-

C 

A-B-

C 

A-B-

C 
W 

A-B-

C 

A-B-

C 
A-B-C 

6 C-AB 
A-B-

C 

A-B-

C 

A-B-

C 
GHZ 

A-B-

C 

A-B-

C 
A-B-C 

7 A-B-C 
A-B-

C 

A-B-

C 

A-B-

C 
A-B-C 

A-B-

C 

A-B-

C 
A-B-C 

8 C-AB 
A-B-

C 

A-B-

C 

A-B-

C 
GHZ 

A-B-

C 
A-BC A-B-C 

C. Discussion of the Result 

The classification using combinations of special unitary 
groups,       and       is based on three cases of selection 
on angle in       parameters which are (i) both angles is 
small, (ii) one angle is small and another one is big, and (iii) 
both angle are big. In theory, this study aid in calculating the 
entanglement that involves three-qubit with considering the 
changing of the angle at the two-qubit that already correlate in 
the early combination. By determine the angle, it will make 
the classification of three-qubit more easy without considering 
all angle in the early combination. Hence, this study can be 
extended to the complex state since the state used that is fully 
separable is the simplest state. Besides, by changing the angle 
of the parameter, the researcher can fix in the beginning of the 
process to get the desired result. 

IV. CONCLUSIONS 

This study has shown that classification using 
combinations of special unitary groups,       and      , can 
be conducted according to the types of the class under the 
local unitary transformation. It is also found in this study that 
the three qubits, with fully separable states, can be classified 
into fully separable states (     ), biseparable states 
(         ),    -like state, and  -like state. This 
classification has been achieved by considering two main 
aspects, namely, the group of the parameter’s combination in 
      and the range of combination angles of the two 
parameters. Class       was obtained from group 7, with 

combination angles of  
 

  
 

 

 
, and 

 

 
 

 

 
, before and after their 

combination with the (2) (4)SU SU operator. Class A-BC 

was obtained after the operator, (2) (4)SU SU from group 3, 

was combined at combination angles of 
 

  
 

 

  
, 

 

  
 

 

 
, and 

 

 
 

 

  
, while from group 8, the operator was combined at 

combination angles of  
 

 
 

 

  
. Class      was achieved at 

combination angles of 
 

  
 

 

  
 and 

 

 
 

 

  
 before being 

combined with operator            . In the combination 

angles 
 

  
 

 

  
 from group 1, 2, 4, 6, and 8, the results gave 

   -like state, while  -like state was obtained for groups 1 

and 5 at combination angles of  
 

 
 

 

  
 and 

 

  
 

 

  
, respectively. 

These findings have significant implications in understanding 

how the (2) (4)SU SU and (4) (2)SU SU  operators play 

the role of transforming the initial state into other classes by 
only controlling the angle of the parameter in      . With 
respect to the fact that this study is only limited to fully 
separable states and does not classify the      class from 
the simulation, further work needs to be done by considering 
other parameters combination in       and other ranges of 
parameter angles that inlvove real and imaginary value, 
including changing fully separable states into biseparable 
states to upgrade the model hence the algorithm become 
simpler and can be tested in other class of state. Besides, this 
research also can be extended by combining three parameters 
that will be changing to see the outcome of the types of class 
occur. 
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