
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

36 | P a g e

www.ijacsa.thesai.org

Smart City Parking Lot Occupancy Solution

Paula Tătulea1, Florina Călin2, Remus Brad3, Lucian Brâncovean4, Mircea Greavu5

Industrial Software SRL, Sibiu, Romania

Abstract—In the context of Smart City projects, the

management of parking lots is one of the main concerns of local

administrations and of industrial solution providers. In this

respect, we have presented an image processing application,

which overcomes the issues of classical electro-mechanical

solutions and employs the feed of a surveillance camera. The

final web-based interface could provide to the clients the real-

time availability and position of the parking space. The proposed

method uses a series of feature measures in order to speed-up

and accurately classifies the occupancy of the space. Using a

published benchmark, our method has proved to provide very

accurate results and have been extensively tested on two

proprietary parking locations.

Keywords—Smart city; car parking; occupancy; monitoring

system; image features

I. INTRODUCTION

A large number of the parking lot systems use counters on
entry and exit barriers, but unfortunately, erroneous results are
obtained if a vehicle occupies more than one parking space or
when the parking lot includes several types of parking spaces.
A solution to the problem was to add magnetic sensors on each
parking space, however, in practice; this type of system
involves very high costs.

Therefore, the scope of our research was the development
of a computer vision system for the detection of parking
spaces. The motivation behind it resides in the fact that, a video
camera installed in the car park for security reasons can also
monitor the parking spaces. Implementing this smart parking
system has many benefits: it is helpful to customer drivers, low
cost, can be used in everyday life, decreases the time needed to
search for a parking space as the driver can steer quickly to the
available parking spaces, eliminates redundant traffic generated
by the search for available spaces, can be installed quickly and
easily, and it is easier to maintain than current systems.

However, the main challenges of the camera-based systems
are the lighting conditions: low light or temporal and spatial
lighting fluctuations, shadows and reflections from the surface
of other vehicles.

In this respect, the method proposed in paper [1], employs
geometric modelling and parking areas layouts as means to
automatically extract the parking lot configuration. The
extraction of the parking spaces is based on white or yellow
lines, using high-resolution aerial images, indicating that a
large number of parking spaces can be accurately. Thus, after
defining the geometric and layout models, a method of parking
space extraction is proposed, using both parking space and
vehicle detection. Once the objects detection has been
performed, by comparing against the model, a grouping

function is applied to the relative positions, according to the
rules of the geometric.

In the paper of Gálvez del Postigo et al. [2], after
initialization, a background extraction was performed and a
map was created. Using this map, the vehicles are detected and
tracked in order to determine their status. The first step of
consists of defining the parking areas to be analyzed, from
which a binary mask will be created. Thus, a background
model is needed in order to detect moving vehicles. For this
purpose, the chosen approach involves the implementation of
Mixture of Gaussians techniques. The Transition Map is a
technique that works well for detecting parked vehicles. In
order to determine the status of the parking spaces, two
instances are analyzed: parked vehicles and moving vehicles.

In Števanák et al., the issue of the parking space occupancy
is addressed using an open source solution called PKSpace [3].
It uses a vision-based approach, employing an automated
learning model, in order to categorize the images of the parking
spaces as either occupied or vacant. It also allows the user to
choose either a default model, that is part of the solution
proposed, or to create their own data set for a particular parking
lot and to develop the model based on this information. At the
same time, this solution offers application programming
interfaces (APIs) which allow external systems to process the
data collected and store it for later use.

In paper [4], the authors have studied the performance of
image processing algorithms when the multithreading approach
is applied on different platforms (single core / multi-core).
Results shown that multithreading improve processing time on
single-core or multi-core platforms. With a single core, the best
results are achieved when using a combination of small size
images and less complex algorithms, while the combination of
a smaller size image and more complex algorithms improves
performance when working with multi-core processors.
Multithreading programming can improve the performance of
the multi-core processor when complex image processing
algorithms are applied.

Vítek et al. shown that detecting parking spaces occupancy
is constantly on the rise, especially in big cities [5]. The paper
uses wireless cameras to manage parking spaces and
determines the parking space occupancy based on the camera
feeds. The proposed system employs small camera modules
based on Raspberry Pi Zero and an efficient algorithm for
occupancy detection based on the Histogram of Oriented
Gradients (HOG) and Support Vector Machine (SVM)
classifier. The basic features include information concerning
the vehicle's orientation, where it can be more accurately
determined. The solution presented can provide occupancy
information at a rate of 10 parking spaces per second with an
accuracy of more than 90% in various weather conditions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

37 | P a g e

www.ijacsa.thesai.org

The scope of this paper was to propose a solution that can
extract the parking spaces and detect the occupancy of the
parking lot, using a sequence of images acquired from video
cameras. Therefore we have combined techniques that are
capturing and detecting the presence of vehicles on parking
spaces using image processing, parking spaces detection based
on markings, detection of the parking lot occupancy,
identification of available and occupied parking spaces,
outlining parking spaces, counting the number of available and
occupied parking spaces. The proposed method allows sending
information about the occupancy of the parking lot to
customers using HTTP requests.

II. PROPOSED SYSTEM

Most studies in this field have a sequential approach; and
therefore, a lot of time required for processing. Thus, we have
proposed a method in which the sequencing is done by parallel
segmentation, each image is divided into several parts and then
one thread controls each one of them. After segmentation, all
parts are merged and the desired result is obtained [4].

The processing steps of the method are the following:

a) Parking lot map description;

b) Image frame acquisition and pre-processing;

c) Adaptive background modelling;

d) Computation of features;

e) History calculation;

f) Fusion of results for each parking space;

g) Defining parking space status;

h) Feeding data to Client-Server system;

The general structure of the proposed system is presented in
Fig.1.

Fig. 1. System Block Diagram.

A. Parking Lot Map

In an offline configuration stage, using a template image
taken from each camera, the following data are defined: the
coordinates of each parking space, the number of parking
spaces, as well as the centroid/midpoint of each parking space.
This information is saved in a configuration file, uploaded one
time, at system initialization. The coordinates of the parking
space, as well as the midpoint, are converted from screen
coordinates into Cartesian coordinates.

Sample file:

Number:1;Points:-626 -24,-541 4,-496 -92,-594 -116;

Centroid:-563 -58

Number:2;Points:-471 12,-415 32,-367 -44,-428 -66;

Centroid:-420 -17

Number:3;Points:-336 52,-290 65,-240 -6,-292 -17;

Centroid:-289 23

Number:4;Points:-234 84,-177 102,-117 35,-184 19;

Centroid:-177 59

The original image is further divided into several regions,
aiming to simplify the image representation into a more
relevant and easier way to be analyzed. This process is used to
locate each parking space and its limits, based on the four
coordinates from the configuration file. A perspective
transformation is also applied for each parking space and a new
region is obtained from the resulting transformation matrix.
During this process, a label is assigned to each parking space.
In consequence, the template image is divided into several
regions and a thread will process each one of them, in order to
determine its status.

B. Multithreading Programming

In the multithreading approach, the shared memory in
which the threads work is the image pixel matrix. The work
load and the part of the matrix that each thread has to handle
are determined by the main thread [6]. A multithread process
has several simultaneous execution points [7]. Using multiple
threads allows an application to allocate long-term tasks, so
that they can be performed concurrently. This is also possible
due to the significant improvements in the multi-core systems.

Nowadays multi-core processors are widely deployed in
both server and desktop systems. The performance of
multithreaded applications can be improved when using multi-
core systems, since the thread charge can be moved to the core,
which works with several threads simultaneously [8]. A good
example of applications that benefit from multithreading is
Computer Vision ones [9]. The main idea behind parallel
processing of images is to divide the problem into simple tasks
and solve them simultaneously so that the total processing time
is the sum of the finished tasks (best case scenario) [10]. Image
processing can be a time consuming task based on the image
matrix structure that drives this process towards a
multithreading algorithm.

The proposed solution uses execution threads to improve
application performance. After identifying the number of
parking spaces, one thread is created to process each parking
space, using Thread Pooling. These are pre-fabricated threads
that can be launched more quickly by the OS. We cannot
define a name for a thread in the thread pool. The threads in the
thread pool only work in the background. The execution

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

38 | P a g e

www.ijacsa.thesai.org

threads are created using the Task Parallel Library (TPL). TPL
offers a basic form of structured parallelism and is based on the
concept of task.

For each parking space, the image processing involves the
analysis of the features (Histogram of Oriented Gradients-
HOG, Scale Invariant Feature Transform–SIFT corner
detector, color spaces - YUV, HSV and YCbCr).

HOG is a feature descriptor used to detect objects by
counting the occurrences of gradient orientation in areas of
interest. SIFT is a descriptor used to detect the number of the
points of interest (corners).

The HSV color space has 3 channels: the Hue, the
Saturation and the Value, or intensity. The Hue channel
represents the "color". The saturation channel is the "amount"
of color (this differentiates between a pale green and pure
green), and intensity is the brightness of the color (light green
or dark green). YUV defines a color space in terms of one
luminance (Y) and two chrominance (UV) components.
YCbCr color model contains Y, the luminance component and
Cb and Cr are the blue-difference and red difference Chroma
components.

The standard deviation values for the three channels V
(devSYUV), S (devSHSV), Cb (devSYCrCb) of the color spaces

YUV, HSV, YcbCr, the number of corners (noSIFT), and the

HOG descriptor mean (meanHOG) were used to create a history,
based on predefined thresholds: 0.03 for mean HOG, 7 for
number of corners resulting from SIFT, 1.4 for V component
from YUV, 9 for S component from HSV and 1.1 for Cb
component from YCbCr This history tracks the availability of
parking spaces.

Each value from metrics and measurements compares with
a default threshold. Based on this comparison, counted the
values of 1 (statusOccupied) and 0 (statusAvailable), and
the status is determined by the predominant value. If predominant
is 1, the parking space is occupied, otherwise, is free.

Function SetStatus (indexParkingLot)

 if meanHOG[indexParkingLot] > 0.03 then

statusOccupied++;

 else statusAvailable++;

 end if

 if noSIFT[indexParkingLot] >= 7 then

statusOccupied++;

 else statusAvailable++;

 end if

 if devSYUV[indexParkingLot] > 1.4 then

statusOccupied++;

 else statusAvailable++;

 end if

 if (devSHSV[indexParkingLot] > 9) then

statusOccupied++;

 else statusAvailable++;

 end if

 if (devSYCrCb[indexParkingLot] > 1.1) then

statusOccupied++;

 else statusAvailable++;

 end if

 if (statusAvailable > statusAvailable) then

status = 0

 else status = 1

 end if

EndStatus

For more accurate results, was created a history of 20
frames that contains the status of each parking space, obtained
from measured metric and measurement results. With each new
frame, it is tested if the number of frames originally set has
reached. If yes, then adding the status to the list produces the
effect of "Sliding Window", which requires the elimination of
the first value of the buffer and the addition of the new value in
the list, according to the FIFO principle. Thus, this technique
allows for the last changes to each parking space to be retained
in order to determine the status. Over time, this process helps
stabilize changes in the background, such as the gradual
change from day to night, different weather conditions.

for parkingSpace=0:totalNumberParkingLot

 if(sizeOfBuffer < 20)

 Status = SetStatus(parkingSpace)

 Add status in buffer

 else

 SlidingWindow

 Status = SetStatus(parkingSpace)

 Add status in buffer

 end if

 if predominat is 1 in buffer StatusParkingSpace=1

 else StatusParkingSpace = 0

 end if

end for

The information concerning the parking lot occupancy
emerges once each frame is processed, thus identifying the
number of available spaces, as well as occupied ones, out of
the total number of parking spaces considered.

C. Client Interface

There are many alternatives to creating a web server for the
purpose of client access to parking lot occupancy. Within this
system we have used HTTP server based on Nancy, which is a
framework for building HTTP-based services in .NET. With
these HTTP-based services, this framework can handle all
standard HTTP methods such as GET, POST, PUT, DELETE,
HEAD etc. Everything in Nancy is "HOST's". A host acts as a
framework or adapter for a hosting environment, and allows
Nancy to run on existing technologies such as ASP.NET, WCF
and so on.

The application must be downloaded and installed using the
NuGet package manager, as it will download the complete
references to the current solution or project. Once Nancy is
installed, the first module can be created. The requests are
handled by the modules. The Nancy website regards a module
as "the place where you define the behavior of your
application". Like Controllers in MVC, there are modules in
Nancy. A single module must be defined for a Nancy app,
which becomes the starting point of an application. We can
create as many legacy modules from NancyModule as we
need. In the class builder, the routes are defined with Get ["/"].
A route must follow the same pattern as Literal Segments,
Capture Segments ({yourname}), and regular expressions.

The system listens to one or more addresses in order to
send the necessary information to an http request. The system
can listen to multiple addresses by creating a URI array and
assigning it to the constructor for NancyHost. The result is that
you can listen on multiple network interfaces. This is useful for
example, in situations where you have a server that has to listen
on two different interfaces, and respond differently to both.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

39 | P a g e

www.ijacsa.thesai.org

With Nancy HTTP, you can tell which request came from
which IP, allowing you to selectively say in program code
which connection is allowed access to which functionality.

The life cycle of each Nancy application starts with
receiving the HTTP request and ends when it sends the HTTP
response back to the client. Any good web framework allows
you to send data to it. Nancy is very flexible in terms of
answering. To prepare more complex answers with headers for
the information to be sent, a new Response object is built. The
response is a JSON and it looks as follows:

{

"Parking_lot_1":

{

"TotalParkingSpaces":20,

"FreeParkingSpaces":12,

"OccupiedParkingSpaces":8

 },

"Parking_lot_2":

{

"TotalParkingSpaces":38,

"FreeParkingSpaces":15,

"OccupiedParkingSpaces":23

}

}

The data sent in JSON format includes the names of the
installed cameras, and for each one the following information
is provided: the total number of parking spaces, the number of
vacant spaces and the number of occupied spaces.

Example of HTTP request: http://localhost:5000/data

III. RESULTS

In the purpose of evaluation, three metrics were computed:
accuracy, sensitivity and specificity defined in equations 1, 2
and 3. In these equations, TP (True Positive) is the number of
occupied spaces classified as occupied, TN (True Negative) is
the number of vacant spaces classified as vacant, FP (False
Positive) is the number of vacant spaces classified as occupied
and FN (False Negative) is the number of occupied spaces
classified as vacant [11].

Accuracy = (TP + TN)/(FP + FN + TP + TN) (1)

Sensitivity = TP/(TP + FN) (2)

Specificity = TN/(TN + FP) (3)

where TP (True Positive) is the number of occupied spaces
classified as occupied, TN (True Negative) is the number of
vacant spaces classified as vacant, FP (False Positive) is the
number of vacant spaces classified as occupied and FN (False
Negative) is the number of occupied spaces classified as vacant
[11].

Table 1 shows the accuracy resulted from testing our
system under various weather conditions: overcast, rainy and
sunny days in comparison to the CNRPark+EXT results [12].
We have employed the same parking lot map as in the
benchmark provided in CNRPark. For the first benchmark, 8
parking spaces were selected, and for the second benchmark,
26. It can be seen that the results were encouraging, with a
minimum accuracy rate of over 90%.

The accuracy, sensitivity, and specificity are calculated in
various weather conditions, with results ranging between 91%-
99%. The best accuracy is in overcast conditions for both
benchmarks, as seen in Fig. 3 and 5. In Fig. 2 and 4, the
incorrect and correct detections can be observed on a number
of frames from the two benchmarks.

A. Specific Benchmarks Results Examples

1) Overcast weather: The results on an overcast day for

the two benchmarks are over 98% accurate, which translates

into very good detection accuracy. Figure 6 shows screenshots

of the two examples used.

2) Rainy weather:The screenshots in Figure 7 were taken

on a rainy day for various benchmarks. The accuracy under

these weather conditions is over 90%. It shows that the

problems persist in the case of camouflage.

3) Sunny weather:The screenshots in Figure 8 were taken

on a sunny day for various benchmarks. The accuracy under

these weather conditions is over 91%. It shows that the

problems persist in the case of camouflage and shade.

TABLE I. RESULTS COMPARISON ON DIFFERENT BENCHMARKS

Results
Accuracy

Overcast% Rainy% Sunny%

Benchmark 1 with

proposed method
99.708 90.088 91.566

Benchmark 1 from [12] 100 100 99.900

Benchmark 2 with

proposed method
98.313 95.070 91.564

Benchmark 2 from [12] 100 100 100

Fig. 2. The Benchmark 1 Classification Results under different Weather

Conditions.

922 927 945

4 0
175

24

674
540

4764

3794

4468

3510

3880

3123

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Overcast Rainy Sunny

No. frames FP FN TP TN

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

40 | P a g e

www.ijacsa.thesai.org

Fig. 3. The Benchmark 1 Results of Three Measures on different Weather

Conditions.

Fig. 4. The Benchmark 2 Classification Results under different Weather

Conditions.

Fig. 5. The Benchmark 2 Results of Three Measures on different Weather

Conditions.

(a)

(b)

Fig. 6. Results on an Overcast Day for (a) Benchmark 1; (b) Benchmark 2.

99.66

92.09

91.57

99.07 98.72 99.22

99.36
99.26

99.44

90.00

92.00

94.00

96.00

98.00

100.00

102.00

Overcast Rainy Sunny

Accuracy Sensitivity Specificity

938 949 944

119 133

1242

289

1077
829

12777

11637

14076

11213

11834

8407

0

2000

4000

6000

8000

10000

12000

14000

Overcast Rainy Sunny

No. frames FP FN TP TN

98.31

95.07

91.56

98.69

97.86

99.04

98.95 99.11 99.35

90.00

91.00

92.00

93.00

94.00

95.00

96.00

97.00

98.00

99.00

100.00

Overcast Rainy Sunny

Accuracy Sensitivity Specificity

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

41 | P a g e

www.ijacsa.thesai.org

(a) (b)

(c)

Fig. 7. Results on a Rainy Day for (a) and (b) Benchmark 1 (c) Benchmark 2.

(a) (b)

(c) (d)

Fig. 8. Results on a Sunny Day for (a) and (b) Benchmark 1; (c) and (d) Benchmark 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

42 | P a g e

www.ijacsa.thesai.org

IV. CONCLUSIONS

In this paper, we have presented a solution for the detection
of parking spaces using image sequences acquired from video
cameras. A technique based on computer vision algorithms
have been investigated, together with a parallel implementation
and the facility to provide to clients the information about the
availability of a parking lot using HTTP. Based on two
available benchmarks, the results obtained achieved minimum
accuracy rate of over 90%. The unsolved system problems
remain the presence of shadows and camouflage. Shadows are
recognized as objects, in this case a vehicles, and thus, a
partially shaded vacant space is detected as occupied.

ACKNOWLEDGEMENTS

The research was financed by the project SMART CITY
PARKING–INTELLIGENT SYSTEM FOR URBAN
PARKING MANAGEMENT, SMIS 115649, Grant number
31/28.06.2017. The project is co-financed by the European
Union through the European Regional Development Fund,
under the Operational Competitiveness Program 2014-2020.

REFERENCES

[1] G. Koutaki, T. Minamoto and K. Uchimura, “Extraction of parking lot
structure from aerial image in urban areas,” International Journal of
Innovative Computing, Information and Control, vol. 12, no. 2, pp. 371-
382, April 2016.

[2] C. G. del Postigo, H. Torres, J-M. Menéndez, “Vacant parking area
estimation through background subtraction and transience map
analysis”, IET Intelligent Transport Systems, vol. 9, no. 9, pp. 835-841,
2015.

[3] R. Števanák, A. Matejov, O. Jariabka, M. Šuppa, “PKSpace: An Open-
Source Solution for Parking Space Occupancy Detection”, Proceedings
of the 21st Central European Seminar on Computer Graphics, CESCG
2017.

[4] S. Bose, A. Mukherjee, Madhulika, S. Chakraborty, S. Samanta, N. Dey,
“Parallel image segmentation using multi-threading and k-means
algorithm”, IEEE International Conference on Computational
Intelligence and Computing Research, 2013.

[5] S. Vítek, P. Melničuk, “A Distributed Wireless Camera System for the
Management of Parking Spaces”, Sensors, vol. 18, no. 1: 69, 2018.

[6] A. Kika, S. Greca, “Multithreading Image Processing in Single-core and
Multi-core CPU using Java”, International Journal of Advanced
Computer Science and Applications, vol. 4, no. 9, 2013.

[7] M.Shanthi, A.Anthony Irudhayaraj. Multithreading, “An Efficient
Technique for Enhancing Application Performance”, International
Journal of Recent Trends in Engineering, vol 2, no. 4, pp. 165-167,
November 2009.

[8] Kuo-Yi Chen, Fuh-Gwo Chen, “The Smart Energy Ma nagement of
Multithreaded Java Applications on Multi-Core Processors”,
International Journal of Networked and Distributed Computing, vol. 1,
no. 1, pp.53-60, January 2013.

[9] G. A. Baxes, Digital Image Processing: Principles and Applications.
John Wiley and Sons, Inc, New York, NY, 1994.

[10] S. Saxena, N. Sharma, Sh. Sharma, “Image Processing Tasks using
Parallel Computing in Multi core Architecture and its Applications in
Medical Imaging”, International Journal of Advanced Research in
Computer and Communication Engineering, vol. 2, issue 4, April 2013.

[11] D. Acharya, W. Yan and K. Khoshelham, “Real-time image-based
parking occupancy detection using deep learning”, Proceedings of the
5th Annual Con-ference of Research@Locate, vol. 2087, pp. 33–40,
2018.

[12] http://cnrpark.it/, A Dataset for Visual Occupancy Detection Parking
Lots.

