
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

New Criteria for Comparing Global Stochastic
Derivative-Free Optimization Algorithms

Jonathan McCart1, Ahmad Almomani2
Department of Mathematics

State University of New York at Geneseo
Geneseo, New York 14454

Abstract—For many situations, the function that best models
a situation or data set can have a derivative that may be
difficult or impossible to find, leading to difficulties in obtaining
information about the optimal values of the function. Thus,
numerical methods for finding these important values without
the direct involvement of the derivative have been developed,
making the representation and interpretation of the results for
these algorithms of importance to the researchers using them.
This is the motivation to use and compare between derivative-
free optimization (DFO) algorithms. The comparison methods
developed in this paper were tested using three global solvers:
Genetic Algorithm (GA), Particle Swarm Optimization (PSO),
and Simulated Annealing (SA) on a set of 26 n-dimensional
test problems of varying convexity, continuity, differentiability,
separability, and modality. Each solver was run 100 times per
problem at 2, 20, 50 and 100 dimensions. The formulation for
each algorithm used comes from the MATLAB Optimization
Toolbox, unedited or revised. New criteria for comparing DFO
solver performance are introduced in terms defined as Speed,
Accuracy, and Efficiency, taken at different levels of precision
and dimensionality. The numerical results for these benchmark
problems are analyzed using these methods.

Keywords—Derivative-free optimization; algorithm comparison;
test problem benchmarking.

I. INTRODUCTION

When deciding which algorithm is most appropriate to
use on a given problem, it is crucial to have a detailed and
encompassing description of how the algorithm will perform
when applied in different contexts. Equally important is that
the description of the algorithm is comprised of measures
which can be universally applied to any other algorithm and
thus, used as an objective basis for comparison between many
algorithms. This paper aims to define a set of characteristics
that begin to form this basis through providing information
on the speed at which a solver completes a problem, the
efficiency at which resources are used to determine solutions,
and the accuracy/success rate of a solver on a problem. The
testing each of these measures provided both intuitive and non-
intuitive results.

Prior to this study, most of the benchmarking and per-
formance information for GA, PSO and SA was either very
specific to a limited number of circumstances or was only
mentioned in passing while discussing another topic. The goal
of this study is to expand upon what is known about the
capabilities of these solvers, while using them as a means of
applying and testing the comparison methods that are proposed
in Section 3. The parameters we will be mainly focused on
comparing across are dimension and problem type. These

are two areas that substantially influence solver performance,
which makes knowing the details on how exactly these areas
impact performance important in the improvement of these
solvers as well as the development of solvers with similar
characteristics that are capable of circumventing the discovered
weaknesses to these parameters.

This paper is meant as a preliminary study into what
characteristics are necessary to describe DFO algorithm per-
formance. Further study into what these characteristics may
be is encouraged and could lead to a set of attributes beyond
those initially proposed within this paper. We seek to provide
useful measures of comparison specifically for derivative-free
approaches to optimization because there is a wide variance
in how derivative-free optimization is performed, which makes
having a fair premise for comparison desirable.

A. Background

In [1], performance and data profiles are introduced and
used on a set of three solvers applied to three problem types:
smooth, piecewise smooth and noisy. Performance profiles are
given as a measure for determining the relative differences in
the proportion of problems solvable by one solver compared
to another. Data profiles provide an independent comparison
of what proportion of a problem set can be solved within
a given budget of simplex gradients. Performance and data
profiles derive their utility from their ability to consolidate
the results of many test problems and the subsequent solver
performance data from a common comparison criteria. Most
often this criteria will be the computational budget: the number
of function evaluations or the CPU time required to run the
iterations. The information provided in a data profile will
inform as to which solver is best when comparing across the
problem’s computational expense, while performance profiles
provide information that relates to a fixed budget relative
comparison. Currently, the most prominent method for com-
paring derivative-free optimization algorithms is the use of
performance and data profiles, as discussed in [2].

In [2], 22 solvers were tested on over 500 problems
in which the results were compared using performance and
data profiles. The overarching conclusion of their comparison
was that the solvers TOMLAB/MULTIMIN, TOMLAB/GLC-
CLUSTER, MCS, and TOMLAB/LGO performed the best
on average for the given problems. These are packages that
come from the TOMLAB software, which is a very powerful
modeling environment software used for solving optimization
problems; TOMLAB is implemented in MATLAB. These

www.ijacsa.thesai.org 614 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

implementations take advantage of clustering techniques, scat-
ter search algorithms, as well as Lipschitzian optimization
techniques such as branch-and-bound and DIRECT algorithm.

In [3], the authors give measures for comparing algorithms
by way of defining characteristics in terms of raw performance
data. These comparative measures are used in addition to
the criteria used in [1] on performance and data profiles. A
background, as well as the motivations and complications with
benchmarking optimization algorithms are given and thereafter
used to provide an example of a method for how researchers
ought to approach the benchmarking process. Important con-
siderations for future papers on the comparison of solvers are
raised such as having a large enough set of problems that are
also of a wide enough variety. The information presented in
the data profiles is used in conjunction with other methods
of analysis to properly illustrate a fair and unambiguous
representation of solver performance, which demonstrates a
better-informed process to follow when comparing algorithms.

In [4] “No Free Lunch Theorems for Optimization", David
H. Wolpert and William G. Macready propose the No Free
Lunch (NFL) Theorems, which state that no single algorithm
can be the overall best algorithm for all problem types. This
implies that an optimization algorithm that is strong on one
set of problems will show weaknesses in other types. The
ideas of what it means for an algorithm to be well suited
for a problem are also presented. This theorem is central
to the further development of future algorithms, which can
be enhanced and informed by the information provided by a
strong set of comparison criteria.

II. ALGORITHMS TESTED

For the experiments, testing consisted of three derivative-
free solvers that were global and stochastic in nature: Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), and
Simulated Annealing (SA).

A. Genetic Algorithm

Genetic Algorithm operates based on the ideas of evolution,
where the sample points in the search space are seen as mem-
bers of a population. As the number of iterations increases, the
reported values by each of the individuals improves towards
the optimal solution, analogous to the survival of the “most
fit" individual in a population. GA also incorporates techniques
inspired by other biological processes such as cross-over and
mutation via binary encoding and permutation encoding in
order to diversify the values obtained in the hope of finding
numbers with higher fitness values [5], [6]. The general form
of this process happens in the following manner:

Genetic Algorithm

1. Values are taken from the search space.

2. Fitness values calculated.

3. Lower fitness values go through crossover and mu-
tation and higher fitness values are stored for future mu-
tation/crossover with other individuals of comparably high
fitness values.

4. Repeat until convergence.

B. Particle Swarm Optimization

Particle Swarm Optimization utilizes the idea of swarm
intelligence to use a set of search particles randomly dispersed
around the search space to improve the best iterate value by
comparison between each particle’s value. PSO is built on
vector equations of each particle’s position and velocity in the
space, and these parameters are adjusted and updated after each
iteration, relative to the best value found during that iteration.
The values obtained by each individual particle in the space
are considered their personal best for the given run, and the
best value found by any particle during any iteration is defined
as the global best value [7], [8], [9]. All particles update their
position (x) and velocity (v) equations according to the global
best. These equations are given by:

xik+1 = xik + vik+1

vik+1 = wvik + c1r1(p
i
k − xik) + c2r2(p

g
k − xik)

Where:

xik = the current position of particle i at iteration k.

xik+1 = the position of an individual particle for the
subsequent iteration

vik = the current velocity of particle i at iteration k.

vik+1 = the velocity of the particle for the subsequent
iteration

pik = the personal best value achieved by particle i

pgk = the best value achieved for any particle so far

c1, c2 = cognitive and social parameters

r1, r2 = random numbers between 0 and 1

w = the inertia weight

All of these components come together in ways that
distinguish PSO in its approach to solving global optimization
problems. The term in the velocity equation wvik is the inertia
term, which gives weighting to the current values obtained
by the particle to resist extreme changes based on each
individual random value obtained during the search. The term
c1r1(p

i
k − xik) is the cognitive term, which is the personal su-

pervising term that weights the data of the individual particles
prior to inter-particle comparison as well as prior to updating
the iterate value to ensure improvement. The term given by
c2r2(p

g
k − xik) is the social term, which permits the influence

of data returned by each particle to change the behavior of
the swarm. This process of updating vector equations based
on values gathered from the search space continues while
other particles in the swarm continue traversing the space
pseudorandomly to discover new points in an effort to avoid
trapping with local minima. This continues until convergence
on the solution, with parameter functionality further described
in [10]. The general form of implementation for PSO typically
runs in the following way:

Particle Swarm Optimization

1. Define and Initialize variables and particles.

2. Particles take random values from the space.

www.ijacsa.thesai.org 615 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

3. If value x improves PBest, set PBest = x, otherwise
continue searching.

4. Update velocity and position vectors for the PBest of
each particle relative to GBest.

5. Repeat until convergence of GBest to minimum.

C. Simulated Annealing

Simulated Annealing is an adaptation of a Monte Carlo
Method [11] for solving global optimization problems, ac-
complished by simulating a thermodynamic system. In SA,
points are randomly sampled from the search space according
to the probability of a point improving the state of the system
where points are seen as sample states of the thermodynamic
system. A cooling schedule associated with the “temperatures"
in the space tends to zero as the algorithm converges to a
solution: lower values obtained progress this schedule as they
represent lower energy states in the system [12], [13]. This
is a probabilistic solver that runs according to the following
general form:

Simulated Annealing

1. Select a data point randomly from the search space.

2. Calculate the the cost difference between current and
prospective point.

3. If costnew < costcurrent, accept new.

4. If costnew > costcurrent, accept, but modify the
probability of selecting future points that do not improve
costcurrent.

5. Repeat until Temperature (T )→ 0 (convergence).

III. ATTRIBUTES AND CRITERIA FOR COMPARISON

In order to provide an objective basis for comparing global
optimization algorithms, a delineation must be made between
the aspects of the solution method that are innate to the
solver’s metaheuristic process and the aspects that are general
to all solvers. The aspects of the solution methods that are
similar between the solvers will come through in the analysis
of performance trends via comparing algorithms relatively, as
well as tracking the changes in performance over problem type
and dimensionality.

An example of what it means to investigate the qualities of
algorithms can be seen by examining the differences between
PSO and SA. Note that although both PSO and SA are global
stochastic solvers, each is different in how it approaches a
given problem. The main differences between PSO and SA
are in their search methods. PSO is a population-based solver
that uses multiple particles in communication with one another
to collectively find the solution, whereas SA is a single point
search algorithm that uses a probability function to assess
points ability to improve a thermodynamic system. The idea
being investigated here is whether there are descriptions of
solver behavior that allow for comparing different solvers
through the ways in which the functionalities of the algorithms
are fundamentally the same. Section 3 discusses attributes
that begin the formation of a basis for comparing these
different approaches to DFO. Some algorithms may prove to be
stronger in a particular attribute than others, and this difference

stands to differentiate between where each algorithm can be
effectively used in application, which would agree with [4].
In trying to determine the effectiveness of these new metrics
for ascertaining key information on solver performance, the
best indication that a metric is well defined and capable of
providing useful information is if both a clear relationship
is demonstrated and the relationship is consistent with the
observations in the raw data. The metrics below are defined in
terms of the resulting data obtained from running the solver
on any problem.

Speed

Speed is defined by the following ratio:

Speed =
Average Number of Function Evaluations

Average CPU time
. (1)

This ratio indicates the relative expense of an evaluation
of the algorithm, expressed as related to CPU time, which
is a known indicator of the computational expense of the
algorithm [3]. Speed can be used to see how factors such
as dimensionality and problem type affect the computational
expense of a run of the solver, which has implications about
how well an algorithm would scale with dimension.

Accuracy

The Accuracy of a solver is defined as the proportion of
runs in which the global minimum was successfully found
within a tolerance of ε. Here, ε represents the difference
between the best value found by the solver and the optimal
value, and was taken at ε = 100, ε = 10−2, ε = 10−5 and ε
= 10−10. The success rate graphs represent the average pro-
portion of successful runs for each solver on the total number
of problems within a given group of problems. Accuracy will
be represented by the variable Aε, meaning the accuracy of a
solver at the corresponding tolerance level ε.

Efficiency

The Efficiency of a solver is designed to give an indication
as to how well a solver is performing across areas of Speed,
Accuracy, ability to achieve the global minimum in as few runs
as possible, and also the ability to obtain the minimum in a
low number of runs on average:

Efficiency = M ∗ χ ∗ S ∗Aε (2)

Where :
M =

log10(M
∗)

log10(Mi)

χ =
log10(χ

∗)

log10(χi)

S =
log10(Si)

log10(S
∗)

Defined by:

Aε = the accuracy value for the given solver within ε.

www.ijacsa.thesai.org 616 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

Mi = the mean number of evaluations taken by solver i
for a given problem.

M∗ = the lowest mean number of evaluations taken by any
solver for a given problem.

χi = the mean lowest number of evaluations by solver i
for a given problem.

χ∗ =the absolute lowest number of evaluations by any
solver for a given problem.

Si = the speed of solver i for a given problem.

S∗ =the speed of the fastest solver for a given problem.

For each of these three areas (M , χ, S) in which a
algorithm performs the best, it will have a corresponding value
of 1 and therefore will not receive any loss in Efficiency.
However, the Efficiency values of the subsequently lower
performing algorithms will be dampened by the M , χ, and
S factors. Thus if a solver is the top performer, its Efficiency
will equal its Accuracy. Efficiency is only calculated using
runs in which the global minimum was obtained. If a solver
had runs in which the global minimum was not obtained, the
Efficiency of that solver was set to 0 for those runs.

Difficulty

When any solver is applied to a problem requiring a high
accuracy, we expect difficulties for the solver resulting in more
CPU time or more function evaluations. The chance of failure
is very high for achieving a highly accurate solution. Difficulty
is given by the following:

Difficulty = −ln(1− failure) = −ln(success) (3)

This is the metric used in [14], which was used to measure
the performance of PSO.

These metrics provide more detail in the information
obtained on solver performance, as to highlight more specific
areas in which a given algorithm may see strength or issue.
Contrasting this with the information obtained through the
use of performance and data profiles, the purpose of the
results discussed in this paper are not intended to give a
direct overview of the solver’s capabilities with respect to
some constraint such as computational budget, but rather to
look into more detailed questions within the context of the
whole performance. This is done by defining sub-categories
of performance (Accuracy, Speed and Efficiency) which can
assess the effort required on the part of the solver to obtain
the optimal value. This then gives rise to a more generalized
form of obtaining and representing the different levels of
performance and success within these shared areas of aptitude.

IV. NUMERICAL EXPERIMENTS

All numerical experiments for GA, PSO, and SA were run
on an iMac, version 10.13.6, Processor 4.2 GHz Intel Core
i7, 64 GB 2400 MHz DDR4 memory. The implementation
of each algorithm used the default settings in the MATLAB
Optimization Toolbox [15], with the stopping criteria for all
being within the tolerance ε = 10−10. The budget here is 106

function evaluations.

Limitations

In an effort to maintain the reproducibility of this exper-
iment, no implementations of GA, PSO or SA from outside
of MATLAB were used. There are many adaptations of GA
[16], many hybrids of PSO with other optimization techniques
[17], [18], [19], and popular variations of SA [20] seen across
different fields such as engineering and machine learning with
these algorithms producing competitive results. These solvers
and their advantages are not discussed within the scope of
this paper. Given that this paper seeks to discuss manners of
comparison and benchmarking along with the representations
for these metrics, the algorithms used need only function as
examples to demonstrate a comparison process.

Problem Types

In order to see the differences in performance across a
variety of problem types as well as a range of dimensions, it
is important to classify the set of test problems into 4 groups
of the following types:

G1: non-convex, continuous, differentiable, non-separable,
multimodal.

G2: convex, non-differentiable, continuous, separable, uni-
modal.

G3: non-convex, non-differentiable, non-separable, multi-
modal.

G4: All of the listed types.

Groups

PROBLEMS WITHIN G1, G2, G3 AND G4

G1 G4
alpinen2fcn ackleyfcn
periodicfcn alpinen1fcn
shubert4fcn alpinen2fcn

periodicfcn
G2 rosenbrockfcn
powellsumfcn salomonfcn
schwefel220fcn shubertfcn
schwefel223fcn shubert3fcn

shubert4fcn
xinsheyangn3fcn

G3 powellsumfcn
schwefelfcn schwefel220fcn
xinsheyangn2fcn schwefel221fcn
xinsheyangn4fcn schwefel222fcn

schwefel223fcn
exponentialfcn
sumsquaresfcn
xinsheyangn1fcn
xinsheyangn2fcn
xinsheyangn4fcn
griewankfcn
quarticfcn
rastriginfcn
styblinskitankfcn
zakharovfcn

V. RESULTS

A. Accuracy

In Fig. 1, all solvers display competitive performance at
2 dimensions. Yet as the dimension increased, each solver’s
performance decreased at different rates with GA having

www.ijacsa.thesai.org 617 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

decreased the least among all solvers leaving GA capable of
solving at least one of the problems in G1 within 10−7 for all
dimensions. GA showed a gradual reduction in success from
20 to 100 dimensions, coming through as the algorithm which
was most robust to changes in dimensionality for G1. For the
problems in G1, PSO observed the most dramatic change in
performance, demonstrating higher sensitivity to changes in
dimensionality. SA dropped to near zero at just 20 dimensions,
showing SA to be the least competitive on this set.

(a) Dimension = 2 (b) Dimension = 20

(c) Dimension = 50 (d) Dimension = 100

Fig. 1. Accuracy for G1

All solvers performed significantly better on G2 than on
G1. This indicates that the differences in problem type had
a sizable impact on performance, despite the problems of G2
being non-differentiable. Fig. 2 shows that the problems of G2
remained 100% solvable by all solvers at 2 dimensions for ε
> 10−3. All solvers showed a decrease in success rate as ε
decreased. In comparing the performance of PSO on G2 to
G1, unlike in G1, there is less sensitivity to dimensionality
within G2. Thus it seems likely that the characteristics of the
problems in G2 are more favorable for PSO’s heuristic. GA
once again shows a resistance to a loss in success from 2 to
100 dimensions, yet does not outperform PSO on this set due
to the amount by which PSO’s performance increased from
G1. SA is once again approaching a success rate of zero for
most observed values of ε below about 10−2 for dimensions
greater than 20, which makes SA a less competitive choice on
a problem set similar to G2.

(a) Dimension = 2 (b) Dimension = 20

(c) Dimension = 50 (d) Dimension = 100

Fig. 2. Accuracy for G2

The results of G3 were quite unintuitive. The behavior of
the solvers was not strongly correlated with dimension in the
same way as in G1 and in G2. Behavior for this group was
much more problem dependent, where in Fig. 3 going from
2 to 100 dimensions, each solver is shown to have had one
problem they remained capable of solving, with an increase in
the success rate of each algorithm as dimensionality increased
and as ε decreased. Note that each algorithm achieved a success
rate of 33% for G3, meaning that each solver failed two of the
three problems every time, but succeeded on the remaining
problem each time. There is no clear explanation for this
behavior, making it a point of interest for further investigation.

(a) Dimension = 2 (b) Dimension = 20

(c) Dimension = 50 (d) Dimension = 100

Fig. 3. Accuracy for G3

www.ijacsa.thesai.org 618 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

Fig. 4 shows a decreasing trend in solver ability to obtain
the global minimum for small ε as well as for high dimen-
sionality. We take G4 as a strong indication as to how solver
performance will average out across a variety of problems
of different or mixed type, showing the expected trends that
would arise from general use of any of these algorithms.
Algorithms which tend to have a shallow slope display a
high level of consistency across the levels of ε. Notice that
although PSO maintains this consistency, its Accuracy drops
as dimension increases. Solvers like SA that cannot resist a loss
in Accuracy for higher dimensions and higher ε will see their
success rate go to zero much quicker than other algorithms.
GA has a sharper slope than PSO or SA, but does not translate
as far down the graph when dimension increases. This trend
in the amount to which success rates decrease shows GA to be
the most robust for ε level (10−4, 10−4, 10−2) for dimensions
20, 50 and 100 respectively. PSO, however, is able to achieve
the highest success rate for small ε as opposed to GA or SA.

(a) Dimension = 2 (b) Dimension = 20

(c) Dimension = 50 (d) Dimension = 100

Fig. 4. Accuracy for G4

Accuracy proved to be a very effective tool in analyzing
the performance of the solvers in terms of their reliability for
finding the global minimum on problems of varying type and
difficulty. There was a large spread in performance across the
groups, suggesting that Accuracy is able to identify changes
in the solution capability of the solvers on these types of
problems. Accuracy also showed that problem type greatly
affected solver ability to produce highly accurate values for
the minimum.

B. Speed

The trends observed in Speed for each group yielded
similar results, including G3. When looking to Fig. 5, the
graph of Speed for G4, a clear ordering from the fastest
to slowest solver emerges and remains consistent from 2 to
100 dimensions. However, the response to the increase in
dimension was different for each solver:

Fig. 5. Average Speed for G4

GA was virtually unaffected by dimensionality until after
20 dimensions where there is then a steady decrease going to
100 dimensions. For SA, there seemed to be little effect on
Speed as a result of increasing dimension, however SA was
consistently the slowest of the three. PSO’s behavior between 2
and 50 dimensions was unanticipated. There was an increase in
Speed from 2 to 20 dimensions, prior to an eventual and steady
decline moving towards 100 dimensions. One possible account
for this is a difference in the rate of change in evaluations taken
by the solver compared to CPU time needed to take those
evaluations of the function at different dimensions, meaning
that the rate at which the number of evaluations grew with
dimension outpaced the increase in CPU time taken until after
20 dimensions. The differences in the relationships of each
solver’s Speed value to the dimensionality of the problem
shows how the strengths of the approach by each algorithm
affect the use computational resources. Knowing how each
algorithm uses these resources is important for assessing the
utility of an algorithm for a task, especially one requiring
performance that is both computationally inexpensive and fast.

C. Efficiency

The Efficiencies for G1 show that the characteristics of
the problems posed a significant challenge for the solvers,
despite the fact that the problems in G1 were differentiable.
This indicates a strong relationship between problem type and
general difficulty, further supported in Fig. 10 and also in the
comparison of Fig. 6 and Fig. 7. GA is shown to be not
as efficient as PSO when ε decreases, but GA remains the
most efficient for higher dimensional problems. This further
supports the claim that GA has a resistance to loss in Accuracy
for higher dimensional problems. Note that solvers that had no
runs in which the global was obtained within ε have Efficien-
cies of 0. Overall, it seems that the performance for all solvers
dropped significantly with dimension, which corroborates the
results from Accuracy.

www.ijacsa.thesai.org 619 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

(a) ε = 100 (b) ε = 10−2

(c) ε = 10−5 (d) ε = 10−10

Fig. 6. Efficiencies for G1

As opposed to G1, the characteristics of the problems in
G2 were significantly easier for the solvers, despite being non-
differentiable problems. Each algorithm performed noticeably
better across dimension and tolerance. PSO is the most sensi-
tive to the problem characteristics, as its performance across
different groups displays a large variance. This sensitivity,
however, has shown to benefit PSO, as PSO had the highest
Efficiency value at every tolerance and dimension. GA was
robust to changes in tolerance across each group, while SA
was most affected by tolerance, as one may notice that the
Efficiency value for SA dropped to zero for 50 and 100
dimensions after an increase in the tolerance from ε = 100 to
ε = 10−2. As the Accuracy plots for G3 suggested, there were
some problems for which the solvers saw a slight increase in
performance as dimension increased. Although not as extreme
as in G3, subtle increases in Efficiency for GA can be seen
across each dimension at ε = 100 to ε = 10−2 in G2.

(a) ε = 100 (b) ε = 10−2

(c) ε = 10−5 (d) ε = 10−10

Fig. 7. Efficiencies for G2

G3 exhibited trends in performance that did not follow the
implication of the other groups. The Efficiency values for G3

did not consistently decrease with dimension. Instead, Fig. 8
shows a drop in performance from 2 to 20 dimensions, which
becomes more and more magnified as ε decreases, followed by
an increase in performance from 20 to 100 dimensions. Further
investigation into this group shows that after 25 dimensions,
the decreasing trend in performance turns around and the
solvers show a resurgence in Efficiency for higher dimensions.
This implies that there are qualities of these problems that elicit
a difference in solver approach from within the algorithms
themselves. The results for Efficiency of G3 also corroborate
what was observed in the results for the Accuracy of G3.
However, unlike in the Accuracy for G3, we do not see the
same equilibrium phenomena where each solver approaches
solving one out of three problems each time, but rather we
see a score of zero for all solvers at 20 dimensions for ε =
10−10. This means that there were no values for either Mi, χi,
or Si for any solver at this level, and thus at 20 dimensions
the Efficiency values for each solver were assigned a value
of 0. The counter-intuitive behavior of the solvers on the
problems within G3 will be the subject of further research,
as understanding why this happens can more broadly and
completely describe solver characteristics.

(a) ε = 100 (b) ε = 10−2

(c) ε = 10−5 (d) ε = 10−10

Fig. 8. Efficiencies for G3

Just as we examined the Accuracy plots for G4 to gain
insight into the average solution capability of each algorithm,
we now look to Efficiency values for G4 shown in Fig. 9 to
get an indication as to how well the successful attempts at
finding the optimal were completed. PSO shows the strongest
resistance to loss in Efficiency on solving problems in G4 at
low dimensions, while the decreasing trend in performance
as dimension increases shows a sharper decline as tolerance
increases. GA, however, displays a rather consistent decreasing
trend with a shallow change between dimensions. In terms of
Efficiency, PSO surmounts GA and SA for all dimensions and
tolerances in the long run. Thus, PSO is likely a good choice
for when the problem set is mixed.

www.ijacsa.thesai.org 620 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

(a) ε = 100 (b) ε = 10−2

(c) ε = 10−5 (d) ε = 10−10

Fig. 9. Efficiencies for G4

Efficiency proved to be able to effectively measure the
quality of algorithm performance across each parameter we
sought to measure. The formulations for the factors of M , χ,
and S give proper weighting to each solver’s level of ability
and balanced for factors that Accuracy alone could not. The
consolidation of the information regarding the magnitudes of
the best values obtained by a solver into Efficiency makes a
solver’s Efficiency capable of giving weight to the relative sizes
and differences these values in a way that the values themselves
do not convey alone, making Efficiency a valuable tool for
starting to look into trends within a solvers own performance
across dimension and tolerance.

D. Difficulty

The Difficulty values for G1 displayed in Fig. 10 corrob-
orate the comparison of the Efficiency values seen in G1 and
G2, showing that the problems in G1 posed a greater challenge
to the solvers than did the problems of G2. This further
substantiates the idea that it is likely that attributes outside
of differentiability must also be considered in determining
which solver to choose for a problem set. As it pertains
to dimensionality, GA manages the change in dimensions
the best, being roughly consistent in its Difficulty rating.
PSO’s Difficulty rapidly increases from 50 to 100 dimensions,
showing yet again a sensitivity to dimension.

(a) Dimension = 2 (b) Dimension = 20

(c) Dimension = 50 (d) Dimension = 100

Fig. 10. Difficulties for G1

The results shown in Fig. 11 also agree with the comparison
of the Efficiency values for G1 and G2, but the Difficulty
values for G2 give more information about relative solver per-
formance. PSO remains the best solver in keeping the lowest
difficulty for all dimensions. This indicates that although there
is a demonstrated sensitivity for PSO to dimension, it seems
quite possible based on the G2 difficulty graphs that given
the optimal set of problem characteristics, PSO’s increase in
performance for these types of problems outweigh the effects
of dimensionality. GA does no share the same strength in
awareness to problem type, as its performance is similar to
G1. SA shows some improvement on G2, yet still struggled
as dimension increased.

(a) Dimension = 2 (b) Dimension = 20

(c) Dimension = 50 (d) Dimension = 100

Fig. 11. Difficulties for G2

The Difficulty values for G3 shown in Fig. 12 display a

www.ijacsa.thesai.org 621 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

similarly odd trend to what we saw in Fig. 3 and Fig. 8. We see
that Difficulty decreases for higher dimensions after a spike at
20 dimensions. The reasons for this remain unclear. The entire
set was run multiple times and similar results were seen. It is
possible that problems of the same type as G3 would elicit
similar behavior from the solvers that is not only atypical of
the general trends we have observed, but also does not fit into
what we saw or expected for PSO’s sensitivity to dimension
or GA’s consistency in performance. The tendency to move
towards an equilibrium value is seen in the Difficulty of G3
as was seen in the Accuracy for G3.

(a) Dimension = 2 (b) Dimension = 20

(c) Dimension = 50 (d) Dimension = 100

Fig. 12. Difficulties for G3

The Difficulty values for G4 seen in Fig. 13 show that,
overall, the trends in Difficulty for solvers maintained a
consistent placement of the solvers relative to one another.
Note also that the expected trend that Difficulty increases
with dimension. Seeing that all solvers did well on G4 gives
an indication that certain problems may have attributes that
worked well with each algorithms heuristic, which improved
their Difficulty rating overall. SA’s improvement on these types
of problems could mean that the particular attributes of the
problems in G1 and G2 were especially challenging for SA
compared to other problem types.

(a) Dimension = 2 (b) Dimension = 20

(c) Dimension = 50 (d) Dimension = 100

Fig. 13. Difficulties for G4

Difficulty supports the proposed methods for identifying
pertinent trends in performance that can be objectively mea-
sured between solvers. Difficulty also allows for more depth
in searching for explanations of trends seen in Efficiency,
Accuracy and Speed that may not be superficially obvious,
such as the relatively small differences between GA and SA
in Difficulty seen in Fig. 13, despite the larger differences in
Accuracy and Efficiency. This indicates that the work required
for GA to obtain optimal values led more often to success
than that of SA. This demonstrates even further that looking
within the details of benchmarking methods is crucial to fully
describing solver performance, and that the decision between
applying one solver versus another can be more informed by
the knowledge of what exactly goes into solving each problem
for each solver.

VI. CONCLUSIONS

It was seen in the analysis of each solver’s performance
across G1, G2, G3 and G4 that problem type and dimension
play a key role in determining which algorithm will be most
successful in a given context. There were a variety of outcomes
among the solvers as to how often the global minimum could
be obtained, as well as how precise that value could be. In
looking across each group, with the exception of G3, it is
shown that the data for each characteristic corroborated the
trends displayed in one another. Describing algorithmic behav-
ior in terms of Accuracy, Efficiency and Speed demonstrates
the strengths and weaknesses of these algorithms in a way that
formalizes performance into a comprehensive qualitative and
quantitative description.

One of the main strengths that GA exhibited on the groups
was a resistance to changes in dimension, making GA a strong
choice for higher dimensional problems. Also, GA maintained
a competitive Accuracy for large ε, outperforming PSO in
some cases, as seen in Fig. 1 and Fig. 4. A weakness observed
for GA was a sensitivity to tolerance, meaning that as ε

www.ijacsa.thesai.org 622 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

decreased, GA observed significant drops in its attribute values.
Note also that GA had a rather large average number of
evaluations, which in turn reduced GA’s Speed.

PSO was, for the most part, the strongest algorithm on each
group. PSO showed not only an impressive resistance to loss in
Accuracy across tolerance, but also consistently had the highest
Speed value of all solvers. PSO’s consistency across tolerance
makes it a strong choice for problems requiring knowledge of
the minimum to within small ε. PSO would also be the best
choice for low dimensional problems, as PSO enjoys a high
success rate for most problems below 20 dimensions. PSO’s
performance was only significantly affected during changes in
dimension. For although the minimum found by PSO is highly
accurate and precise, PSO still saw a large drop in Accuracy
as dimension increased, seen specifically in Fig. 1, were PSO
translated down the graph for each observed dimension. It
must be said, however, that this weakness for PSO that was
also seen in Fig. 2 that PSO’s sensitivity to dimension had
very little, if any, negative effects on PSO’s performance. This
suggests that PSO has a greater sensitivity to problem type
than to dimension, and PSO is more problem conscious than
the other solvers, something that both helped and hurt PSO’s
performance during these experiments.

The performance seen for SA was the least competitive of
the three solvers. SA demonstrated an extreme sensitivity to
dimension, dropping in Accuracy as much as from about 80%
to less than 20% for G1 going from 2 to 20 dimensions in Fig.
1. SA also had the lowest Speed for all solvers, which was
on average less than about 15% the Speed of PSO and even
less than about 20% that of GA, as seen in Fig. 5. Potential
strengths for SA may lie in the further analysis of G3, as this is
the only area in which SA observed competitive performance.
SA also never observed a difficulty below 1 outside of G3,
indicating that even the performance seen on G1, G2 and G4
was a struggle. This indicates that problem type has perhaps
the biggest effect on SA.

The characteristics of Speed, Accuracy and Efficiency
provide useful information about solver performance and give
a clear description of solver capabilities within these areas.
Certain problems produced solver behavior that defied intuition
and expected trends in the data, which shows the current
descriptions of solver behavior to be, although useful, incom-
plete. This emphasizes the need for further research into more
criteria which can help describe such phenomena as seen in
G3.

VII. CLOSING REMARKS

These experiments were an attempt to begin the formaliza-
tion of solver performance comparison metrics into a concise
and usable format. A formalized set of criteria will hopefully
establish a medium for communication between researchers
where coherence and consistency in representation of perfor-
mance will be established. Further testing and study of these
criteria is encouraged so that the definitions may improve and
new criteria may emerge that will be universally beneficial.
The characteristics proposed in this paper were defined using
stochastic, global algorithms. Results regarding deterministic
solvers and/or local solvers are not observed in this paper and
remain a topic for future research. Future research endeavors

may also include seeing the effects of parallelizing these
algorithms for use on a GPU so that more problems can
be run at even higher dimensions, as well as more solvers,
as to increase the variety of algorithms considered, including
deterministic and local solvers. Looking further into G3 is also
a topic of importance as it may lead to progress in determining
the cause for the observed behavior, possibly leading also into
establishing more characteristics which can help broaden the
description of algorithmic trends.

ACKNOWLEDGMENT

This work was partially supported by funds made available
under a State University of New York Expanded Investment
and Performance Award to the State University of New York
at Geneseo.

REFERENCES

[1] J. J. Moré and S. M. Wild, “Benchmarking derivative-free optimization
algorithms,” SIAM J. on Optimization, vol. 20, no. 1, pp. 172–191,
Mar. 2009. [Online]. Available: http://dx.doi.org/10.1137/080724083

[2] L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: a review
of algorithms and comparison of software implementations,” Journal
of Global Optimization, vol. 56, no. 3, pp. 1247–1293, Jul 2013.
[Online]. Available: https://doi.org/10.1007/s10898-012-9951-y

[3] V. Beiranvand, W. Hare, and Y. Lucet, “Best practices for
comparing optimization algorithms,” Optimization and Engineering,
vol. 18, no. 4, pp. 815–848, Dec 2017. [Online]. Available:
https://doi.org/10.1007/s11081-017-9366-1

[4] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” Trans. Evol. Comp, vol. 1, no. 1, pp. 67–82, Apr. 1997.
[Online]. Available: https://doi.org/10.1109/4235.585893

[5] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms,
1st ed. Springer Publishing Company, Incorporated, 2007.

[6] P. A. Estévez, R. C. Eberhart, and Y. Shi., “Computational intelligence:
Concepts to implementation,” Genetic Programming and Evolvable
Machines, vol. 9, no. 4, pp. 367–369, Dec 2008. [Online]. Available:
https://doi.org/10.1007/s10710-008-9064-z

[7] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence.
USA: John Wiley &#38; Sons, Inc., 2006.

[8] T. M. Blackwell, “Particle swarms and population diversity,” Soft
Computing, vol. 9, no. 11, pp. 793–802, Nov 2005. [Online]. Available:
https://doi.org/10.1007/s00500-004-0420-5

[9] J. E. Hicken and J. J. Alonso, “Introduction to multidisciplinary
design optimization, chapter 6: Gradient-free optimization,” 2012.
[Online]. Available: http://adl.stanford.edu/aa222/Home.html,Accessed:
2019-04-25

[10] A. P. Engelbrecht, Computational Intelligence: An Introduction, 2nd ed.
Wiley Publishing, 2007.

[11] R. W. Shonkwiler and F. Mendivil, Explorations in Monte Carlo
Methods, 1st ed. Springer Publishing Company, Incorporated, 2009.

[12] J. Heaton, Introduction to Neural Networks for Java, 2Nd Edition,
2nd ed. Heaton Research, Inc., 2008.

[13] L. Ingber, “Simulated annealing: Practice versus theory,” Mathl. Com-
put. Modelling, vol. 18, pp. 29–57, 1993.

[14] M. Clerc, Particle Swarm Optimization. ISTE, 2006.
[15] “Matlab,” MATLAB2017b, The MathWorks, Natick, MA, USA.
[16] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and

J. Clune, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement
learning,” CoRR, vol. abs/1712.06567, 2017. [Online]. Available:
http://arxiv.org/abs/1712.06567

[17] S. Li, M. Tan, I. W.-H. Tsang, and J. T. Kwok, “A hybrid pso-
bfgs strategy for global optimization of multimodal functions,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 41, pp. 1003–1014, 2011.

www.ijacsa.thesai.org 623 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

[18] W.-J. Zhang and X.-F. Xie, “Depso: Hybrid particle swarm with
differential evolution operator,” 2003.

[19] S. Sengupta, S. Basak, and R. A. Peters, “Particle swarm optimization:
A survey of historical and recent developments with hybridization
perspectives,” ArXiv, vol. abs/1804.05319, 2018.

[20] H. Djidjev, G. Chapuis, G. Hahn, and G. Rizk, “Efficient combinatorial
optimization using quantum annealing,” arXiv, 01 2018.

[21] B. Functions, “http://benchmarkfcns.xyz/fcns, accessed: 2018-06-23,”
accessed: 2018-06-23.

Test Problems

All the test functions [21] were sorted by the following
characteristics:

• S = separable

• S’ = not separable

• D = differentiable

• D’ = non-differentiable

• C = convex

• C’ = non-convex

• U = unimodal

• M = multimodal

• c = continuous

• c’ = not continuous

• n = dimension

*xinsheyangn3fcn minimum occurs for m = 5 and β = 15

www.ijacsa.thesai.org 624 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 7, 2019

Function Characteristics Range Optimal Formulation

ackleyfcn C′ c D S′ M [-32,32] 0 −a · exp(-b

√
1
n

n∑
i=1

x2
i
) − exp( 1

n

n∑
i=1

cos(cxi)) + a + exp(1)

alpinen1fcn “ " [0,10] 0
n∑
i=1
|xisin(xi) + 0.1xi|

alpinen2fcn “ " [0,10] 2.808n
n∏
i=1

√
xisin(xi)

periodicfcn “ " [-10,10] 0.9 1 +
n∑
i=1

sin2(xi) − 0.1exp(
n∑
i=1

x2i )

rosenbrockfcn “ " [-5,10] 0
n∑
i=1

[b(xi+1 − x
2
i )

2 + (a − xi)
2]

salomonfcn “ " [-100,100] 0 1-cos(2π

√√√√ D∑
i=1

x2
i
) + 0.1

√√√√ D∑
i=1

x2
i

shubertfcn “ " [-10,10] -186.73
n∏
i=1

 5∑
j=1

cos((j + 1)xi + j)



shubert3fcn “ " [-10,10] -29.673
n∑
i=1

5∑
j=1

jsin((j + 1)xi + j)

shubert4fcn “ " [-10,10] -25.7408
n∑
i=1

5∑
j=1

jcos((j + 1)xi + j)

xinsheyangn3fcn “ " [−2π, 2π] -1 * exp(−
n∑
i=1

(xi/β)
2m) - 2exp(-

n∑
i=1

x2i )
n∏
i=1

cos2(xi)

powellsumfcn C c D′ S U [-1,1] 0
n∑
i=1
|xi|

i+1

schwefel220fcn “ " [-100,100] 0
n∑
i=1
|xi|

schwefel221fcn “ " [-100,100] 0 max
i=1,...,n

|xi|

schwefel222fcn “ " [-100,100] 0
n∑
i=1
|xi|+

n∏
i=1
|xi|

schwefel223fcn “ " [-10,10] 0
n∑
i=1

x10i

exponentialfcn C c D S′ U [-1,1] 0 −exp(−0.5
n∑
i=1

x2i )

sumsquaresfcn C c D S U [-10,10] 0
n∑
i=1

ix2i

xinsheyangn1fcn C′ c′ D′ S′ M [-5,5] 0
n∑
i=1

εi|xi|
i

xinsheyangn2fcn C′ c D′ S′ M [−2π, 2π] 0
n∑
i=1

(|xi|) exp(−
n∑
i=1

sin(x_i^2))

xinsheyangn4fcn C′ c D′ S′ M [-10,10] -1

(
n∑
i=1

sin2(xi) − exp(−
n∑
i=1

x2i )

)
exp(-

n∑
i=1

sin2√|xi|)
griewankfcn C′ c D S U [-600,600] 0 1 +

n∑
i=1

x2i
4000

−
n∏
i=1

cos(
xi√
i
)

quarticfcn C′c D S M [-1.28,1.28] 0
n∑
i=1

ix4i + random[0, 1)

rastriginfcn C′ c D S M [-5.12,5.12] 0 10n +
n∑
i=1

(x2i − 10cos(2πxi))

styblinskitankfcn C′ c D S M [-5,5] -39.1659n 1
2

n∑
i=1

(x4i − 16x2i + 5xi)

zakharovfcn C c D S M [-5,10] 0
n∑
i=1

x2i + (
n∑
i=1

0.5ixi)
2 + (

n∑
i=1

0.5ixi)
4

schwefelfcn C’ c D’ S’ M [-500,500] 0 418.9829d −
n∑
i=1

xisin(
√
|xi|)

www.ijacsa.thesai.org 625 | P a g e


