(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

Associative Classification using Automata with
Structure based Merging

Mohammad Abrar?
Department of Computer Science
Bacha Khan University Charsadda

KPK, Pakistan

Alex Tze Hiang Sim?
Department of Information Systems
Faculty of Computing
Universiti Teknologi Malaysia

Sohail Abbas®
Department of Computer science
College of Sciences
University of Sharjah, UAE

81310 Johor Bahru, Johor

Abstract—Associative Classification, a combination of two
important and different fields (classification and association rule
mining), aims at building accurate and interpretable classifiers
by means of association rules. The process used to generate
association rules is exponential by nature; thus in AC, researchers
focused on the reduction of redundant rules via rules pruning and
rules ranking techniques. These techniques take an important
part in improving the efficiency; however, pruning may negatively
affect the accuracy by pruning interesting rules. Further, these
techniques are time consuming in term of processing and also
require domain specific knowledge to decide upon the selection
of the best ranking and pruning strategy. In order to overcome
these limitations, in this research, an automata based solution
is proposed to improve the classifier’s accuracy while replacing
ranking and pruning. A new merging concept is introduced which
used structure based similarity to merge the association rules.
The merging not only help to reduce the classifier size but also
minimize the loss of information by avoiding the pruning. The
extensive experiments showed that the proposed algorithm is
efficient than AC, Naive Bayesian, and Rule and Tree based
classifiers in term of accuracy, space, and speed. The merging
takes the advantages of the repetition in the rules set and keep
the classifier as small as possible.

Keywords—Associative classification; automata; ranking and
pruning; rules merging; classification

I. INTRODUCTION

Classification considers to be one of the main pillars in
DM and ML [1} 2f]. It is a data analysis technique, used to
categorize data into different classes based on some common
characteristics or associations in the data. Generally, clas-
sification consists of two basic steps i.e. a) preparation of
classification model - Classifier, from available data (training
dataset) and b) Classification - the prediction of unknown class
label, based on the classifier model.

Classification is sometime called a predictive data min-
ing technique due to its predominant applications in pre-
dictive domains. It is successfully applied in health care
and biomedicine [3]], geographical information systems, [4],
marketing [5], agriculture [6]], risk management [7], web traffic
prediction [8]], and the list continues. The broader applications
of classification and its importance in some areas, particularly
in health, finance, and agriculture became the motivating
factors for this research.

DM contains a rich set of classification models; specifically,
Support Vector Machine [9]], Rule Based [10], Decision Tree

[L1} [12], Bayesian classification [2]], k - Nearest Neighbor [13]],
and AC [14]. Among all, AC is relatively new and promis-
ing [15) (16, 17, 18} (19 20} 21, 22| 23| 24] as it combines
the best approaches of association rules mining (ARM) and
classification. AC is based on ARM where, first, the strongest
Class Association Rules (CAR) are discovered from dataset,
followed by converting those rules into classifier model. Those
stronger associations from the data, in the form of CAR, make
the classifier more logical and improve accuracy.

After the introduction of AC in 1997, numbers of
algorithms are developed in this family e.g. CBA [14}
25, CMAR [18]], CPAR [21], MCAR [19], MAC [26],
CMARAA [27], MRAC & MRAC+ [15], DAC [23]], CBA-
Spark and CPAR-Spark [24] and G3P-ACBD [28]. Almost all
consist of three basic steps - a) Association rule generation,
b) Classifier building - rule pruning and rule ranking c)
Classification of unknown records using the classifier.

CAR, used by AC is a variation of ARM whose right hand
side (consequent) is a class label instead of ordinary attribute.
The ARM generates those CARs which passes minimum
support and confidence threshold and classifier is then built on
the basis of these CAR. AC further applies rule ranking and
rule pruning to minimize the number of rules in the classifier.
The reason for reduction is to make the classifier smaller which
improves the efficiency of the classification. The small number
of rules in the classifier is advantageous in the context of speed
but is less appreciated for accuracy [17, 29, 30]. In addition
to the negative effects on accuracy, these two additional steps
also add their own computational overhead to the classifier.

Besides the computational overhead of rule pruning and
rule ranking, AC has two other limitations. The first is
the reduction of rules which generally eliminates the more
significant rules and therefore may leads to reduce accu-
racy [17, 129, [30]. Secondly, pruning and ranking both require
a detailed insight of data so as to be able to wisely decide
upon the pruning and ranking criteria, e.g.: how to choose
the bottom line, what should be included and what should be
removed from the classifier? Further, the term “interestingness"
is relative that means different things to different experts even
in the same domain. All these facts make it more complicated
to decide upon an appropriate pruning strategy.

Similarly, ARM generate exponential number of rules that
does not make it suitable for very large dataset. Because the
number of rules generation and then pruning and ranking

www.ijacsa.thesai.org

672 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

strategies require more time which make the use of these tech-
niques less effective [31]. Therefore, a new storage structure
is necessary that can help reducing the size of dataset in order
to make the processing less time consuming while improving
the accuracy.

Keeping in mind these shortcomings, we propose to replace
ranking and pruning with our automata based. On one side it
will reduce the computational overhead of these steps while
on the other side it will also minimize the loss of information
by avoiding the unnecessary pruning. In order to achieve the
goals of the eliminating redundancy, a new merging criteria
based on structure similarity is introduced that would help to
reduce the classifier size in order to improve the efficiency.
Furthermore, automata based storage structure is designed to
make the classification of large dataset more efficient and
reduce the space allocation during classification.

The incorporation of automata observed a number of prop-
erties: including; a) its efficient structure to store data [32],
b) The capability of loss-less absorbency of redundant rules,
c) its sequential nature [33] to perform efficient string match-
ing [34} 35], and the ability to deal with frequent and rare class
at the same time. Therefore, the integration of automata and
AC resulted in more efficient and robust for both AC as well
as classification in general.

The rest of paper is organized as follows. The design of
Associative Classification using Automata phase in Section [[I]
Conflict Resolution is highlighted in Section followed by
classification of test instances in Section The weighting
criteria is discussed in Section [V] The Section [VI| explains
the environment and parameters used in the experiments,
followed by the dataset and algorithm selected for experiments
in Sections and Section deals with accuracy
comparison and analysis. Finally, the complexity analysis were
estimated in Section [X] the paper was concluded in Section
and future work is highlighted in Section

II. ASSOCIATIVE CLASSIFICATION USING AUTOMATA

In this section the steps taken towards building ACA are
discussed. The automata is used as a replacement of pruning
and ranking phases of traditional AC algorithms. Automata
also provides an efficient way for accessing and processing the
test instances during classification. The following subsections
highlight different aspects of the ACA.

A. Building Automata from data

This section deals with the algorithm designed to develop
the automata from dataset. The task is divided into two sub
task where first the CAR are generated using ARM and then
automata is built on those CARs.

B. Class Association Rules Generation and Rules Pruning

Associative Classification requires CAR as a basis for
classification, therefore, before building the Automata model,
CAR needs to generated. In order to generate the CAR, any
ARM algorithm can be used. In the current implementation
of ACA, apriori is used. One of the inherited limitations of
CAR is its exponential number of rules which are complex
to handle efficiently, thus, after the generation of CAR, rule

Vol. 10, No. 7, 2019

pruning is the mandatory phase of other techniques to eliminate
the redundant or less interested rules. In ACA, the pruning and
ranking phase is replaced by the use automata which has the
capability to handle with the redundant rules.

C. Building Automata using CAR

A new algorithm, Automata_Construction, is developed
and discussed in this section. The discussion and explanation of
the algorithm uses Table [[as an example that represents CARs
for IRIS2D dataset which is available at UCI repository [36].
The CARs presented in this section are generated using Weka’s
Apriori algorithm with default parameters. In Table [I] there
are a total of nine rules where each row represents one rule.
Every row consists of, specifically: a rule number (Column
R_No), attributes (e.g. columns PatelLength (PL) and Patel-
Width (PW)) and class label (column Class). Each cell then
represents the value for the attributes (the column in which
the value appears in the table) for the rule in which row it is
shown in the table: i.e. “4.75-max" is the value of PatelLength
for R_No 5 and 9. The process of building automata automata
from Table [[] is summarized in Algorithm [T}

The key part of the ACA is that of transition function (§)
that defines the rules of movement from one state to another.
The general form of transition functionis 6 = @ x ¥ — @
which means that one can move from any state (from Q) using
any input symbol (from X)) to any state (in Q). CARs in Table
M represent § for algorithm.

Algorithm 1 Creation of NFA from Class Association Rules
- CARs

Name: Automata_Construction

Input:Set of association rules (ruleSet).

Output:Set of Automata

1: create Automata with rulel from ruleSet and increment

Level
2:
3: while ruleSet # ¢ do
4 read rule one by one
5:
6: if no_conflict(ruleSet, set_FA) then
7: insert into Automata
8:
o: else
10: Add rule to conflictRuleSet
11:
12: end if

13: end while
14: Update ruleSet = con flict RuleSet

16: Call Automata_Construction with updated ruleSet

In order to represent Table [[] as automata, it fed to the
algorithm as 6 for A = {Q, %, ¢, qo, F'} where, specifically:
Q is the union of set of all attributes and distinct class labels
from datasets; > is the collection of distinct values of all
attributes; qq is the start state and can be any attribute from set
of Q. Finally F, set of final states, is the set of distinct class

www.ijacsa.thesai.org

673 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE I. CARS FOR IRIS2D DATASET, GENERATED USING WEKA 3.7.10

Vol. 10, No. 7, 2019

R_No | PatelLength (PL) | PatelWidth (PW) Class
1 min-2.45 Iris-Setosa - C1
2 min-0.8 Iris-Setosa - Cl1
3 min-2.45 min-0.8 Iris-Setosa - Cl1
4 1.75-max Iris-Virginica - C2
5 4.75-max 1.75-max Iris-Virginica - C2
6 2.45-4.75 Iris-versicolor - C3
7 2.45-4.75 0.8-1.75 Iris-versicolor - C3
8 0.8-1.75 Iris-versicolor - C3
9 4.75-max Iris-Virginica - C2

labels. Example 1: This example shows how Table [l represents
all input elements required by automata. All rules in Table [
represent d. These rules, actually, provide the mechanism of
movement between different states of automata. Set of states
are:

Q = {PatelLength, PatelWidth, C1, C2 and C3} (Collection of
all attributes and distinct class label).

Input symbols consist of:

Y ={"min—245", 72.45—4.75", 74.75 —max”, "min —
0.8”, 70.8 — 1.75”, "1.75 — maxz” } (set of distinct values of
all attributes.)

go can be any attribute that starts a rule; e.g. for rule 1 & 3 ¢q
is patelLength, while for rules 2 & 4, qq is patelWidth.

The set of final states are F© = {C1, C2, C3} (distinct
class labels). The transition function for ACA has additional
characteristics and some restrictions that are explained in detail
below.

D. Properties of Automata in ACA

In the context of ACA the automata observed the following
properties which impose some level of determinism and also
helps to control the number of transition (movement from one
state to other state) in &. Further, if an attribute ¢; comes
before attribute ¢; in the dataset, then the former is called
the predecessor while the latter is the successor. It imposes
sorting order of attributes and formally, this can be shown as
follows:

g < q; tff q; preceeds q; in the datset (D

Example 2: PatelLength comes before PatelWidth in the
dataset, therefore PatelLength is predecessor and PatelWidth
is successor. Keeping in view this assumption, Automata in
ACA will also observe the following properties.

1) This property defines the start state conflict and its reso-
lution.

EveryAutomata should have one and only one start

state and it will be the first attribute of the rule.
2

Example 3: R; = (PL) : min — 245 — Iris —
Setosa — C1

R; = (PW): min—0.8 — Iris— Setosa — C1
R; and R; have different first attributes; therefore they
cannot be absorbed by a single automaton and accordingly

creates a separate automaton for each rule.

2) From any state from (), using any input symbol from 3,
a transition can be made to any successor state (except
final state(s)) i.e.

d=q¢ x X = qgi|lg € QAq < g A
g € (Q-F) (3

This property allows ‘forward only’ moves and this
restriction is used to control the increase in number of
transitions.

Example 4: From state PatelLength the transition can be
toward PatelWidth, but the reverse is a violation of this
Property (3).

In case, if the transition is toward final states, then ACA
maintains the following sub property.

a) There should be no two transitions in automata where
two different final states can be reached by the same
input from the same state. i.e.

Aq xa = filgx a—= filge Q ack

fiand f; € FAi # j 4)
Example 5: If R; = PatelLength : min—2.45 — C'1
then

R; = patelLength : min—2.45 — C2is illegal (same
state, same input label but different final states.) Rz is
a conflicting rule and makes a separate Automata.

3) If there is a transition from state g on input symbol «
to final state f; and ¢ is the immediate successor of f;,
then there should be no transition to non-final state on a.
Formally

If ¢ xa— fwheref eF
thendq; xa— F— f 5)

This property maintains determinism at the second last state
of the automata. It reduces ambiguity which also minimizes
the rate of miss-classification.

After the enlightenment of above properties and assump-
tions for automata, now the algorithms is explained with an
example. In this example Table [I] is used but for the sake of
simplicity, it is converted to “attribute-value" pairs as shown in
Table([] In the converted form, every “even” column represents
the name of an attribute and its corresponding “odd" column
represents the value for that attribute. Formally, column 27
represents attribute ¢ while (2¢ + 1) represents the value
for attribute 7 and 0 < ¢ < k where k is the total

www.ijacsa.thesai.org

674 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

number of attributes. Thus col0 represents PatelLength and
coll is its value. Similarly col2 represents PatelWidth and
col3 is its value. The only exception is the last column which
represents class label and therefore has no attribute name. The
first column representing the rules ID is only for referencing
purpose and it is not part of the actual table. Each cell has a
short name for values, which is given inside parentheses, and
will be used in figures during examples.

The Automata_Construction (Algorithm E]) starts from first
rule by reading the first “attribute - value" pair and starts
building automata. The first attribute of the rule becomes start
state and its value becomes the label towards the next state.
While reading next pair, the newly-read attribute becomes
the next state and establishes a link with the previous label.
Its value now becomes the label for the next state and the
procedure continues until the class label is reached. The class
label is marked as a final state which ends the first rule. The
same procedure is repeated for all rules. Example 6 explains
the procedure below.

Example 6: The algorithm starts from rule 1 and reads the
first attribute and its value such as col0 and coll and makes
the first part of automata, as shown in Fig. [T(a).

Next, col2 and col3 are empty; therefore the algorithm
reads the last column and makes it the final state as shown

in Fig. [I(b).
: : ” 6 U
b) After reading the class label, the FA is

a) After reading the first pair of attribute
patellength (PL) and its value min-2.45 (0) complete and class label is marked as final.

Fig. 1. Automata construction for Rule 1 from Table

Algorithm T]is repeated for all rules and every rule is added
to the existing automata one by one. During the construction,
the algorithm checks for the fulfillment of the above mentioned
properties. In the case of violation, the rule that results in
violation is marked as a conflicting rule and it becomes a
candidate for a new automaton. The process continues until
there are no more rules in the rule set. The step wise automata

is shown in Fig. 2] to [f]
()

Fig. 2. Automata 0 after reading rule 1 from Table

When the algorithm reads rule 2, it will starts from PW
which is different from the start state of Automata O (violation
of Property (I)). Therefore, Rule 2 will make new Automata
as shown in Fig. 3|

After reading Rule 3, the algorithm will compare it with
Automata 0. There is no conflict (i.e. the rule is not unique)
and therefore Automata 0 will absorb rule 3 (Fig. f).

Similarly when rule 4 is read, it violates Property (I) (i.e
it is unique rule), therefore it will compare the rule with

Vol. 10, No. 7, 2019

i 0

Fig. 3. Automata 1 after reading rule 2 from Tab]e

Fig. 4. Automata 0 after reading rule 3 from Table

Automata 1, and provided there is no conflict, rule 4 will be
added to Automata 1 (Fig. [5)

Fig. 5. Automata 1 after reading rule 4 from Table

The same process will be repeated for all nine rules and,
every time, the comparison will take place from Automata O
onwards. The Automata with no conflicts will absorb the in-
coming rule; otherwise Algorithm will construct new Automata
for the rule. The stepwise Automata are summarized in Fig.
6]

III. CONFLICT RESOLUTION

In order to handle conflicts, every rule starts comparison
with the first automata and try to absorb that rule. If the rule
violates any property explained in Section that specify
conflicts, algorithm checks it with the next level automata and
so on until either one of the existing automata absorbs the
incoming rule or new automaton is built for that rule. Conflict
resolution at this stage results in building new automata for
the conflicting rule. At this stage the ACA ensures to shrink
the redundant rules and absorb into similar automata.

IV. CLASSIFICATION OF TEST INSTANCES

Finally, the test instances are used for classification using
the new model. ACA_Classifier is used for prediction of unla-
beled instance to label it with correct class. The classification
algorithm is summarized in Algorithm [

During classification, there are two possibilities. If there is
only one automaton in model, then the procedure is simple and
all the test instances are tested against the single automaton.
While in the case of multiple automata, the classification starts
from the higher level of automaton. For example, the classi-
fication of IRIS2D automata of Fig. [f] starts from automata
1 and if it fails to classify the test instance, or the Weighted

www.ijacsa.thesai.org

675 | Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE II. CONVERTED FORM OF CARS (TABLE INTO “ATTRIBUTES-VALUE" PAIRS

Vol. 10, No. 7, 2019

Rule_No col0 (attl) coll(Vall) col2(Att2) col3(Val2) col4(Class_label)
Rule 1 PatelLength (PL) | min-2.45 (0) Iris-Setosa (CO)
Rule 2 PatelWidth (PW) | min-0.8 (0) Iris-Setosa (CO)
Rule 3 PatelLength (PL) | min-2.45 (0) | PatelWidth (PW) | min-0.8 (0) Iris-Setosa (CO)
Rule 4 PatelWidth (PW) | 1.75-max (2) | Iris-Virginica (C2)
Rule 5 PatelLength (PL) | 4.75-max (2) | PatelWidth (PW) | 1.75-max (2) | Iris-Virginica (C2)
Rule 6 PatelLength (PL) | 2.45-4.75 (1) Iris-versicolor (C1)
Rule 7 PatelLength (PL) | 2.45-4.75 (1) | PatelWidth (PW) | 0.8-1.75 (1) | Iris-versicolor (C1)
Rule 8 PatelWidth (PW) | 0.8-1.75 (1) | Iris-versicolor (C1)
Rule 9 PatelLength (PL) | 4.75-max (2) Iris-Virginica (C2)

Ratio (WR) (explained in section is less than 100 percent,
it checks the test instance against Automata 0. Thus, if there
are n automata, the comparison will start from Automata,,
in case of failure or smaller WR, the next comparison will
be against Automata,_1 and the process will continue till
Automata;. In case of less WR at the last automata, the class
label with the highest WR will be selected as a class label.
Weighted ratio calculation is explained in next section.

Algorithm 2 Classification of test dataset
Name: ACA_Classifier

Input:Set of Automata

testData

Output:Classified Dataset

1: while testData # ¢ do

2: read rule one by one

3:

4: acc = 0.0

5:

6: level = total_autumata

7:

8: while Level > 0 & acc ! = 100% do

9: while rule # ¢ do

10: if attribute-value pair matches then

11: increment hit by 1

12:

13: else

14: if Attribute or value does not match then
15: increment mis by 1

16: end if

17: end if

18: Read next pair

19:
20: end while

21: ratio = (hit/totalStates)* (hit+total States) 2
22: if ratio > acc then

23: acc = ratio

24:
25: testClassLabel = autmataClassLabel
26:

27: end if
28: Decrement Level by 1

29:

30: end while

31: end while

V. WEIGHTED RATIO MEASUREMENT

The classification of test instances is based on the
“attribute-value" pairs, similar to the one used during automata
construction. Algorithm [2] verifies both attribute and its value
to a single state. If both match, the process then moves to the
next state and reads the next pair from the test instance. Every
match in automata increments “hit", while mismatches incur
an increment of a “miss" variable. At the time of classification,
algorithm check the ratio between “hit - miss" and the highest
WR is considered the predicted class for the instance.

The WR is defined by Equation No (6). This equation gives
a high weight to those automaton with maximum number of
matching states. For example, for three hits out of six states,
automata will give a high ration as compared to 2 hit out of
4 states; while the average for both is 0.5. Here the focus is
on the maximum number of matches instead of the maximum
average where 5 out of 10 and 10 out of 20 are equal using a
simple average. However, Eq (6) will give preference to 10 out
of 20 due to maximum numbers of correct matches. It results
in a stronger classification as a consequence of high number of
similarity with respect to the number of attributes. Further, if
the numbers of hits are the same, then it gives preference to a
lesser number of mismatches; therefore, in calculating weight,
Eq (7) will increase the weight of low miss-count and decrease
that of the high miss-count.

Ration = w + hit_counts 6)

1 1
w=|—T7—|%|———F— @)
miss_count total_attributes

Example 7: Table and Table correspond to contact
lenses and dermatology datasets, respectively. In each table,
row represents the outcome of comparison of test instance
with one automaton. Column 1 (S No) is an identifier for each
automaton while column 4 (Total) represents the total number
of states in that automaton. In Table [II] a test of test-instance
is shown with 6 different Automata. The table also lists the
hit and misses counts. According to Eq (6), the algorithm will
select Q1 because it has the maximum number of hits and
a lesser number of misses as compared to Q3. In this case,
the simple average will also select Q1 because the average is
highest among all; despite the issue that a single hit of Q5 is
given preference over 2 hits of Q6. Now consider Table
the simple average will now select Q1 as a result of the highest
average and will ignore Q2 where 14 attributes match out of
16. However, ACA will choose Q2 because it gives the highest
ration.

www.ijacsa.thesai.org

676 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

¢) FA1 competes after reading and
absorbing 2, 4, 8

d) FAO completes after absorption of
rules 1, 3,5-7.9

Fig. 6. Automata 0 and Automata 1 after reading all rules from Table II.
Figures c) and d) are final Automata for the classification Algorithm

VI. RESULTS AND DISCUSSION

The ACA was implemented using Java 7, on Windows
8.1 running over 64bit, core i7 2.6GHz machine with 8GB of
memory. The results of other techniques are generated using
Weka 3.7.13 on the same system with the above specifications.
In order to simplify the regeneration of results in Weka, all the
experiments were conducted with default parameters or oth-
erwise explained in the corresponding sections. The numeric
datasets were discretized using using unsupervised discretizer
of Weka, because most of the classification techniques did their

Vol. 10, No. 7, 2019

TABLE III. PARTIAL AUTOMATA FROM CONTACT LENSES DATASET FOR
WEIGHTED CLASS LABEL COMPARISON (TOTAL NO OF ATTRIBUTES: 4)

S No | Hit | Miss | Total | Eq (I) | Average
Ql 3 1 4 32 1075
Q2 2 1 3 22 | 0.667
Q3 3 2 5 3.1 0.6
Q4 2 2 4 2.1 0.5
Q5 1 1 2 1.2 |05
Q6 2 3 5 2.067 | 0.4

TABLE IV. PARTIAL AUTOMATA FROM DERMATOLOGY DATASET FOR
WEIGHTED CLASS LABEL COMPARISON(TOTAL NO OF ATTRIBUTES: 16)

S No | Hit | Miss | Total | Eq(I) | Average
Ql 8 1 9 8.063 0.889
Q2 14 2 16 | 14.031 0.875
Q3 2 1 3 2.063 0.667
Q4 3 2 5 3.031 0.6
Q5 4 3 7 4.021 0.571
Q6 5 4 9 5.016 0.556

experiments on the same grounds.

VII. SELECTION OF DATASETS FOR EXPERIMENTS

The most commonly cited datasets [[18} 19, 21} 261 |37, 38]]
are selected for the experiments. These all datasets are avail-
able at UCI Machine Learning Repository [36]. In order
to show the effect of new technique on different dataset,
the datasets were divided into four categories, namely: a)
Small Discrete Datasets, b) Large Discrete Datasets, ¢) Small
Continuous Datasets, and d) Large Continuous Datasets. The
discrete and continuous devision is based on the nature of data
types i.e. Categorical or Numeric, while the distribution into
small and large datasets is provided for the purpose to explain
the effects of ACA on the smaller and larger datasets. The
following sub-sections explain these categories in detail.

A. Small Discrete Dataset

Small discrete datasets include those datasets which pro-
duce less than are equal to 50,000 association rules. The
reason behind setting the limit to 50,000 is that this number of
association rules are taking much longer time on the system
with small memory i.e. 2GB or 4GB and in some cases
may lead to system halt. The experiments during association
rule generation showed that in general when the number of
attributes are 9 or more, then the numbers of association
rules exceed 50,000 under minimum threshold for support
and confidence for rules generation are set to 1% and 100%
respectively. The datasets in this category are displayed in
Table [Vl The table shows that there are datasets with 2 to 4
classes while the number of instances in datasets ranges from
12 to 1728. Similarly, the attributes ranges from 5 to 7.

B. Large Discrete Dataset

The large dataset in discrete category contain those datasets
which either generate more than 50,000 rule under the thresh-
old of 1% support and 100% confidence or the number of

www.ijacsa.thesai.org

677 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE V. DETAILED DESCRIPTION OF SMALL DISCRETE DATASETS

Dataset Name Attributes Instances Class
weather.nominal 5 14 2
balloons 5 20 2
contact-lenses 5 24 3
shuttle-landing-control 7 15 2
car 7 1728 4

attributes are 9 or more. This category includes Vote, Zoo, Tic-
Tac-Toe, Postoperative Patient Data, Breast Cancer, Nursery,
and Mushroom. The detailed description is shown in Table [V]]
This category has the datasets where the attributes ranges from
9 to 23 while the number of instances are as minimum as 90
the maximum of 12960. Furthermore, these datasets also have
more classes which ranges from bi-class problem to 21classes.

TABLE VI. DETAILED DESCRIPTION OF LARGE DISCRETE DATASET

Dataset Name Attributes Instances Class
postoperative-patient-dat 9 90 3
nursery 9 12960 5
breast-cancer 10 286 2
tic-tac-toe 10 958 2
Z00 17 101 2
vote 17 435 2
primary-tumor 18 339 21
Mushroom 23 8124 2

C. Small Continuous Datasets

This category consists of those datasets that have any
number of attributes with continuous/numeric data types.
These datasets were discretized with the Weka built in feature
i.e. unsupervised discretizer. Then the similar criteria of the
number of rules were applied to distinguish between small
and large datasets. Those datasets which are able to generate
50,000 or less rules are included in this category. The datasets
in this category are IRIS2D, IRIS4D, Balance Scale, TEA,
Hayes Roth, Weather Nominal, Data Banknote, and Liver
Disorder. Table shows the detailed description of these
datasets. The number of rows in this category in the similar
range of small discrete dataset. bi-class and multi-class, both
typoe of datasets are included in this category. Similarly, the
number of instances also ranges from 14 to 1373.

TABLE VII. DETAILED DESCRIPTION OF CONTINUOUS SMALL DATASETS

Dataset Name Attributes Instances Class
iris2D 3 150 3
weather-numeric 5 14 3
hayes-roth 5 28 4
iris 5 150 3
balance-scale 5 625 3
data_banknote 5 1373 2
tae 6 151 3
liver-disorders 7 345 2

Vol. 10, No. 7, 2019

D. Large Continuous Datasets

The final category consists of large dataset with continuous
data types. The datasets which have any number of attributes
with numeric data type and have the ability to generate
more than 50,000 association rules under the threshold of 1%
support and 100% confidence are included in this category.
This includes Diabetes, Breast Cancer, CMC, Page Block,
Labor, Heart-C, Heart-h, Anneal, Ionosphere, Dermatology,
Glass, Hepatitis, and wine. Table shows the detailed
description of large continuous datasets. The table can show
that this category is comparatively diversified in terms of
attributes, number of classes and number of rows. The number
of attributes in this category are as many as 39 which are
considered quite high for AR algorithms. Similarly, both bi-
class and multi-class problems are included in this category.

TABLE VIII. DETAILED DESCRIPTION OF LARGE CONTINUOUS

DATASETS

Dataset Name Attributes Instances Class
diabetes 9 768 2
Glass 10 214 6
w-breast 10 699 2
cme 10 1473 3
page-blocks 11 5473 5
Wine 14 178 10
hungarian-14-heart-diseas 14 294 2
heart-c 14 303 2
labor 17 57 2
Hapititus 20 178 2
Dermatology 35 366 6
Ionosphere 35 366 2
Anneal 39 898 5

VIII. SELECTION OF ALGORITHMS FOR COMPARISON

ACA was compared with three classes of classification
algorithms. The first is obviously based on association rules,
so as to give comparison with its own family members. The
algorithms in this class are CBA [25] and LAC[39]. The
second class of algorithms is rule-based and Tree Based. This
class of algorithms is similar in nature with AC and have J48
[12]], CART [40], BFTree [40], Jrip (Ripper) [41], PART [42]],
DecisionTable, and ZeroR. Finally, Average One Dependence
Estimator (AODE) [43], A2DE [44]], Naive Bayes, and Bayes
Net [45] is selected from Bayesian Family which considers a
family of the most prominent classifiers with reasonably high
accuracy.

IX. COMPARISON OF ACA WITH OTHER CLASSIFIERS
BASED ON ACCURACY

This section deals with the comparison of ACA with
different classifiers based on accuracy. The comparison is
provided with Associative Classifiers, followed by Rules and
Tree based classifier, and finally with Naive Bayesian family
of classifiers.

www.ijacsa.thesai.org

678 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

ACA Comparison with AC Classifiers

Accuracy
BN W oA W O N ® ©
© © 0o o 06 o © o o ©
[
oc >
@20
>0 >

Fig. 7. ACA Comparison with AC Classifiers on small discrete datasets

A. Accuracy Comparison of ACA with Associative Classifiers

The accuracy comparisons with other associative classifiers
are discussed in detail in this section. Two classifiers are
selected i.e. CBA and LAC from AC classifiers. CBA is the
most commonly referenced associative classifier and the latest
implementation is used in these experiments. Lazy Associative
Classifier is a based on maximum number of rules as compare
to CBA. The ACA claims that additional rules might increase
the accuracy therefore LAC was chose for comparison with
ACA to give insight of rules’ effects on accuracy. The discus-
sion is divided into four section where each section discusses
individual category of dataset for accuracy analysis.

1) Accuracy comparison with small discrete datasets: In
this section, the analysis of ACA with CBA and LAC over
small discrete datasets are presented. Table [[X]and Fig.[7]shows
the results of the all three classifiers. The table shows that
ACA is performing better than CBA and LAC in most of the
datasets. The reason for high accuracy is that ACA is using
large number of rules as compare to other classifiers which
leads to more accurate results. Secondly, because the datasets
are relatively small, the generated rules set is comparative
small and complete.

TABLE IX. ACCURACY COMPARISON OF ACA WITH ASSOCIATIVE
CLASSIFIERS OVER SMALL DISCRETE DATASETS

Dataset Name ACA LAC CBA
balloons 100.00 100.00 100.00
car 83.49 70.02 77.78
contact-lenses 81.67 62.50 68.33
shuttle-landing-control 100.00 93.33 95.00
weather.nominal 75.00 71.42 55.00

2) Comparison with small Continuous datasets: Next, The
ACA is compared with small continuous datasets which were
discretized using Weka’s discretizer utility. Table [X] and Fig.
[8] presents the results of the experiments. It shows that ACA
outperform the AC classifiers in most cases while in balance
scale and weather numeric datasets ACA did not perform well.
Although in general ACA loses in two dataset but the win
loss ratio is 7/8 with individual algorithms where ACA was
surpassed by Balance Scale and Weather Numeric by LAC and
CBA, respectively.

Vol. 10, No. 7, 2019

TABLE X. ACA COMPARISON WITH AC CLASSIFIERS OVER SMALL
CONTINUOUS DATASETS

Dataset Name ACA LAC CBA
balance-scale 80.11 88.96 45.76
data_banknote 98.86 97.88 68.37
hayes-roth 89.57 7651 3791
iris 96.67 96.67 66.00
iris2D 98.67 94.00 66.00
liver-disorders 7143 66.08 57.98
tae 69.67 58.27 34.42
weather-numeric 60.00 35.71 70.00

ACA Comparison with AC Classifiers

Datasets

Fig. 8. ACA Comparison with AC Classifiers on small continuous datasets

3) Comparison with Large Discrete datasets: This section
discuss the results of ACA with AC classifiers over large
discrete datasets. Table [XI| and Fig. O] shows the results.
Experiments shows that ACA performs better in four out of
seven datasets. The extensive experiments showed that those
large datasets where the number of distinct values per attributes
are small, the ACA performance is lower. The reason is that it
results in smaller Automata where conflict of classes increases
and even the weighted selection of classes, sometime, unable
to produce the highest accuracy. This is the default sequential
nature of automata. In individual comparison, the win loss
ratio is 5/2 and 6/1 with LAC and CBA respectively which
is reasonably high. Similarly on the average, the accuracy of
ACA is higher than other AC classifiers.

TABLE XI. ACA COMPARISON WITH AC CLASSIFIERS OVER LARGE
DISCRETE DATASETS

Dataset Name ACA LAC CBA
breast-cancer 89.66 73.77 70.30
nursery 86.79 92.81 66.25
postoperative-patient-dat 73.50 71.11 68.56
primary-tumor 5441 36.87 3891
tic-tac-toe 88.01 6722 65.34
vote 68.47 91.72 94.73
700 86.10 91.08 60.39

4) Comparison with Large Continuous datasets: Finally,
this section discusses the comparison of ACA with AC clas-
sifier over large continuous datasets. It show the strength and

www.ijacsa.thesai.org

679 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

ACA Comparison with AC Classifier

80
70
60 |
40
= ACA
30 =LAC
20 w CBA
10
o
& 3 s & °
& = o
& &N &

<& &

Acuracy
o
=}

Datasets

Vol. 10, No. 7, 2019

Accuracy Comparison with AC Cl

= ACA

=LAC

= CBA

& g S & &S & &

& &8 & S F F s = ~
& & & P

Accuracy
N ow » @
o =] i<} 1=}

"
°

90

80

70

60 | I

o

v{\o@ & & & & s
&

<5

Fig. 9. Accuracy Comparison with AC Classifiers over large discrete datasets

scalability of ACA that as the datasets increase, the accuracy
improves. The reason behind is that the large dataset generates
more interesting rules and when the number of interesting rules
increases, it positively effect the accuracy. Further, The number
of distinct values per attributes is larger as compare to Large
Discrete dataset and therefore it results in larger automata
that produce higher accuracy. Table [XII] and Fig. [T0] shows
the results of classifiers. The win loss ration with individual
classifier is 11/3 with LAC and 14/0 with CBA. The reason
for CBA low performance is the size of dataset as well as
less number of rules for their building. While LAC consider a
reasonably large rule set from CBA and hence perform better
than CBA. In overall ACA beat AC classifiers by 10 datasets
out 14.

TABLE XII. ACCURACY COMPARISON WITH AC CLASSIFIERS OVER
LARGE CONTINUOUS DATASETS

Dataset Name ACA LAC CBA
Anneal 79.92 76.16 76.17
cmc 6291 5139 42.70
Dermatology 68.12 96.17 49.73
diabetes 7843 7291 67.20
Glass 64.15 60.74 35.52
Hapititus 89.25 80.64 76.75
heart-c 8543 82.83 068.42
Heart-h 8343 8299 66.63
Ionosphere 75.55 90.02 61.83
labor 89.44 87.71 79.00
Mushroom 8523 98.42 88.68
page-blocks 96.31 90.13 90.08
w-breast 96.29 96.99 89.69
Wine 76.68 36.51 23.04

B. Accuracy Comparison of ACA with Rules and Tree based
Classifiers

This section discusses the accuracy comparison of ACA
with Tree and Rules based classifiers. There are total 7
classifiers from both categories i.e. Ripper, PART, J48, BFTree,
CART, Decision Table, and ZeroR. The comparison is provided
with individual groups of dataset as mentioned in Section [VII]
The following sub sections explains the results in details.

Fig. 10. Accuracy Comparison with AC Classifier over large Continuous
datasets

ACA Comparison with Naive Bayesian Classifiers
100

920
80
70
60
40
o
balloons car h inal

Datasets

=ACA
= AODE

Accuracy
@
1=}

= NaiveBayes
= A2DE
= BayesNet

w
o

N
o

w
°

Fig. 11. Accuracy Comparison with Naive Bayesian Classifier over large
discrete datasets

1) Comparison with Small Discrete datasets: Table [XIII|
show the results of ACA and other tree based and rules based
algorithms. The accuracy of ACA is higher in four datasets
while in car, the accuracy goes down. The reason is the The
Average Accuracy of ACA is again higher than all Tree and
Rules based classifiers.

2) Comparison with Small Continuous datasets: Table[XIV]
show the results of ACA with other tree based and rules based
classifier for small continuous datasets. Except the weather-
numeric dataset where ACA slightly performed low, in the
rest of seven datasets, its accuracy is better. The reason for
weather numeric dataset is the number of fewer rules during
model construction.

3) Comparison with Large Discrete datasets: The compari-
son of ACA with tree based and rules based classifiers is shown
in Table [XV] In large discrete dataset the ACA out performs
in three datasets, namely, Breast Cancer, Postoperative Patient
Data, Primary Tumor, and Tic Tac Toe. The reason for low
performance in vote and zoo is its excessive number of
contradictory rules. This high number of contradictory rules
results in deceived classifier models. This is the main reason
that no single classifier could perform better for these datasets.

4) Comparison with Large Continuous datasets: Table[XV]|
show the results of ACA with other classifiers for Large
Continuous datasets. In this category the performance of ACA

www.ijacsa.thesai.org

680 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

TABLE XIII. ACA COMPARISON WITH RULES AND TREE BASED CLASSIFIERS OVER SMALL DISCRETE DATASETS

Dataset Name ACA Ripper PART J48 BFTree CART DecisionTable ZeroR
balloons 100.00 100.00 100.00 100.00 100.00 100.00 100.00 60.00
car 83.49 86.46 95.77 92.36 97.05 97.11 91.03 70.02
contact-lenses 81.67 75.00 81.67 81.67 78.33 78.33 75.00 68.33
shuttle-landing-control ~ 100.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00
weather.nominal 75.00 70.00 60.00 55.00 55.00 40.00 40.00 70.00
TABLE XIV. ACA COMPARISON WITH RULES AND TREE BASED CLASSIFIERS OVER SMALL CONTINUOUS DATASETS
Dataset Name ACA Ripper PART J48 BFTree CART DecisionTable ZeroR
balance-scale 80.11 70.55 77.27 6448 79.2 78.57 66.74 45.76
data_banknote 98.86 96.14 97.16 98.40 98.83 98.76 97.38 55.54
hayes-roth 89.57 82.53 74.12 72.69 79.51 83.3 47.03 37.91
iris 96.67 93.33 95.33 96.00 96.00 96.00 96.00 33.33
iris2D 98.67 93.33 92.67 96.00 95.33 96.00 96.00 33.33
liver-disorders 71.43 59.39 62.36 61.15 59.44 60.61 62.05 57.98
tae 69.67 56.29 47.04 49.71 52.96 54.96 52.21 34.42
weather-numeric 60.00 50.00 55.00 55.00 65.00 50.00 60.00 70.00
TABLE XV. ACA COMPARISON WITH RULES AND TREE BASED CLASSIFIERS OVER LARGE DISCRETE DATASETS
Dataset Name ACA Ripper PART J48 BFTree CART DecisionTable ZeroR
breast-cancer 89.66 70.95 71.33 75.54 67.86 69.26 73.47 70.30
nursery 86.79 96.84 99.21 97.05 99.49 99.58 94.7 33.33
postoperative-patient-dat ~ 73.50 71.11 61.11 70.00 68.89 71.11 68.56 71.11
primary-tumor 54.41 39.24 40.70 39.80 39.80 40.96 38.91 24.78
tic-tac-toe 88.01 97.81 9426 84.55 93.73 92.90 73.39 65.34
vote 68.47 95.41 94.71 96.33 95.40 95.42 94.73 61.38
Z00 86.10 89.00 93.18 93.06 91.08 90.09 86.00 40.55

is reasonably good where it out perform all other classifiers in
ten datasets out of fourteen. The reason for higher accuracy
is the larger number of automata that enable the classifier to
accurately classify the class labels.

C. Accuracy Comparison of ACA with Naive Bayesian

The ACA Comparison with Naive Bayes Classifier is
performed in this section. Naive Bayes classifier are the most
prominent classifiers and work well with dataset with low or
zero independence. Classifiers in this groups are NaiveBayes,
BayesNet, AODE and A2DE. The following subsections elab-
orate the results in detail.

1) Comparison with Small Discrete datasets: Table
and Fig. [11|show the results of ACA and other Naive Bayesian
classifiers. The accuracy of ACA is higher in four datasets
while the average accuracy is above all classifiers in this
category.

2) Comparison with Small Continuous datasets: Table
and Fig. [T2] represent the results of ACA and Naive
Bayesian classifiers for small continuous datasets. The ACA
outperformed all Naive Bayesian classifier in seven datasets
while on balance scale dataset the NaiveBayes perform better.
The average accuracy of ACA is 88.03 which highest among
all classifiers.

www.ijacsa.thesai.org

681 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

TABLE XVI. ACA COMPARISON WITH RULES AND TREE BASED CLASSIFIERS OVER LARGE CONTINUOUS DATASETS

Dataset Name ACA Ripper PART J48 BFTree CART DecisionTable ZeroR
Anneal 79.92 99.00 99.00 98.66 98.77 98.88 97.66 76.17
cmce 62.91 48.34 4799 49.29 5235 53.77 49.76 42.70
Dermatology 68.12 89.32 9480 94.00 94.00 94.00 86.87 30.60
diabetes 78.43 7279 7344 73.83 71.23 73.97 72.40 65.11
Glass 64.15 48.14 60.80 5792 62.16 60.30 48.53 35.52
Hapititus 89.25 80.00 86.46 81.25 78.00 79.33 81.13 79.37
heart-c 85.43 80.17 81.84 79.18 78.20 80.81 7490 5445
Heart-h 83.43 79.28 80.34 80.02 7693 76.23 81.00 63.95
Ionosphere 75.55 89.18 87.19 86.62 89.19 89.76 84.90 64.10
labor 89.44 85.00 66.00 57.33 72.67 68.67 65.00 64.67
Mushroom 85.23 100.00 100.00 100.00 99.94 99.94 100.00 51.80
page-blocks 96.31 9392 9271 92.87 94.06 94.08 92.34 89.77
w-breast 96.29 94.13 9428 9442 93.56 93.42 92.85 65.52
Wine 76.68 30.85 3255 32.65 32.03 29.84 3092 23.04

TABLE XVII. ACA COMPARISON WITH NAIVE BAYESIAN CLASSIFIERS
OVER SMALL DISCRETE DATASETS

Dataset Name ACA AODE NaiveBayes A2DE BayesNet
balloons 100.00 100.00 100.00 100.00 100.00
car 83.49 8546 94.62 85.61
contact-lenses 81.67 68.33 76.17 71.67 73.67
shuttle-landing-control ~ 100.00 95.00 94.50 95.00 95.00
weather.nominal 75.00 55.00 57.50 55.00 64.00

TABLE XVIII. ACA COMPARISON WITH NAIVE BAYESIAN CLASSIFIERS
OVER SMALL CONTINUOUS DATASETS

Dataset Name ACA AODE NaiveBayes A2DE BayesNet
balance-scale 80.11 89.45 9144 82.24 91.44
data_banknote 98.86 97.01 89.60 98.69 89.63
hayes-roth 89.57 76.48 82.59 68.96 82.66
iris 96.67 94.67 94.33 94.00 94.33
iris2D 98.67 96.67 96.87 96.67 96.87
liver-disorders 71.43 64.10 64.15 63.5 64.07
tae 69.67 56.21 5425 58.88 54.52
weather-numeric ~ 60.00 40.00 56.00 45.00 45.50

3) Comparison with Large Discrete datasets: Table [XIX]
and Fig. [T3] highlights the results of ACA with all Naive
Bayesian classifier over large continuous datasets. Although
ACA outperformed in only three datasets but on average
accuracy, it is better than other.

4) Comparison with Large Continuous datasets: Table [XX]
and Fig. [T4] show the results of ACA with Naive Bayesian
classifiers over large continuous datasets. In this category,
ACA beaten all classifiers on eight datasets while AODE and
BayesNet the accuracy on two datasets are higher while A2DE
and NaiveBayes outperformed in one dataset each. The ACA
is using a larger collection of rules,due to large datasets, that
results in higher accuracy. The average accuracy of ACA is
higher than all classifiers in this category.

ACA Comparison with Naive Bayesian Classifiers

90
80
70
60
z
£ 50 =ACA
2 = AODE
40 NaiveBayes
= A2DE
30 = BayesNet
20
10
o
2% & & < w4 & - &
o o 3 « B
5 o <« e &5
& 5 « &
£ &

Datasets

Fig. 12. Accuracy Comparison with Naive Bayesian Classifier over large
discrete datasets

TABLE XIX. ACA COMPARISON WITH BAYESIAN CLASSIFIERS OVER
LARGE DISCRETE DATASETS

Dataset Name ACA AODE NaiveBayes A2DE BayesNet
breast-cancer 89.66 71.03 72.70 72.46 72.59
nursery 86.79 92.72 90.30 94.83 90.31
postoperative-patient-dat ~ 73.50 64.78 68.11 64.78 65.89
primary-tumor 5441 4953 49.71 49.62 47.11
tic-tac-toe 88.01 72.96 69.64 90.71 69.59
vote 68.47 94.30 90.02 94.30 90.23
200 86.10 96.00 93.42 97.00 93.52

X. COMPLEXITY ANALYSIS OF ACA

This section provides the computational analysis regarding
time and space requirement of the algorithm. Analysis shows
that ACA is reasonably efficient. The subsections explain time
and space complexities individually.

A. Time Complexity Analysis

ACA consists of two algorithms i.e. FA Construction and
Classifier. The complexity of both algorithms are explained in
the subsequent section.

www.ijacsa.thesai.org

682 | Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

ACA Comparison with Naive Bayesian Classifiers

90
80
70
60
40
30
20
10
o
. & o & < e
«

e =
& & «
=4 &€
&

&

= ACA
= AODE

= NaiveBayes
= A2DE

= BayesNet

Accuracy
@
1=}

Dataset

Fig. 13. Accuracy Comparison with Bayesian Classifier over large discrete
datasets

TABLE XX. ACA COMPARISON WITH BAYESIAN BASED CLASSIFIERS
OVER LARGE CONTINUOUS DATASETS

Dataset Name ACA AODE NaiveBayes A2DE BayesNet

Anneal 7992 9521 94.56 95.1 94.31
cme 6291 53.02 50.74 52.40 50.78
Dermatology 68.12 97.81 9746 96.99 97.79
diabetes 7843 76.96 75.68 74775 75.57
Glass 64.15 59.42 57.69 60.78 58.48
Hapititus 89.25 85.13 8431 83.87 83.91
heart-c 8543 8347 83.38 82.16 83.55
Heart-h 8343 78.92 83.01 76.18 83.01
Ionosphere 75.55 92.88 90.86 92.60 90.86
labor 89.44 83.00 9270 83.00 95.07
Mushroom 8523 99.98 95.76 100.00 96.22
page-blocks 96.31 93.42 9432 93.68 94.67
w-breast 96.29 96.71 97.30 96.99 97.30
Wine 76.68 32.68 38.56 33.66 36.92

ACA Comparison with Naive Bayesian Classifiers

o ¢
< o <

& S &
o
e

=ACA
= AODE

Accuracy
@
o

= NaiveBayes
= A2DE
= BayesNet

90
80
70
60
a0
30
20
10

o

S

& @
< 3
s &°

< .
& &
o

Datasets

Fig. 14. Accuracy Comparison with Bayesian Classifier over large discrete
datasets

Vol. 10, No. 7, 2019

1) Analysis of FA Construction Algorithm:: The running
time of FA_Construction is equal to the number of transitions
from one state to another. If we have n attributes, and there
is “forward only" transition to every state from the current
state, then the possible numbers of required transitions are
m—(m-1),(m—-1)—(m-2),..,3—=2, 2— 1 (from
attribute i, there are i - 1 possible transitions with forward
only restriction). For example, if a rule set consists of three
attributes A,B,C in a chronological order, then there are two
possible transitions from state A, (one to B and one to C) and
one move from B to C. Therefore, generally the total number
of transitions are

2.2 ®
i=1 j=i
which is O (#)in the worst case scenario and €2(m) in

the best case. If there are n rules in a rule set, the total

time will become O (n (’"72> . In ACA, single transition can

have multiple labels from input symbols, therefore the number
of labels is not considered. The hardest part of this module
is conflict resolution. Theoretically, if every rule is causing
conflict at final state, then the algorithm may be O (nm?) ? The
reason is that, in each of the iterations, only one rule becomes a
new automaton and all the remaining rules are checked against
the newly-created automaton.

2) Analysis of Classifier Algorithm:: Tt is assumed that
there are j Automata with % states in every automaton.
Following this, the classifier, in the best case scenario, will
take only Q(k) time when the first automaton classifies the
test instance. In the worst case scenario, if the algorithm is
unable to classify the instance at all, then the time will be
O(jk) for a single instance. For a whole test dataset with r
number of rules, the running time will be O(rjk)and Q(rk).
Hence, the total running time of ACA is the summation of
O(nm?)? + O(jk) in worst case while the best case is the
sum of Q(nm?) + Q(jk) which is much smaller than most
of the pruning and ranking algorithms.

B. Space Complexity Analysis

The space requirement depends on, specifically: a) the
number of attributes, b) cardinality of attributes (i.e. distinct
values of attributes which is called input symbols in ACA),
and c¢) number of rules in CARs. Input symbols of the
automata consist of the unique values of all attributes; so
if there are three attributes A;, A, and A3 with 7, 8, 9
distinct values respectively, the size of the input symbol will be
24 (7 + 8 + 9 = 24). If the attributes’ values is transformed
to consecutive integers such that every attribute’s value starts
from 0. Using this approach the language size will reduce to
the cardinality of the largest attribute; i.e., in the above case
the language size will reduce to 9 instead of 24.

Secondly, in the best case scenario, if all rules are absorbed
in a single automaton then the space is O(am) where «
refers to the number of input symbols and m is the num-
ber of attributes. If every rule causes a conflict and creates
separate automata, the space requirements will be bounded in
O(ram)where r is the total number of rules. Therefore the
space requirement is in (am) and O(ram).

www.ijacsa.thesai.org

683 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

XI. CONCLUSION

In the field of data mining, associative classification has
been researched for more than two decades; however, the trade-
off between pruning and accuracy is still under research, while
the application of automata as a deterministic approach has
received little attention. In this research, automata were utilized
for two purposes: a) as a storage structure in classification;
and b) to replace the rule pruning and rule ranking phases
of associative classification. In the former case, the use of
automata enabled the classification to deal with enormous
datasets by reducing the space requirements for the purpose of
classification. In the latter usage, the automata produced a loss-
less associative classifier by eliminating the pruning steps that
can result in a loss of useful information with unwise pruning.
The automata also helped to reduce the size of the dataset by
taking advantage of the repetition of data in the dataset. The
sequential nature of the automata allowed the absorption of
similar data items into a single automaton.

In the process of size reduction and similar data item
absorption, automata can generate conflicts. These conflicts
can arise from conflicting association rules, which in turn can
lead to conflicting classification results. Consequently, these
rules were put into separate automata to avoid the conflicts
in the first place. Following the different strategies discussed
in this paper, these automata can reduce conflicts by avoiding
merger, but this results in a large number of automata and in
some cases can lead to a larger classifier. Therefore, a new
merging concept was developed to merge automata based on
their structure-based similarity. This structure-based similarity
helped to reduce the classifier size as well as to minimize the
chance of a loss of information.

XII. FUTURE WORK

It is evident from this research that the use of automata
has the potential to improve classification in general. The
current approach is able to handle discrete value datasets
only, but it can be extended to deal with the numeric data
as well. This will increase the scalability of the ACA and will
advance in application in additional areas of interest. The ACA
can also extend to streaming data classification. One possible
application might be for real-time virus and malware detection.
Incoming data could be analyzed during its runtime to detect
any malicious applications. Automata can also incorporate
the probabilistic approach, where they can use the rough-set
theory to decide from among overlapping class predictions.
One possible application of this approach could be real-time
fraud detection, where rough set theory can help to define the
boundaries between legitimate and fraudulent transactions.

REFERENCES

[1] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin,
“The elements of statistical learning: data mining, in-
ference and prediction,” The Mathematical Intelligencer,
vol. 27, no. 2, pp. 83-85, 2005.

[2] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern clas-
sification. ~ San Jose, California: John Wiley & Sons,
2012.

[3] I. Yoo, P. Alafaireet, M. Marinov, K. Pena-Hernandez,

R. Gopidi, J.-F. Chang, and L. Hua, “Data mining
in healthcare and biomedicine: A survey of the

Vol. 10, No. 7, 2019

literature,” Journal of Medical Systems, vol. 36,
no. 4, pp. 2431-2448, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10916-011-9710-5

[4] B. Zhang, I. Valentine, P. Kemp, and G. Lambert,
“Predictive modelling of hill-pasture productivity: inte-
gration of a decision tree and a geographical information
system,” Agricultural Systems, vol. 87, no. 1, pp. 1 —
17, 2006. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0308521X04002008

[51 S. E Crone, S. Lessmann, and R. Stahlbock,
“The impact of preprocessing on data mining: An
evaluation of classifier sensitivity in direct marketing,”
European Journal of Operational Research, vol.
173, no. 3, pp. 781 — 800, 2006. [Online].
Available: http://www.sciencedirect.com/science/article/
pii/S0377221705006739

[6] B. Zhang, 1. Valentine, and P. D. Kemp, “A decision
tree approach modelling functional group abundance
in a pasture ecosystem,” Agriculture, Ecosystems &
Environment, vol. 110, no. 3 - 4, pp. 279 — 288,
2005. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167880905002069

[7] C. Mues, B. Baesens, C. M. Files, and J. Vanthienen,
“Decision diagrams in machine learning: an empirical
study on real-life credit-risk data,” Expert Systems
with Applications, vol. 27, no. 2, pp. 257 — 264,
2004. [Online]. Available: http://www.sciencedirect.com/
science/article/p11/S0957417404000120

[8] S. Piramuthu, “On learning to predict web traffic,”

Decision Support Systems, vol. 35, no. 2, pp.
213 - 229, 2003, web Data Mining. [Online].
Available: |http://www.sciencedirect.com/science/article/

p11/S0167923602001070
[9] C. Cortes and V. Vapnik, “Support-vector networks,”
Machine learning, vol. 20, no. 3, pp. 273-297, 1995.

[10] J. Hong, I. Mozetic, and R. S. Michalski, “Aql5: In-
cremental learning of attribute-based descriptions from
examples: The method and user’s guide,” Reports of the
Intelligent Systems Group, vol. 86-05, pp. 1-59, 1986.

[11] J. R. Quinlan, “Simplifying decision trees,” International
Jjournal of man-machine studies, vol. 27, no. 3, pp. 221-
234, 1987.

, C4. 5: programs for machine learning.
kaufmann, 1993, vol. 1.

[13] T. Cover and P. Hart, “Nearest neighbor pattern classifica-
tion,” IEEE Transactions on Information Theory, vol. 13,
no. 1, pp. 21-27, 1967.

[14] W. H. Bing Liu and Y. Ma, “Integrating classification
and association rule mining,” in Proceedings of the 4th
International Conference on Knowledge Discovery and
Data Mining, 1998, pp. 80-86.

[15] A. Bechini, F. Marcelloni, and A. Segatori, “A
mapreduce solution for associative classification of big
data,” Information Sciences, vol. 332, pp. 33 — 55,
2016. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0020025515007793

[16] F. Thabtah, S. Hammoud, and H. Abdel-
Jaber, “Parallel associative classification data mining
frameworks based mapreduce,” Parallel Processing
Letters, vol. 25, mno. 02, p. 1550002, 2015.
[Online]. Available: http://www.worldscientific.com/doi/
abs/10.1142/S0129626415500024

[12]

Morgan

www.ijacsa.thesai.org

684 |Page

http://dx.doi.org/10.1007/s10916-011-9710-5
http://www.sciencedirect.com/science/article/pii/S0308521X04002008
http://www.sciencedirect.com/science/article/pii/S0308521X04002008
http://www.sciencedirect.com/science/article/pii/S0377221705006739
http://www.sciencedirect.com/science/article/pii/S0377221705006739
http://www.sciencedirect.com/science/article/pii/S0167880905002069
http://www.sciencedirect.com/science/article/pii/S0167880905002069
http://www.sciencedirect.com/science/article/pii/S0957417404000120
http://www.sciencedirect.com/science/article/pii/S0957417404000120
http://www.sciencedirect.com/science/article/pii/S0167923602001070
http://www.sciencedirect.com/science/article/pii/S0167923602001070
http://www.sciencedirect.com/science/article/pii/S0020025515007793
http://www.sciencedirect.com/science/article/pii/S0020025515007793
http://www.worldscientific.com/doi/abs/10.1142/S0129626415500024
http://www.worldscientific.com/doi/abs/10.1142/S0129626415500024

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(IJACSA) International Journal of Advanced Computer Science and Applications,

C.-H. Wu and J.-Y. Wang, “Associative classification
with a new condenseness measure,” Journal of the
Chinese Institute of Engineers, vol. 38, no. 4, pp.
458-468, 2015. [Online]. Available: http://dx.doi.org/10.
1080/02533839.2014.998287

W. Li, J. Han, and J. Pei, “Cmar: Accurate and efficient
classification based on multiple class-association rules,’
in Proceedings IEEE International Conference on Data
Mining. 1EEE, 2001, pp. 369-376.

F. Thabtah, P. Cowling, and Y. Peng, “Mcar: multi-class
classification based on association rule,” in Computer
Systems and Applications, 2005. The 3rd ACS/IEEE In-
ternational Conference on. IEEE, 2005, p. 33.

F. Thabtah, “Rules pruning in associative classification
mining,” in Proceedings of the IBIMA Conference. Cite-
seer, 2005, pp. 7-15.

J. Han, “Cpar: Classification based on predictive associa-
tion rules,” in Proceedings of the third SIAM international
conference on data mining, vol. 3. Siam, 2003, pp. 331-
335.

J. Li, H. Shen, and R. Topor, “Mining the smallest
association rule set for predictions,” in Proceedings IEEE
International Conference on Data Mining. 1EEE, 2001,
pp- 361-368.

L. Venturini, E. Baralis, and P. Garza, “Scaling associa-
tive classification for very large datasets,” Journal of Big
Data, vol. 4, no. 1, p. 44, 2017.

F. Padillo, J. M. Luna, and S. Ventura, “Evaluating
associative classification algorithms for big data,” Big
Data Analytics, vol. 4, no. 1, p. 2, 2019.

K. Ali, S. Manganaris, and R. Srikant, “Partial classifi-
cation using association rules,” in Proc. 3rd Int. Conf.
Knowledge Discovery and Data Mining - KDD97, 1997,
pp- 115-118.

N. Abdelhamid, A. Ayesh, F. Thabtah, S. Ahmadi, and
W. Hadi, “Mac: A multiclass associative classification
algorithm,” Journal of Information & Knowledge Man-
agement, vol. 11, no. 02, pp. 1-10, 2012.

M. R. Schmid, F Igbal, and B. C. Fung, “E-
mail authorship attribution using customized associative
classification,” Digital Investigation, vol. 14, Supplement
1, pp. S116 — SI126, 2015, the Proceedings of
the Fifteenth Annual {DFRWS} Conference. [Online].
Available: http://www.sciencedirect.com/science/article/
pii/S1742287615000572

F. Padillo, J. Luna, and S. Ventura, “A grammar-guided
genetic programing algorithm for associative classifica-
tion in big data,” Cognitive Computation, pp. 1-16, 2019.
E. Baralis and P. Garza, “A lazy approach to pruning
classification rules,” in Proceedings IEEE International
Conference on Data Mining. IEEE, 2002, pp. 35-42.
E. Baralis, S. Chiusano, and P. Garza, “A lazy approach to

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Vol. 10, No. 7, 2019

associative classification,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 20, no. 2, pp. 156-171,
2008.

P. Paranjape-Voditel and U. Deshpande, “A stock
market portfolio recommender system based on
association rule mining,” Applied Soft Computing,
vol. 13, no. 2, pp. 1055 - 1063, 2013. [Online].
Available: |http://www.sciencedirect.com/science/article/
pii/S1568494612004322

T. Mielikdinen, *“An automata approach to pattern collec-
tions,” in Knowledge Discovery in Inductive Databases.

Springer, 2005, pp. 130-149.

J. E. Hopcroft, Introduction to Automata Theory, Lan-
guages, and Computation, 3rd ed. Pearson Addison
Wesley, 2007.

A. V. Aho and M. J. Corasick, “Efficient string matching:
an aid to bibliographic search,” Communications of the
ACM, vol. 18, no. 6, pp. 333-340, 1975.

Y. Fan, H. Zhang, J. Liu, and D. Xu, “An efficient parallel
string matching algorithm based on dfa,” in Trustworthy
Computing and Services. Springer, 2013, pp. 349-356.
K. Bache and M. Lichman, “UCIL: machine learning
repository,” University of California, 2013. [Online].
Available: http://archive.ics.uci.edu/ml

F. Thabtah, Q. Mahmood, L. McCluskey, and H. Ab-
del Jaber, “A new classification based on association
algorithm,” Journal of Information & Knowledge Man-
agement, vol. 9, no. 01, pp. 55-64, 2010.

B. Liu, Y. Ma, and C. K. Wong, “Improving an associa-
tion rule based classifier,” in Principles of Data Mining
and Knowledge Discovery. Springer, 2000, pp. 504-509.
A. Veloso, W. Meira, and M. J. Zaki, “Lazy associative
classification,” in Data Mining, 2006. ICDM’06. Sixth
International Conference on. 1EEE, 2006, pp. 645-654.
L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen,
Classification and regression trees. CRC press, 1984.
W. W. Cohen, “Fast effective rule induction,” in Proceed-
ings of the Twelfth International Conference on Machine
Learning, Lake Tahoe, California, 1995.

E. Frank and I. H. Witten, “Generating accurate rule sets
without global optimization,” in ICML ’98 Proceedings
of the Fifteenth International Conference on Machine
Learning. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1998, pp. 144-151.

G. 1. Webb, J. R. Boughton, and Z. Wang, “Not so naive
bayes: aggregating one-dependence estimators,” Machine
learning, vol. 58, no. 1, pp. 5-24, 2005.

D. Ruta and B. Gabrys, “New measure of classifier
dependency in multiple classifier systems,” in Multiple
Classifier Systems. Springer, 2002, pp. 127-136.

T. D. Nielsen and F. V. Jensen, Bayesian networks and
decision graphs. Springer Science & Business Media,
2009.

www.ijacsa.thesai.org

685 |Page

http://dx.doi.org/10.1080/02533839.2014.998287
http://dx.doi.org/10.1080/02533839.2014.998287
http://www.sciencedirect.com/science/article/pii/S1742287615000572
http://www.sciencedirect.com/science/article/pii/S1742287615000572
http://www.sciencedirect.com/science/article/pii/S1568494612004322
http://www.sciencedirect.com/science/article/pii/S1568494612004322
http://archive.ics.uci.edu/ml

	Introduction
	Associative Classification using Automata
	Building Automata from data
	Class Association Rules Generation and Rules Pruning
	Building Automata using CAR
	Properties of Automata in ACA

	Conflict Resolution
	Classification of Test Instances
	Weighted Ratio Measurement
	Results and Discussion
	Selection of datasets for Experiments
	Small Discrete Dataset
	Large Discrete Dataset
	Small Continuous Datasets
	Large Continuous Datasets

	Selection of Algorithms for Comparison
	Comparison of ACA with other Classifiers based on Accuracy
	ACA Accuracy Comparison with AC Classifiers
	Accuracy comparison with small discrete datasets
	Comparison with small Continuous datasets
	Comparison with Large Discrete datasets
	Comparison with Large Continuous datasets

	Accuracy Comparison of ACA with Rules and Tree based Classifiers
	Comparison with Small Discrete datasets
	Comparison with Small Continuous datasets
	Comparison with Large Discrete datasets
	Comparison with Large Continuous datasets

	Accuracy Comparison of ACA with Naive Bayesian
	Comparison with Small Discrete datasets
	Comparison with Small Continuous datasets
	Comparison with Large Discrete datasets
	Comparison with Large Continuous datasets

	Complexity Analysis of ACA
	Time Complexity Analysis
	Analysis of FA Construction Algorithm:
	Analysis of Classifier Algorithm:

	Space Complexity Analysis

	Conclusion
	Future Work

