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Abstract—Achieving an optimal solution for NP-complete 

problems is a big challenge nowadays. The paper deals with the 

Traveling Salesman Problem (TSP) one of the most important 

combinatorial optimization problems in this class. We 

investigated the Parallel Genetic Algorithm to solve TSP. We 

proposed a general platform based on Hadoop MapReduce 

approach for implementing parallel genetic algorithms. Two 

versions of parallel genetic algorithms (PGA) are implemented, a 

Parallel Genetic Algorithm with Islands Model (IPGA) and a 

new model named an Elite Parallel Genetic Algorithm using 

MapReduce (EPGA) which improve the population diversity of 

the IPGA. The two PGAs and the sequential version of the 

algorithm (SGA) were compared in terms of quality of solutions, 

execution time, speedup and Hadoop overhead. The experimental 

study revealed that both PGA models outperform the SGA in 

terms of execution time, solution quality when the problem size is 

increased. The computational results show that the EPGA model 

outperforms the IPGA in term of solution quality with almost 

similar running time for all the considered datasets and clusters. 

Genetic Algorithms with MapReduce platform provide better 

performance for solving large-scale problems. 

Keywords—Genetic algorithms; parallel genetic algorithms; 

Hadoop MapReduce; island model; traveling salesman problem 

I. INTRODUCTION 

Genetic algorithms (GAs) are stochastic search methods 
that have been successfully applied in many searches, 
optimization, and machine learning problems [1]. GAs are used 
to find approximate solutions in a reasonable time for 
combinatorial optimization problems. One of the main features 
of genetic algorithms is that they are inherently parallel. This 
makes them the most suitable for parallelization [2]. Parallel 
genetic algorithms (PGAs) can improve GAs to search in a 
huge solution space and reduce the total execution time. In 
general, there are three main models of parallel GAs: master-
slave model, fine-grained model and coarse-grained also called 
island model. 

The island model is a popular and effective parallel genetic 
algorithm because it does not only save time but also improves 
global research ability of GA [3]. Recently, the increasing 
volume of data requires high-performance parallel processing 
models for robust and speedy data analysis. Thus, the use of 
large-scale data-intensive applications has become one of the 
most important areas of computing. 

Several technologies and approaches have been 
implemented to develop parallel algorithms. Hadoop 
MapReduce represents one of the most mature technologies. 

MapReduce programming model, proposed by Google [4], has 
become the prevalent model for processing a vast amount of 
data in parallel especially on a large cluster of computing 
nodes. Due to massive parallelization and scalability of 
MapReduce, it is used to develop parallel algorithms. It 
provides a ready-to-use distributed infrastructure that is 
scalable, reliable and fault-tolerant [4], [5]. The power of the 
MapReduce comes from the fact that it splits the data into 
smaller chunks processed in parallel by the mappers and 
merged by the reducers [6]. MapReduce aims to help 
programmers and developers to primarily focus on their 
applications on large distributed clusters, and hide the 
programming details of load balancing, network 
communication, and fault tolerance. Hadoop is the latest 
buzzword in cloud computing which implements the 
MapReduce framework. Hadoop is an Apache open-source 
software project designed for distributed parallel processing. It 
is designed to run applications on a big cluster of commodity 
nodes in a reliable, scalable and fault-tolerant manner. It is also 
designed to scale up from single servers to thousands of nodes. 
Each node in the cluster is a machine offers local computation 
and storage [7]. Hadoop deploys a master-slave architecture for 
computation and storage. 

The basic design idea of MapReduce is inspired by two 
functions: Map and Reduce. Both Map Tasks and Reduce 
Tasks, which are written by the user, work on key/value pairs. 
A MapReduce application is executed in a parallel manner 
through two phases. In the first phase, all Map tasks can be 
executed independently. In the second phase, each Reducer 
task depends on the output generated by any number of Map 
task. Then, all Reducer tasks start executing their tasks 
independently [8]. The architecture of the MapReduce 
framework is shown in Fig. 1. 

 

Fig. 1. The Architecture of the MapReduce Framework [8]. 
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Traveling Salesman Problem (TSP) is one of the most 
common and combinatorial optimization problems in computer 
science and operations research. Given a set of cities and 
distances between them, the TSP goal is to find the shortest 
tour that visits all cities exactly once and returns to the starting 
city.  TSP is easy-to-state but a difficult-to-solve problem since 
it is an NP-complete problem. TSP is considered enormously 
important because it can model a large number of real-world 
problems. Some of the applications include industrial robotics 
[9], job scheduling [10], computing wiring, DNA sequencing 
[11], [12], vehicle routing [13], and so forth. 

Many methods have been developed to solve the TSP 
problem. These can be classified into two main categories; 
exact and heuristics. Exact methods guarantee to find the 
optimal solution of the problem whereas heuristic methods 
attempt to provide a good solution in a reasonable time [14]. 
Genetic Algorithms (GAs) are found to be one of the best 
metaheuristic algorithms for the TSP problems and yield 
approximate solutions within a reasonable time [15]. 

The parallel GAs using Hadoop MapReduce are not always 
guaranteed better performance than the sequential versions in 
term of execution time, that because of the overhead produced 
by the use of Hadoop MapReduce. One of the aims in this 
work is to understand if and when the parallel GA solutions 
show better performance. 

For this work, two versions of parallel genetic algorithms 
are implemented using MapReduce to solve the TSP, a Parallel 
Genetic Algorithm with Island Model (IPGA) proposed in [16], 
and our proposed algorithm named Elite Parallel Genetic 
Algorithm (EPGA). We empirically assessed the performance 
of the two aforementioned PGA models with respect to a 
sequential GA on TSP problems, evaluating the quality of the 
solution, the execution time, the achieved speedup and the 
Hadoop overhead. The experiments were conducted by varying 
the problem size such as five TSP instances were exploited to 
differentiate the computation load. Additionally, varying 
population size and the cluster size were configured based on 4 
and 8 parallel nodes. A total of 20 runs was executed for every 
single experiment of 3000 generations each. 

The rest of the paper is organized as follows: Section 2 
presents the related works. The third section presents the 
sequential genetic algorithms. Then, the proposed approach is 
described in Section 4. Afterward, we present the experiments, 
findings, and discussions in Section 5. Finally, Section 6 
concludes the paper. 

II. RELATED WORKS 

In the last decade, there has been an increasing amount of 
literature on parallelizing genetic algorithms using MapReduce 
framework. The first work was an extension of MapReduce 
called MRPGA (MapReduce for Parallel GAs). Jin et al., [17] 
claimed that GAs cannot be directly expressed by MapReduce. 
They extended the original MapReduce by adding a second 
reduce phase at the end of each iteration to perform a global 
selection. The mapper nodes evaluate the fitness function. A 
local reducer for selecting the local optimum individuals and a 
second reducer produces the global optimum individuals as 
final results. Verma et al. [18] identified several shortcomings 

in the previous approach. Firstly, the mapper node performs the 
evaluation and the ReducReduce does the local and global 
selection, the bulk of the work—crossover, mutation and the 
convergence criteria are carried out by a single container. 
Hence, their approach decreased the scalability due to the 
sequential part of the coordinator. Secondly, mapper, reducer, 
and final reducer emitted ―default key‖ with the value 1. In this 
respect, they changed the MapReduce model, and they did not 
apply any standards of the model whether grouping by keys or 
the shuffling. 

Verma et al., [18] proposed a GA based on the traditional 
MapReduce model to solve ONEMAX problem. They 
considered one MapReduce job for each GA iteration. The 
Mapper nodes calculate the fitness values. Then, the Reducers 
implement selection and crossover operations. The default 
partitioner was overridden by a random partitioner in order to 
shuffle individuals randomly across different reducers to avoid 
overloading the Reducers. They confirmed that the GA can 
scale on multiple nodes with large population size. However, 
their model had a big IO footprint because the full population 
is saved to HDFS after each generation. Hence, big 
performance degradation was caused [16]. 

Huang and Lin [10] implemented a MapReduce framework 
to scale up the population for solving the Job Shop Scheduling 
Problem (JSSP) using GA. The authors used a large population 
size (up to 10^7) with fewer generations in order to reduce the 
overall MapReduce overhead for every generation. This study 
revealed that the GAs with larger populations were more likely 
to find good solutions as well as converge with fewer 
generations. Also, the effect of clusters size is presented, that 
show the speedup by increasing nodes in the cluster. 

In [19], Subasi and Keco developed a Hadoop MapReduce 
model for parallelizing GA using one MapReduce phase for all 
generations of the genetic algorithm. Most of the processing 
was transferred from the reduce phase to map phase. This 
change reduced the amount of IO footprint because all 
processing data are kept in a local memory instead of HDFS. 
However, having a different population for each node leads to 
a species problem in the algorithm. To solve this problem, 
Enomoto et al., [20] applied migration strategy to improve 
population diversity in parallelization a GA using MapReduce, 
by exchanging individuals among subpopulations during the 
Shuffle phase. They utilized an ID for each island as a key to 
assign individuals to their sub-populations. Furthermore, they 
suggested a method to reduce unnecessary network IO in 
Shuffle tasks by reducing the number of individuals during 
migrations. This method eliminated half of the worst 
individuals in each sub-population after completing the map 
tasks (after GA- convergence). To maintain search efficiency, a 
number of individuals are recovered and created by applying a 
mutation operator at the beginning of each map phase. The 
results showed a significant improvement in the solution 
quality and execution time. In [21] the authors proposed a 
MapReduce hybrid genetic algorithm approach to solve the 
Time-Dependent Vehicle Routing Problem. The island model 
has been used for parallelizing the algorithm. The migration 
process has been carried out by changing the key (island ID) 
with a certain probability. They observed form the experiments 
that a large-scale problem with hundreds or thousands of nodes 
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can be solved easily by adding more resources without any 
change in the algorithm implementation which is impossible in 
a single machine. Although this approach is interesting, it 
suffers from an overhead due to launching a MapReduce job 
for each GA iteration. 

Apostol et al., [6] proposed new models for two well-
known GA implementations, namely island and neighborhood 
models. They implemented the two models with two methods 
of handling sub-populations: island model with isolated 
subpopulation and neighborhood model with overlapping sub-
population. The authors tested the algorithms on two 
optimization problems: the job shop scheduling problem and 
the traveling salesman problem with an instance of the problem 
of size 38 cities. The results showed that there was no 
significant difference between the two models in execution 
time, but the solution quality was higher for the neighborhood 
model over the island model. They proved a fact that the 
correct handling subpopulations formed by MapReduce can 
significantly improve the obtained results, but their work 
suffered from IO overhead between Mappers and reducers. 

Ra et.al, [2] solved the TSP using GA on Hadoop 
MapReduce. They used multiple static populations with 
migration parallelization method. Iterative MapReduce jobs 
were used to implement Parallel GA. Each generation 
implemented a single MapReduce job. In the first job, the map 
tasks created an initial population and wrote them back to the 
HDFS. Then, the evaluation process started until a maximum 
number of generations, map tasks read populations from HDFS 
and sent them to reducers according to their Population 
Identifier. The reducers applied the GA operators, i.e. rank 
selection, greedy crossover and mutation with probability 
2.1%, the population was evolved for a specific iteration 
number. All reducers wrote the best individuals of their 
populations and wrote the new population into HDFS. In order 
to share the best individuals, the best individuals were written 
with a different population identifier to migrate them to another 
sub-population in the next iteration. They measured the 
performance of their Parallel GA by comparing the sequential 
version of it (SGA) with the following algorithms-Sequential 
Constructive crossover, Edge Recombination crossover, and 
Generalized N-Point crossover. The results showed that the 
SGA came up with better solutions than other algorithms, but 
the SCX and SGA took almost the same time when the 
problem size increased. Moreover, they compared their SGA 
with MapReduce parallel GA, the MapReduce GA found better 
solutions. However, the SGA obtained solution faster than 
MapReduce GA for the small-sized problem because creation 
time for the map and reduce tasks impacts the solution time. 
However, when the problem size increased, SGA solution time 
increased, and MapReduce has almost the same run-time for all 
problem sizes. 

Khalid et al.,[3] proposed a MapReduce framework 
implementation for GA with a large population using island 
parallelization technique. TSP was used as a case study to test 
the algorithm. A single MapReduce job was assigned to each 
generation. The Map task was responsible for fitness 
evaluation, crossover and mutation operations whereas the 
selection and re-population were done in reduce phase. The 
key represented the fitness of an individual while the value 

contained the individual itself. Accordingly, the intermediate 
pairs (key, value) were sorted and grouped according to fitness 
value. All individuals with the same fitness value were grouped 
into the same reducer. However, all copies of this individual 
were sent to an overloaded single reducer. When the GA 
converges, all the individuals were processed by that single 
reducer, so the parallelism would decrease as the GA 
converges and it would take more iterations. Furthermore, a 
single job was required for each generation which creates an 
overhead in term of execution time. 

Rao and Hegde [22] proposed a novel method to solve TSP 
using the Sequential constructive crossover (SCX) on Hadoop 
MapReduce framework to deal with larger problem size. 
Iterative MapReduce was applied to specify a single job for 
each generation. The initial population was generated by the 
master node. Map tasks read the population from the HDFS 
and calculate the fitness function and then send them to reduce 
tasks with their population identifier. Afterward, the partitioner 
shuffled the individuals based on their sub-population 
identifiers. The remaining GA operators were performed in the 
Reduce phase. Upon the completion of iteration, all reducers 
wrote their best individuals and saved the new population into 
HDFS. An input file with 20 cities was used for the analysis 
purpose, and a hundred populations were initially created. 
They used a single-node Hadoop cluster on a single machine. 
The virtual machine and Cloudera open source Hadoop 
platform were used to deploy Hadoop. The results showed 
better performance after the various evolution of the genetic 
algorithm. However, using a single MapReduce job for each 
generation increased the overall overhead. 

Ferrucci, Salza and Sarro [16] proposed a parallel genetic 
on Hadoop MapReduce platform based on three models, 
namely the global, grid and island models, they were used as a 
benchmark problem, the software engineering problem of 
configuring the Support Vector Machines (SVM) for inter-
release fault prediction. They assessed the effectiveness of 
these models in terms of execution time, speedup, overhead 
and computational effort. The results revealed that the island 
model outperformed the use of Sequential GA and the PGAs 
based on the global and grid models. Furthermore, the 
overhead of the HDFS accesses, communication and latency 
impaired the parallel solutions based on global and grid models 
when executed on small problem instances. To speed up the 
execution of tasks, it was useful to reduce datastore operations 
as it happened with the island model where data store access 
was limited to the migration period only. 

In this paper, we proposed a new MapReduce model to 
parallelize GAs named an Elite Parallel Genetic Algorithm 
using MapReduce (EPGA) in order to improve the population 
diversity. The Elite technique is inspired by the work of [23]. 
To the best of our knowledge, no literature proposes the Elite 
migrating based on Hadoop MapReduce to migrate the 
individuals between the master node and mapper/reducer node 
during the GA iterations. 

III. SEQUENTIAL GENETIC ALGORITHMS 

The parallel adaptations are built on the base of the 
following SGA implementation, which is composed of a 
sequence of genetic operators repeated generation by 
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generation, as described in Algorithm 1. The algorithm starts by 
generating randomly an initial population. It uses the tournament 
selection technique to select parents for the crossover operation. 
And it uses the inversion mutation operation which consists to 
swap randomly two nodes of the individual. The SURVIVAL 
selection is to select fitter individuals. After performing crossover 
operation survivor selection is used for selecting a next-generation 
population, as described in Algorithm 1. 

ALGORITHM 1  SEQUENTIAL GENETIC ALGORITHM (SGA) 

1: population ← INITIALIZATION (populationSize)  

2: for i←1, MaxGenerationNumber do  

3: for individual ∈ population  

4: FITNESSEVALUATION (individual)  

5: elite ← ELITISM (population) 

      population ← population− elite 

     parent1 ← TOURNAMENTSELECTION (population)  

6: parent2 ← TOURNAMENTSELECTION (population) 

7: child ← ESCX (parent1, parent2) 

8: offspring ← offspring ∪ {child}  

9: for individual ∈ offspring  

10: INVERSIONMUTATION (individual)  

11: for individual ∈ offspring  

12: FITNESSEVALUATION (individual) 

      population ← SURVIVALSELECTION (population, 

offspring)  

13: population ← population ∪ elite  

IV. PARALLEL GENETIC ALGORITHMS USING MAPREDUCE 

Island model is a popular and effective parallel genetic 
algorithm [3]. It reduces the communication overhead which is 
an eminent drawback in distributed computing and improves 
the global search ability of evolutionary algorithms [1]. When 
dealing with island models some aspects need to be considered: 

 The migration interval: how often individuals are 
exchanged. 

 The migration rate: the number of migrant individuals 
between sub-populations. 

 The individual is chosen for migration. 

 The individual replaced after the new individuals are 
received [6]. 

The following subsections describe in detail the algorithms 
used in this paper and how they are implemented with MapReduce. 

A. Island Parallel Genetic Algorithm using MapReduce 

(IPGA) 

The parallel genetic algorithm for the island model on 
MapReduce divides the population into several sub-
populations. Each sub-population executed on a node called an 
island. Each island executes its sub-population a period of 
iterations independently from the other islands until a 
migration occurs Fig. 2. This period of consecutive generations 
before migration is defined as ―migration period‖. A 
MapReduce job is needed for each migration period. In this 
model, the numbers of Mappers and Reducers are coupled, 
each couple represents as an island. Each island has a specific 
identifier number. 

 

Fig. 2. The Flow of Hadoop MapReduce Implementation for IPGA. 

The Mapper: As shown in the algorithm in Algorithm 2, 
mapper node is used to execute the generation periods, and at 
the end of the map phase, the migration function is applied. 
The Mappers output the subpopulation as records in the form 
(key, value). The key is distention island number, while the 
value contains the individual and its fitness value. Migration 
function selects best p % individuals (Migrant Individuals) 
from island i and migrates them to the next island (i+1) by 
changing their keys (island distention number). 

ALGORITHM 2 MAP PHASE OF IPGA Map(key,value): 

1: if population not initialized 

2:          population ← INITIALIZATION(populationSize) 

3:  else 

4:         Read population from HDFS 

3:  for i←1, GenerationPeriod  

4:        for individual ∈ population 

5:                  FITNESSEVALUATION(individual) 

6:         elite ← ELITISM(population) 

7:         population ← population – elite 

8:         parent1 ← TOURNAMENTSELECTION(population) 

9:         parent2 ← TOURNAMENTSELECTION(population) 

10:         child      ← ESCX (parent1, parent2) 

11:       offspring ← offspring ∪ { child } 

12:        for individual ∈ offspring  

13:                  INVERSIONMUTATION(individual) 

14:        for individual ∈ offspring  

15:                  FITNESSEVALUATION(individual) 

16:         population ← SURVIVALSELECTION(population, offspring) 

17:         population ← population ∪ elite 

18:  end for 

19:   for i←1, MigrantIndividuals  

20:             selectedIndividual ← GetBestIndividual (population) 

21:              NextDestination ← islandNumber % totalNumberOfIslands 

22:              remove worstIndividual from population 

23:              EMIT  (selectedIndividual, NextDestination)  

24:  end for 

25:  for individual ∈ population  

26:             EMIT (individual, islandNumber) 

27:  end for 
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The partitioner sends the individuals to the correspondent 
island (i.e., the reducer). While the reducer is used only to 
writes the sub-population received for its correspondent island 
into HDSF as shown in Algorithm 3. 

ALGORITHM 3 REDUCE PHASE OF IPGA Reduce(key, values): 

1: for individual ∈ population 

2:     EMIT (individual, NullWritable.get()) 

B. Elite Parallel Genetic Algorithm using MapReduce 

(EPGA) 

Migration Period is realized to propose MapReduce 
iterations in the previous subsection, but we must consider 
MapReduce overhead. MapReduce has processing overhead at 
the start and end times, overhead related to I/O to the data store 
(i.e., Hadoop Distributed File Systems (HDFS)), and 
communication overhead in Shuffle tasks. In IPGA, the data 
store access is limited to the migration phase only. In this 
study, we aim to reduce MapReduce jobs without decreasing 
the search efficiency. We propose to apply an Elite migration 
method in order to reduce the migration frequency without 
affecting the performance. In this model, the master node 
(Driver) will read all best individuals from each island at the 
end of each migration period, sort them by fitness order and 
share best %p individuals from the top of the list among all 
islands. The outline of the algorithm is as follows: 

1) Each Mapper receives a sub-population to which it 

applies the GA from the HDFS. 

2) Each Mapper performs the GA for a period of 

generations. An identification number associated with the 

island (island id) is assigned as a key. Then, a pair of the id and 

an individual is combined as a (key, value) pair respectively, 

and outputted to partitioner. If the current period of generations 

is not the first period, each Mapper reads the Elite individuals 

received from the master node and replaced them with the %p 

worst individuals. Elite individuals are added and executed 

within the current sub-population. Algorithm 4 shows the 

pseudo-code for the map phase. 

3) Each partitioner receives the island id and individual 

given by the corresponding Map task. The partitioner assigns 

individuals to the Reducer by referring to the id of the island. 

4) Each Reducer receives a subpopulation from its 

correspondent mapper, and selects best %p individuals, writes 

them into a separated file to HDFS. Also, outputs all other 

individuals to HDFS. Algorithm 5 shows the pseudo-code for 

the reduce phase. 

5) If the maximum generation number not exceeded, the 

Master node reads the best individuals of all islands, sort them 

and selects best %p individuals and launches the next job. 

6) If the maximum generation is achieved, then this 

process returns the global optimum individual and terminates. 

Otherwise, it repeats steps 1 to 5. 

The flow of EPGA using MapReduce approach is shown in 
Fig. 3. 

 

Fig. 3. The Flow of Hadoop MapReduce Implementation for EPGA. 

ALGORITHM 4 MAP PHASE OF A GENERATION PERIOD OF EPGA  

Map(key, value): 

1: if population not initialized  

2:          population ← INITIALIZATION(populationSize) 

3: else 

4:         Read population from HDFS 

4:         Read EliteIndividuals list from Configuration 

2:         Add EliteIndividuals to population 

3: for i←1, MigrationPeriod  

4:        for individual ∈ population 

5:                  FITNESSEVALUATION(individual) 

6:         elite ← ELITISM(population) 

7:         population ← population – elite 

8:         parent1 ← TOURNAMENTSELECTION(population) 

9:         parent2 ← TOURNAMENTSELECTION(population) 

10:         child      ← ESCX (parent1, parent2) 

11:       offspring ← offspring ∪ { child } 

12:        for individual ∈ offspring  

13:                  INVERSIONMUTATION(individual) 

14:        for individual ∈ offspring  

15:                  FITNESSEVALUATION(individual) 

16:         population ← SURVIVALSELECTION(population, offspring) 

17:         population ← population ∪ elite 

18:  end for 

25: for individual ∈ population  

26:             EMIT (individual, islandNumber) 

27: end for 
 

ALGORITHM 5 REDUCE PHASE OF EPGA 

Reduce(key, values): 

1: sort population 

2: select best individuals. 

3: for individual ∈ population 

4:     EMIT (individual, NullWritable.get()) 

5: write BestIndividuals to HDFS 
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V. EXPERIMENTS AND RESULTS 

The experimental evaluation of the proposed MapReduce 
algorithm is performed on the famous TSP problem. We 
conducted our experiments on the TSP Data sets provided by 
Andre Rohe [24]. The problems range in size from 131 cities 
up to 744,710 cities. Thus, we retained five datasets for a total 
10 releases: ft70 (n=70, where n is the problem size)[25], 
xqf131 (n= 131), xqg237 (n= 237), bcl380 (n= 380), and 
rbu737 (n= 737). We chose these datasets because they are 
representing different degrees of the computational load for the 
fitness evaluation: small (ft70), medium (xqf131, xqg237, 
bcl381) and large (rub737). 

We executed the two PGAs on two different cluster 
configurations (i.e., C4 and C8) characterized by a different 
number of nodes. For each PGA model (IPGA and EPGA), 
dataset (ft70, xqf131, xqg237, bcl380, and rbu737), population 
size (500, 1000, 2000, 5000 and 10000), and cluster 
configuration (4 nodes, and 8 nodes), we executed 20 runs. 
Thus, we executed a total of 2500 runs consisting of 2 × 5 × 5 
× 2 × 20 = 2000 runs for PGAs and 5 × 5 × 20 = 500 for 
SGA. 

 The experiments are performed in an environment 
employing a private cloud platform of nine machines which 
compose the Hadoop cluster. We used a private Hadoop 
Cluster available at Computer Science department, Al-Imam 
Muhammad Ibn Saud Islamic University. All nodes have the 
same configuration to run a fair experiment as shown in 
Table I. 

Table II summarized two different types of Hadoop clusters 
used in our experiments. SGA was executed on a single node, 
while for PGAs we exploited C4 and C8 clusters. 

We employed the following settings for both SGA and 
PGAs: 

1) Population varies in size 500, 1000, 2000, 5000 and 

10000. 

2) 3000 generations. 

3) The elitism of 1 individual. 

4) Tournament Selection for parent selection of size 

Enhanced Sequential Constructive crossover operator  (ESCX) 

[14], with probability 1. 

5) Inversion Mutation, with a probability of 0.5. 

6) Survival Selection. 

For the PGAs, we used the number of islands equal to the 
cluster size. We tuned the number of migrant individuals to 
best 10% of sub-population per island, and the migration 
period to 3 periods. The performance of the PGAs is measured 
with respect to execution time, solution quality, speedup, and 
overhead. 

A. Execution Time 

The execution time was measured in milliseconds (ms) 
using the system clock. We compared the computation time 
achieved by executing all generations of SGA and PGA. Fig. 4 
shows the achieved execution times obtained over 20 runs for 
each dataset and with different population sizes (500, 1k, 2k, 

5k, and 10k). We can observe that the PGAs (IPGA and EPGA) 
outperforms the SGA for the large datasets xqg237, bcl380 and 
rbu737 (Fig. 4(c), (d), and (e)), regardless of the number of 
parallel nodes used. And for the ft70 and xqf131 datasets, 
PGAs are better only when executed using more than 1k 
population (a and b, Fig. 4). This can be explained by the fact 
that, for small instance problems, the overhead due to 
communication between nodes is higher than the computational 
time. However, when the problem size or/and population size 
increases, the SGA execution time increases dramatically. We 
can observe from Fig. 4 that the execution time of the two PGA 
models using a C8 cluster, is better than using C4 cluster on all 
the datasets, so the use of more nodes allowed to further reduce 
the execution time. And the execution time of IPGA and EPGA 
is very similar time. 

B. SpeedUp 

The speedup is the ratio of the sequential execution time to 
the parallel execution time [16]. The speedup is calculated 
based on the following equation: 

         
        

        
              (1) 

We compared the achieved speedup with respect to the 
ideal speedup. The ideal speedup is equal to the number of 
parallel nodes and corresponds to the situation when the SGA 
execution time is split among multiple nodes. Fig. 5 shows the 
speedup obtained by PGAs for all considered datasets. Both 
PGAs speed up the execution time with respect to SGA over all 
datasets of mean 7.2 × times by exploiting IPGA usingC8 
cluster, 3.9 × times by exploiting IPGA using C4cluster. And 
6.7 × times by exploiting EPGA using C8 cluster, 3.8× times 
by exploiting EPGA using C4 cluster. It is clear from the figure 
that, both PGAs tend to the ideal speedup value. 

C. Solution Quality 

The solution quality of the TSP problem was measured 
by calculating the error (Error%) of approximation of the 
best individual‘s fitness value and the TSPLIB optimum 
found on the website [24].  The error of the best path found 
with regard to the optimal tour in the TSPLIB is calculated 
as the given formula: 

      ( )   
                           

             
      

TABLE I.  MACHINES CONFIGURATION 

Feature Value 

Architecture 64 bit 

CPUs 4 cores 

RAM  8 GB 

Storage 500 GB 

Operating System Linux 

TABLE II.  CLUSTER CONFIGURATION EXPLOITED BY PGAS. 

Name Master nodes Slave nodes Total nodes 

C4 1 4 5 

C8 1 8 9 
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(a) Fv70                  (b) Xqf131 

  
(c) Xqg237 (d) Bcl380 

 
(e) Rbu737 

Fig. 4. Execution Times Achieved by SGA and PGAs on the five TSP Datasets. 
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Fig. 5. IPGA and EPGA Speedup Per Dataset with Population Size 10000. 

Fig. 6 reports the percentage of average solution accuracy 
achieved by SGA and PGAs on 20 runs on each algorithm and 
TSP dataset. We can observe from the figure that, the EPGA on 
4-node cluster outperforms the SGA and IPGA for all 
considered datasets. Even if PGA obtain ‗similar‘ solution 
accuracy as the SGA, the PGA outperforms the SGA in term of 
required time to get the same solution with different population 
size. We can observe also, as the population size increases, the 
PGAs performance improves rapidly in against to SGA. In 
Fig. 6(a), the EPGA in C4 cluster obtains better results and 
outperforms SGA and IPGA when the population size increases 

to 1k and above. The SGA obtains better results with small 
population sizes (i.e., 500 and 1000). This can be explained by 
the fact that the number of individuals on each island will be 
less than the original population (in case of 500, each island 
will have 125 and 63 individuals in C4 and C8 respectively), 
therefore the population diversity is also less than the original 
GA. This degrades search performance. In (b), the IPGA and 
EPGA in C4 cluster, outperform the SGA in all population 
sizes. The EPGA in C8 cluster outperforms the SGA after the 
population size increased to 2000 individuals, while the IPGA 
in C8 cluster remains the worst. 
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(a) ft70       (b) xqf131 

  
(c) xqg237 (d) bcl380 

 
(e) rbu737 

Fig. 6. The Percentage of the Average Solution Quality Achieved by SGA and PGAs on the Five TSBLIB Instances. 
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In the xqg237 dataset, also, the EPGA obtains better results 
than all other models in all population sizes. In (d) and (e), we 
can observe that the SGA outperforms the PGA models in term 
of solution quality in the population sizes between 500 and 
2000, but at the same time it takes very long execution time in 
against to PGAs. The PGAs obtained ‗similar‘ and ‗better‘ 
results faster than SGA but in larger population size. We can 
say that scaling up PGAs with large population tend to find 
better performance over the SGA within a reasonable time. 

D. Overhead 

The overhead time is the additional time other than the 
computation, due to communication and Hadoop platform tasks. 
The overhead is the reason that prevents the PGAs to have a 
speedup near the ideal on Hadoop platform. To measure the 
overhead for each PGA generation, we assign to each 
MapReduce job an initialization, computation, and finalization 
times for both Map and Reduce phases [16]. Fig. 7 shows the 
time measurement method for a MapReduce job. 

 Map Initialization time is the time required to let the first 
Mapper start its computation. 

 Map Finalization and Reducer Initialization time which is 
the time of the last mapper and the first reducer. Both of 
them are measured in the same way. 

 Reducer Finalization time is the time of the last ending 
reducer. 

In general, the overhead time in Hadoop corresponds to the 
sum of the overhead times of multiple jobs. Fig. 8 shows the 
mean computation and overhead times for each PGA on two 
datasets xqg237 and rbu737 in population size 2k. In Hadoop 
MapReduce, the overhead can be calculated using the sum of 
the overhead times of multiple jobs [16]. As we can see from 
the figure that, the overhead time for the IPGA and EPGA is 
the same and light in term of overhead time. That because we 
reduced the number of launched jobs during the PGAs 
execution time in order to control the overhead of HDFS 
accesses, which is limited to the migration phase only. From 
Fig. 8, we can observe that the overhead time is almost 
constant over the different jobs, and the map initialization 
phase takes longer time than the reducer initialization, that 
because in reducer phase nodes are already prepared to start 
reducer task when the Mappers are finishing. We also observed 
the overhead time independent of the dataset size. 

 

Fig. 7. The Time Measurement Method for Multiple Nodes. 

 
(a) rbu737. 

 
(b) xqg237. 

Fig. 8. The Computation and Overhead Times for Each PGAs 

Model. 

VI. CONCLUSION 
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EPGA outperforms the IPGA in term of the solution quality in 
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We observed the effect of large population size, large 
populations (5k and 10k individuals) tend to find better 
solutions and need fewer generation periods to obtain good 
results which reduce the overall Hadoop overhead. 

We also found that increasing the number of nodes in a 
cluster reduces the execution time. The use of the PGA models 
enabled to speed up the average execution time overall datasets 
with respect to SGA and tend to the ideal speedup value. 

The overhead of HDFS access and communication is 
reduced in the PGAs since the number of operations performed 
on the datastore is limited to the migration phase only. 
However, Hadoop overhead may impair PGA solutions when 
executed on small problem instances. 

We aim as a future work plan at comparing the 
performance of our model with an iterative MapReduce 
framework such as Haloop and Spark. Also, we aim to evaluate 
both parallel models by applying them to a challenging 
software engineering problem. 
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