
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

97 | P a g e

www.ijacsa.thesai.org

Hadoop MapReduce for Parallel Genetic Algorithm to

Solve Traveling Salesman Problem

Entesar Alanzi1, Hachemi Bennaceur2

Department of Computer Science

Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia

Abstract—Achieving an optimal solution for NP-complete

problems is a big challenge nowadays. The paper deals with the

Traveling Salesman Problem (TSP) one of the most important

combinatorial optimization problems in this class. We

investigated the Parallel Genetic Algorithm to solve TSP. We

proposed a general platform based on Hadoop MapReduce

approach for implementing parallel genetic algorithms. Two

versions of parallel genetic algorithms (PGA) are implemented, a

Parallel Genetic Algorithm with Islands Model (IPGA) and a

new model named an Elite Parallel Genetic Algorithm using

MapReduce (EPGA) which improve the population diversity of

the IPGA. The two PGAs and the sequential version of the

algorithm (SGA) were compared in terms of quality of solutions,

execution time, speedup and Hadoop overhead. The experimental

study revealed that both PGA models outperform the SGA in

terms of execution time, solution quality when the problem size is

increased. The computational results show that the EPGA model

outperforms the IPGA in term of solution quality with almost

similar running time for all the considered datasets and clusters.

Genetic Algorithms with MapReduce platform provide better

performance for solving large-scale problems.

Keywords—Genetic algorithms; parallel genetic algorithms;

Hadoop MapReduce; island model; traveling salesman problem

I. INTRODUCTION

Genetic algorithms (GAs) are stochastic search methods
that have been successfully applied in many searches,
optimization, and machine learning problems [1]. GAs are used
to find approximate solutions in a reasonable time for
combinatorial optimization problems. One of the main features
of genetic algorithms is that they are inherently parallel. This
makes them the most suitable for parallelization [2]. Parallel
genetic algorithms (PGAs) can improve GAs to search in a
huge solution space and reduce the total execution time. In
general, there are three main models of parallel GAs: master-
slave model, fine-grained model and coarse-grained also called
island model.

The island model is a popular and effective parallel genetic
algorithm because it does not only save time but also improves
global research ability of GA [3]. Recently, the increasing
volume of data requires high-performance parallel processing
models for robust and speedy data analysis. Thus, the use of
large-scale data-intensive applications has become one of the
most important areas of computing.

Several technologies and approaches have been
implemented to develop parallel algorithms. Hadoop
MapReduce represents one of the most mature technologies.

MapReduce programming model, proposed by Google [4], has
become the prevalent model for processing a vast amount of
data in parallel especially on a large cluster of computing
nodes. Due to massive parallelization and scalability of
MapReduce, it is used to develop parallel algorithms. It
provides a ready-to-use distributed infrastructure that is
scalable, reliable and fault-tolerant [4], [5]. The power of the
MapReduce comes from the fact that it splits the data into
smaller chunks processed in parallel by the mappers and
merged by the reducers [6]. MapReduce aims to help
programmers and developers to primarily focus on their
applications on large distributed clusters, and hide the
programming details of load balancing, network
communication, and fault tolerance. Hadoop is the latest
buzzword in cloud computing which implements the
MapReduce framework. Hadoop is an Apache open-source
software project designed for distributed parallel processing. It
is designed to run applications on a big cluster of commodity
nodes in a reliable, scalable and fault-tolerant manner. It is also
designed to scale up from single servers to thousands of nodes.
Each node in the cluster is a machine offers local computation
and storage [7]. Hadoop deploys a master-slave architecture for
computation and storage.

The basic design idea of MapReduce is inspired by two
functions: Map and Reduce. Both Map Tasks and Reduce
Tasks, which are written by the user, work on key/value pairs.
A MapReduce application is executed in a parallel manner
through two phases. In the first phase, all Map tasks can be
executed independently. In the second phase, each Reducer
task depends on the output generated by any number of Map
task. Then, all Reducer tasks start executing their tasks
independently [8]. The architecture of the MapReduce
framework is shown in Fig. 1.

Fig. 1. The Architecture of the MapReduce Framework [8].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

98 | P a g e

www.ijacsa.thesai.org

Traveling Salesman Problem (TSP) is one of the most
common and combinatorial optimization problems in computer
science and operations research. Given a set of cities and
distances between them, the TSP goal is to find the shortest
tour that visits all cities exactly once and returns to the starting
city. TSP is easy-to-state but a difficult-to-solve problem since
it is an NP-complete problem. TSP is considered enormously
important because it can model a large number of real-world
problems. Some of the applications include industrial robotics
[9], job scheduling [10], computing wiring, DNA sequencing
[11], [12], vehicle routing [13], and so forth.

Many methods have been developed to solve the TSP
problem. These can be classified into two main categories;
exact and heuristics. Exact methods guarantee to find the
optimal solution of the problem whereas heuristic methods
attempt to provide a good solution in a reasonable time [14].
Genetic Algorithms (GAs) are found to be one of the best
metaheuristic algorithms for the TSP problems and yield
approximate solutions within a reasonable time [15].

The parallel GAs using Hadoop MapReduce are not always
guaranteed better performance than the sequential versions in
term of execution time, that because of the overhead produced
by the use of Hadoop MapReduce. One of the aims in this
work is to understand if and when the parallel GA solutions
show better performance.

For this work, two versions of parallel genetic algorithms
are implemented using MapReduce to solve the TSP, a Parallel
Genetic Algorithm with Island Model (IPGA) proposed in [16],
and our proposed algorithm named Elite Parallel Genetic
Algorithm (EPGA). We empirically assessed the performance
of the two aforementioned PGA models with respect to a
sequential GA on TSP problems, evaluating the quality of the
solution, the execution time, the achieved speedup and the
Hadoop overhead. The experiments were conducted by varying
the problem size such as five TSP instances were exploited to
differentiate the computation load. Additionally, varying
population size and the cluster size were configured based on 4
and 8 parallel nodes. A total of 20 runs was executed for every
single experiment of 3000 generations each.

The rest of the paper is organized as follows: Section 2
presents the related works. The third section presents the
sequential genetic algorithms. Then, the proposed approach is
described in Section 4. Afterward, we present the experiments,
findings, and discussions in Section 5. Finally, Section 6
concludes the paper.

II. RELATED WORKS

In the last decade, there has been an increasing amount of
literature on parallelizing genetic algorithms using MapReduce
framework. The first work was an extension of MapReduce
called MRPGA (MapReduce for Parallel GAs). Jin et al., [17]
claimed that GAs cannot be directly expressed by MapReduce.
They extended the original MapReduce by adding a second
reduce phase at the end of each iteration to perform a global
selection. The mapper nodes evaluate the fitness function. A
local reducer for selecting the local optimum individuals and a
second reducer produces the global optimum individuals as
final results. Verma et al. [18] identified several shortcomings

in the previous approach. Firstly, the mapper node performs the
evaluation and the ReducReduce does the local and global
selection, the bulk of the work—crossover, mutation and the
convergence criteria are carried out by a single container.
Hence, their approach decreased the scalability due to the
sequential part of the coordinator. Secondly, mapper, reducer,
and final reducer emitted ―default key‖ with the value 1. In this
respect, they changed the MapReduce model, and they did not
apply any standards of the model whether grouping by keys or
the shuffling.

Verma et al., [18] proposed a GA based on the traditional
MapReduce model to solve ONEMAX problem. They
considered one MapReduce job for each GA iteration. The
Mapper nodes calculate the fitness values. Then, the Reducers
implement selection and crossover operations. The default
partitioner was overridden by a random partitioner in order to
shuffle individuals randomly across different reducers to avoid
overloading the Reducers. They confirmed that the GA can
scale on multiple nodes with large population size. However,
their model had a big IO footprint because the full population
is saved to HDFS after each generation. Hence, big
performance degradation was caused [16].

Huang and Lin [10] implemented a MapReduce framework
to scale up the population for solving the Job Shop Scheduling
Problem (JSSP) using GA. The authors used a large population
size (up to 10^7) with fewer generations in order to reduce the
overall MapReduce overhead for every generation. This study
revealed that the GAs with larger populations were more likely
to find good solutions as well as converge with fewer
generations. Also, the effect of clusters size is presented, that
show the speedup by increasing nodes in the cluster.

In [19], Subasi and Keco developed a Hadoop MapReduce
model for parallelizing GA using one MapReduce phase for all
generations of the genetic algorithm. Most of the processing
was transferred from the reduce phase to map phase. This
change reduced the amount of IO footprint because all
processing data are kept in a local memory instead of HDFS.
However, having a different population for each node leads to
a species problem in the algorithm. To solve this problem,
Enomoto et al., [20] applied migration strategy to improve
population diversity in parallelization a GA using MapReduce,
by exchanging individuals among subpopulations during the
Shuffle phase. They utilized an ID for each island as a key to
assign individuals to their sub-populations. Furthermore, they
suggested a method to reduce unnecessary network IO in
Shuffle tasks by reducing the number of individuals during
migrations. This method eliminated half of the worst
individuals in each sub-population after completing the map
tasks (after GA- convergence). To maintain search efficiency, a
number of individuals are recovered and created by applying a
mutation operator at the beginning of each map phase. The
results showed a significant improvement in the solution
quality and execution time. In [21] the authors proposed a
MapReduce hybrid genetic algorithm approach to solve the
Time-Dependent Vehicle Routing Problem. The island model
has been used for parallelizing the algorithm. The migration
process has been carried out by changing the key (island ID)
with a certain probability. They observed form the experiments
that a large-scale problem with hundreds or thousands of nodes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

99 | P a g e

www.ijacsa.thesai.org

can be solved easily by adding more resources without any
change in the algorithm implementation which is impossible in
a single machine. Although this approach is interesting, it
suffers from an overhead due to launching a MapReduce job
for each GA iteration.

Apostol et al., [6] proposed new models for two well-
known GA implementations, namely island and neighborhood
models. They implemented the two models with two methods
of handling sub-populations: island model with isolated
subpopulation and neighborhood model with overlapping sub-
population. The authors tested the algorithms on two
optimization problems: the job shop scheduling problem and
the traveling salesman problem with an instance of the problem
of size 38 cities. The results showed that there was no
significant difference between the two models in execution
time, but the solution quality was higher for the neighborhood
model over the island model. They proved a fact that the
correct handling subpopulations formed by MapReduce can
significantly improve the obtained results, but their work
suffered from IO overhead between Mappers and reducers.

Ra et.al, [2] solved the TSP using GA on Hadoop
MapReduce. They used multiple static populations with
migration parallelization method. Iterative MapReduce jobs
were used to implement Parallel GA. Each generation
implemented a single MapReduce job. In the first job, the map
tasks created an initial population and wrote them back to the
HDFS. Then, the evaluation process started until a maximum
number of generations, map tasks read populations from HDFS
and sent them to reducers according to their Population
Identifier. The reducers applied the GA operators, i.e. rank
selection, greedy crossover and mutation with probability
2.1%, the population was evolved for a specific iteration
number. All reducers wrote the best individuals of their
populations and wrote the new population into HDFS. In order
to share the best individuals, the best individuals were written
with a different population identifier to migrate them to another
sub-population in the next iteration. They measured the
performance of their Parallel GA by comparing the sequential
version of it (SGA) with the following algorithms-Sequential
Constructive crossover, Edge Recombination crossover, and
Generalized N-Point crossover. The results showed that the
SGA came up with better solutions than other algorithms, but
the SCX and SGA took almost the same time when the
problem size increased. Moreover, they compared their SGA
with MapReduce parallel GA, the MapReduce GA found better
solutions. However, the SGA obtained solution faster than
MapReduce GA for the small-sized problem because creation
time for the map and reduce tasks impacts the solution time.
However, when the problem size increased, SGA solution time
increased, and MapReduce has almost the same run-time for all
problem sizes.

Khalid et al.,[3] proposed a MapReduce framework
implementation for GA with a large population using island
parallelization technique. TSP was used as a case study to test
the algorithm. A single MapReduce job was assigned to each
generation. The Map task was responsible for fitness
evaluation, crossover and mutation operations whereas the
selection and re-population were done in reduce phase. The
key represented the fitness of an individual while the value

contained the individual itself. Accordingly, the intermediate
pairs (key, value) were sorted and grouped according to fitness
value. All individuals with the same fitness value were grouped
into the same reducer. However, all copies of this individual
were sent to an overloaded single reducer. When the GA
converges, all the individuals were processed by that single
reducer, so the parallelism would decrease as the GA
converges and it would take more iterations. Furthermore, a
single job was required for each generation which creates an
overhead in term of execution time.

Rao and Hegde [22] proposed a novel method to solve TSP
using the Sequential constructive crossover (SCX) on Hadoop
MapReduce framework to deal with larger problem size.
Iterative MapReduce was applied to specify a single job for
each generation. The initial population was generated by the
master node. Map tasks read the population from the HDFS
and calculate the fitness function and then send them to reduce
tasks with their population identifier. Afterward, the partitioner
shuffled the individuals based on their sub-population
identifiers. The remaining GA operators were performed in the
Reduce phase. Upon the completion of iteration, all reducers
wrote their best individuals and saved the new population into
HDFS. An input file with 20 cities was used for the analysis
purpose, and a hundred populations were initially created.
They used a single-node Hadoop cluster on a single machine.
The virtual machine and Cloudera open source Hadoop
platform were used to deploy Hadoop. The results showed
better performance after the various evolution of the genetic
algorithm. However, using a single MapReduce job for each
generation increased the overall overhead.

Ferrucci, Salza and Sarro [16] proposed a parallel genetic
on Hadoop MapReduce platform based on three models,
namely the global, grid and island models, they were used as a
benchmark problem, the software engineering problem of
configuring the Support Vector Machines (SVM) for inter-
release fault prediction. They assessed the effectiveness of
these models in terms of execution time, speedup, overhead
and computational effort. The results revealed that the island
model outperformed the use of Sequential GA and the PGAs
based on the global and grid models. Furthermore, the
overhead of the HDFS accesses, communication and latency
impaired the parallel solutions based on global and grid models
when executed on small problem instances. To speed up the
execution of tasks, it was useful to reduce datastore operations
as it happened with the island model where data store access
was limited to the migration period only.

In this paper, we proposed a new MapReduce model to
parallelize GAs named an Elite Parallel Genetic Algorithm
using MapReduce (EPGA) in order to improve the population
diversity. The Elite technique is inspired by the work of [23].
To the best of our knowledge, no literature proposes the Elite
migrating based on Hadoop MapReduce to migrate the
individuals between the master node and mapper/reducer node
during the GA iterations.

III. SEQUENTIAL GENETIC ALGORITHMS

The parallel adaptations are built on the base of the
following SGA implementation, which is composed of a
sequence of genetic operators repeated generation by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

100 | P a g e

www.ijacsa.thesai.org

generation, as described in Algorithm 1. The algorithm starts by
generating randomly an initial population. It uses the tournament
selection technique to select parents for the crossover operation.
And it uses the inversion mutation operation which consists to
swap randomly two nodes of the individual. The SURVIVAL
selection is to select fitter individuals. After performing crossover
operation survivor selection is used for selecting a next-generation
population, as described in Algorithm 1.

ALGORITHM 1 SEQUENTIAL GENETIC ALGORITHM (SGA)

1: population ← INITIALIZATION (populationSize)

2: for i←1, MaxGenerationNumber do

3: for individual ∈ population

4: FITNESSEVALUATION (individual)

5: elite ← ELITISM (population)

 population ← population− elite

 parent1 ← TOURNAMENTSELECTION (population)

6: parent2 ← TOURNAMENTSELECTION (population)

7: child ← ESCX (parent1, parent2)

8: offspring ← offspring ∪ {child}

9: for individual ∈ offspring

10: INVERSIONMUTATION (individual)

11: for individual ∈ offspring

12: FITNESSEVALUATION (individual)

 population ← SURVIVALSELECTION (population,

offspring)

13: population ← population ∪ elite

IV. PARALLEL GENETIC ALGORITHMS USING MAPREDUCE

Island model is a popular and effective parallel genetic
algorithm [3]. It reduces the communication overhead which is
an eminent drawback in distributed computing and improves
the global search ability of evolutionary algorithms [1]. When
dealing with island models some aspects need to be considered:

 The migration interval: how often individuals are
exchanged.

 The migration rate: the number of migrant individuals
between sub-populations.

 The individual is chosen for migration.

 The individual replaced after the new individuals are
received [6].

The following subsections describe in detail the algorithms
used in this paper and how they are implemented with MapReduce.

A. Island Parallel Genetic Algorithm using MapReduce

(IPGA)

The parallel genetic algorithm for the island model on
MapReduce divides the population into several sub-
populations. Each sub-population executed on a node called an
island. Each island executes its sub-population a period of
iterations independently from the other islands until a
migration occurs Fig. 2. This period of consecutive generations
before migration is defined as ―migration period‖. A
MapReduce job is needed for each migration period. In this
model, the numbers of Mappers and Reducers are coupled,
each couple represents as an island. Each island has a specific
identifier number.

Fig. 2. The Flow of Hadoop MapReduce Implementation for IPGA.

The Mapper: As shown in the algorithm in Algorithm 2,
mapper node is used to execute the generation periods, and at
the end of the map phase, the migration function is applied.
The Mappers output the subpopulation as records in the form
(key, value). The key is distention island number, while the
value contains the individual and its fitness value. Migration
function selects best p % individuals (Migrant Individuals)
from island i and migrates them to the next island (i+1) by
changing their keys (island distention number).

ALGORITHM 2 MAP PHASE OF IPGA Map(key,value):

1: if population not initialized

2: population ← INITIALIZATION(populationSize)

3: else

4: Read population from HDFS

3: for i←1, GenerationPeriod

4: for individual ∈ population

5: FITNESSEVALUATION(individual)

6: elite ← ELITISM(population)

7: population ← population – elite

8: parent1 ← TOURNAMENTSELECTION(population)

9: parent2 ← TOURNAMENTSELECTION(population)

10: child ← ESCX (parent1, parent2)

11: offspring ← offspring ∪ { child }

12: for individual ∈ offspring

13: INVERSIONMUTATION(individual)

14: for individual ∈ offspring

15: FITNESSEVALUATION(individual)

16: population ← SURVIVALSELECTION(population, offspring)

17: population ← population ∪ elite

18: end for

19: for i←1, MigrantIndividuals

20: selectedIndividual ← GetBestIndividual (population)

21: NextDestination ← islandNumber % totalNumberOfIslands

22: remove worstIndividual from population

23: EMIT (selectedIndividual, NextDestination)

24: end for

25: for individual ∈ population

26: EMIT (individual, islandNumber)

27: end for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

101 | P a g e

www.ijacsa.thesai.org

The partitioner sends the individuals to the correspondent
island (i.e., the reducer). While the reducer is used only to
writes the sub-population received for its correspondent island
into HDSF as shown in Algorithm 3.

ALGORITHM 3 REDUCE PHASE OF IPGA Reduce(key, values):

1: for individual ∈ population

2: EMIT (individual, NullWritable.get())

B. Elite Parallel Genetic Algorithm using MapReduce

(EPGA)

Migration Period is realized to propose MapReduce
iterations in the previous subsection, but we must consider
MapReduce overhead. MapReduce has processing overhead at
the start and end times, overhead related to I/O to the data store
(i.e., Hadoop Distributed File Systems (HDFS)), and
communication overhead in Shuffle tasks. In IPGA, the data
store access is limited to the migration phase only. In this
study, we aim to reduce MapReduce jobs without decreasing
the search efficiency. We propose to apply an Elite migration
method in order to reduce the migration frequency without
affecting the performance. In this model, the master node
(Driver) will read all best individuals from each island at the
end of each migration period, sort them by fitness order and
share best %p individuals from the top of the list among all
islands. The outline of the algorithm is as follows:

1) Each Mapper receives a sub-population to which it

applies the GA from the HDFS.

2) Each Mapper performs the GA for a period of

generations. An identification number associated with the

island (island id) is assigned as a key. Then, a pair of the id and

an individual is combined as a (key, value) pair respectively,

and outputted to partitioner. If the current period of generations

is not the first period, each Mapper reads the Elite individuals

received from the master node and replaced them with the %p

worst individuals. Elite individuals are added and executed

within the current sub-population. Algorithm 4 shows the

pseudo-code for the map phase.

3) Each partitioner receives the island id and individual

given by the corresponding Map task. The partitioner assigns

individuals to the Reducer by referring to the id of the island.

4) Each Reducer receives a subpopulation from its

correspondent mapper, and selects best %p individuals, writes

them into a separated file to HDFS. Also, outputs all other

individuals to HDFS. Algorithm 5 shows the pseudo-code for

the reduce phase.

5) If the maximum generation number not exceeded, the

Master node reads the best individuals of all islands, sort them

and selects best %p individuals and launches the next job.

6) If the maximum generation is achieved, then this

process returns the global optimum individual and terminates.

Otherwise, it repeats steps 1 to 5.

The flow of EPGA using MapReduce approach is shown in
Fig. 3.

Fig. 3. The Flow of Hadoop MapReduce Implementation for EPGA.

ALGORITHM 4 MAP PHASE OF A GENERATION PERIOD OF EPGA

Map(key, value):

1: if population not initialized

2: population ← INITIALIZATION(populationSize)

3: else

4: Read population from HDFS

4: Read EliteIndividuals list from Configuration

2: Add EliteIndividuals to population

3: for i←1, MigrationPeriod

4: for individual ∈ population

5: FITNESSEVALUATION(individual)

6: elite ← ELITISM(population)

7: population ← population – elite

8: parent1 ← TOURNAMENTSELECTION(population)

9: parent2 ← TOURNAMENTSELECTION(population)

10: child ← ESCX (parent1, parent2)

11: offspring ← offspring ∪ { child }

12: for individual ∈ offspring

13: INVERSIONMUTATION(individual)

14: for individual ∈ offspring

15: FITNESSEVALUATION(individual)

16: population ← SURVIVALSELECTION(population, offspring)

17: population ← population ∪ elite

18: end for

25: for individual ∈ population

26: EMIT (individual, islandNumber)

27: end for

ALGORITHM 5 REDUCE PHASE OF EPGA

Reduce(key, values):

1: sort population

2: select best individuals.

3: for individual ∈ population

4: EMIT (individual, NullWritable.get())

5: write BestIndividuals to HDFS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

102 | P a g e

www.ijacsa.thesai.org

V. EXPERIMENTS AND RESULTS

The experimental evaluation of the proposed MapReduce
algorithm is performed on the famous TSP problem. We
conducted our experiments on the TSP Data sets provided by
Andre Rohe [24]. The problems range in size from 131 cities
up to 744,710 cities. Thus, we retained five datasets for a total
10 releases: ft70 (n=70, where n is the problem size)[25],
xqf131 (n= 131), xqg237 (n= 237), bcl380 (n= 380), and
rbu737 (n= 737). We chose these datasets because they are
representing different degrees of the computational load for the
fitness evaluation: small (ft70), medium (xqf131, xqg237,
bcl381) and large (rub737).

We executed the two PGAs on two different cluster
configurations (i.e., C4 and C8) characterized by a different
number of nodes. For each PGA model (IPGA and EPGA),
dataset (ft70, xqf131, xqg237, bcl380, and rbu737), population
size (500, 1000, 2000, 5000 and 10000), and cluster
configuration (4 nodes, and 8 nodes), we executed 20 runs.
Thus, we executed a total of 2500 runs consisting of 2 × 5 × 5
× 2 × 20 = 2000 runs for PGAs and 5 × 5 × 20 = 500 for
SGA.

 The experiments are performed in an environment
employing a private cloud platform of nine machines which
compose the Hadoop cluster. We used a private Hadoop
Cluster available at Computer Science department, Al-Imam
Muhammad Ibn Saud Islamic University. All nodes have the
same configuration to run a fair experiment as shown in
Table I.

Table II summarized two different types of Hadoop clusters
used in our experiments. SGA was executed on a single node,
while for PGAs we exploited C4 and C8 clusters.

We employed the following settings for both SGA and
PGAs:

1) Population varies in size 500, 1000, 2000, 5000 and

10000.

2) 3000 generations.

3) The elitism of 1 individual.

4) Tournament Selection for parent selection of size

Enhanced Sequential Constructive crossover operator (ESCX)

[14], with probability 1.

5) Inversion Mutation, with a probability of 0.5.

6) Survival Selection.

For the PGAs, we used the number of islands equal to the
cluster size. We tuned the number of migrant individuals to
best 10% of sub-population per island, and the migration
period to 3 periods. The performance of the PGAs is measured
with respect to execution time, solution quality, speedup, and
overhead.

A. Execution Time

The execution time was measured in milliseconds (ms)
using the system clock. We compared the computation time
achieved by executing all generations of SGA and PGA. Fig. 4
shows the achieved execution times obtained over 20 runs for
each dataset and with different population sizes (500, 1k, 2k,

5k, and 10k). We can observe that the PGAs (IPGA and EPGA)
outperforms the SGA for the large datasets xqg237, bcl380 and
rbu737 (Fig. 4(c), (d), and (e)), regardless of the number of
parallel nodes used. And for the ft70 and xqf131 datasets,
PGAs are better only when executed using more than 1k
population (a and b, Fig. 4). This can be explained by the fact
that, for small instance problems, the overhead due to
communication between nodes is higher than the computational
time. However, when the problem size or/and population size
increases, the SGA execution time increases dramatically. We
can observe from Fig. 4 that the execution time of the two PGA
models using a C8 cluster, is better than using C4 cluster on all
the datasets, so the use of more nodes allowed to further reduce
the execution time. And the execution time of IPGA and EPGA
is very similar time.

B. SpeedUp

The speedup is the ratio of the sequential execution time to
the parallel execution time [16]. The speedup is calculated
based on the following equation:

 (1)

We compared the achieved speedup with respect to the
ideal speedup. The ideal speedup is equal to the number of
parallel nodes and corresponds to the situation when the SGA
execution time is split among multiple nodes. Fig. 5 shows the
speedup obtained by PGAs for all considered datasets. Both
PGAs speed up the execution time with respect to SGA over all
datasets of mean 7.2 × times by exploiting IPGA usingC8
cluster, 3.9 × times by exploiting IPGA using C4cluster. And
6.7 × times by exploiting EPGA using C8 cluster, 3.8× times
by exploiting EPGA using C4 cluster. It is clear from the figure
that, both PGAs tend to the ideal speedup value.

C. Solution Quality

The solution quality of the TSP problem was measured
by calculating the error (Error%) of approximation of the
best individual‘s fitness value and the TSPLIB optimum
found on the website [24]. The error of the best path found
with regard to the optimal tour in the TSPLIB is calculated
as the given formula:

 ()

TABLE I. MACHINES CONFIGURATION

Feature Value

Architecture 64 bit

CPUs 4 cores

RAM 8 GB

Storage 500 GB

Operating System Linux

TABLE II. CLUSTER CONFIGURATION EXPLOITED BY PGAS.

Name Master nodes Slave nodes Total nodes

C4 1 4 5

C8 1 8 9

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

103 | P a g e

www.ijacsa.thesai.org

(a) Fv70 (b) Xqf131

(c) Xqg237 (d) Bcl380

(e) Rbu737

Fig. 4. Execution Times Achieved by SGA and PGAs on the five TSP Datasets.

500 1000 2000 5000 10000

SGA 0.19 0.35 0.81 3.23 10.21

IPGAC4 0.81 0.86 0.99 1.46 2.59

IPGAC8 0.76 0.85 0.93 1.09 1.5

EPGAC4 0.83 0.7875 0.925 1.43 2.82

EPGAC8 0.73 0.75 0.79 1.05 1.41

0

2

4

6

8

10

12

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

u
te

s)

Population

500 1000 2000 5000 10000

SGA 0.51 0.97 2.09 6.44 17.99

IPGAC4 0.88 1.03 1.33 2.24 4.53

IPGAC8 0.81 0.95 1.1 1.62 2.25

EPGAC4 0.94 0.98 1.28 2.5 4.55

EPGAC8 0.77 0.83 0.98 1.48 2.25

0
2
4
6
8

10
12
14
16
18
20

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

u
te

s)

Population

500 1000 2000 5000 10000

SGA 1.43 2.85 6.01 18.423 46.28

IPGAC4 1.14 1.52 2.3 4.88 11.76

IPGAC8 0.94 1.25 1.57 2.87 5.79

EPGAC4 1.34 1.521795 2.67 5.4 12.56

EPGAC8 0.91 1.12 1.55 2.99 5.54

0
5

10
15
20
25
30
35
40
45
50

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

u
te

s)

Population

500 1000 2000 5000
1000

0

SGA 3.48 6.73 13.77 38.3 110

IPGAC4 1.72 2.64 4.43 11.16 28.23

IPGAC8 0.96 1.77 2.75 5.98 15.21

EPGAC4 1.9 2.73 4.9 12.61 28.66

EPGAC8 1.23 1.74 2.89 6.49 13.13

0

20

40

60

80

100

120

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

u
te

s)

Population

500 1000 2000 5000 10000

SGA 12.23 23.7 50 124.23 253.37

IPGAC4 3.72 7.65 15.23 38.6 65.6

IPGAC8 2.16 4.27 8.08 19.63 41.48

EPGAC4 4.02 8.21 16.88 41.5 72.62

EPGAC8 3.19 5.66 8.06 23.04 45.54

0

50

100

150

200

250

300

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

u
te

s)

Population

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

104 | P a g e

www.ijacsa.thesai.org

Fig. 5. IPGA and EPGA Speedup Per Dataset with Population Size 10000.

Fig. 6 reports the percentage of average solution accuracy
achieved by SGA and PGAs on 20 runs on each algorithm and
TSP dataset. We can observe from the figure that, the EPGA on
4-node cluster outperforms the SGA and IPGA for all
considered datasets. Even if PGA obtain ‗similar‘ solution
accuracy as the SGA, the PGA outperforms the SGA in term of
required time to get the same solution with different population
size. We can observe also, as the population size increases, the
PGAs performance improves rapidly in against to SGA. In
Fig. 6(a), the EPGA in C4 cluster obtains better results and
outperforms SGA and IPGA when the population size increases

to 1k and above. The SGA obtains better results with small
population sizes (i.e., 500 and 1000). This can be explained by
the fact that the number of individuals on each island will be
less than the original population (in case of 500, each island
will have 125 and 63 individuals in C4 and C8 respectively),
therefore the population diversity is also less than the original
GA. This degrades search performance. In (b), the IPGA and
EPGA in C4 cluster, outperform the SGA in all population
sizes. The EPGA in C8 cluster outperforms the SGA after the
population size increased to 2000 individuals, while the IPGA
in C8 cluster remains the worst.

3.94

6.81

3.85

6.26

4

8

0

4

8

C4 C8

Sp
e

e
d

U
p

Cluster

ft70

IPGA

EPGA

Ideal

3.95

7.56

4

8

0

4

8

C4 C8

Sp
e

e
d

u
p

Cluster

xqf131

IPGA

EPGA

Ideal

7.9

3.95

3.94

7.42

4

8

0

4

8

C4 C8

Sp
e

e
d

U
p

Cluster

xqg237

IPGA

EPGA

Ideal

7.99

3.93

3.89

7.23

3.84

6.87

4

8

0

4

8

C4 C8

Sp
e

e
d

u
p

Cluster

bcl380

IPGA

EPGA

Ideal

3.86

6.11

3.49

5.56 4

8

0

4

8

C4 C8

Sp
e

e
d

u
p

Cluster

rbu737

IPGA

EPGA

Ideal

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

105 | P a g e

www.ijacsa.thesai.org

(a) ft70 (b) xqf131

(c) xqg237 (d) bcl380

(e) rbu737

Fig. 6. The Percentage of the Average Solution Quality Achieved by SGA and PGAs on the Five TSBLIB Instances.

0

2

4

6

8

10

12

14

16

18

500 1000 2000 5000 10000

Er
ro

r
(%

)

Population Size

Ft70

SGA

IPGAC4

EPGAC4

IPGAC8

EPGAC8
0

2

4

6

8

10

12

14

1 2 3 4 5

Er
ro

r
 (

%
)

Population Size

Xqf131

SGA

IPGAC4

EPGAC4

IPGAC8

EPGAC8

0

5

10

15

20

25

500 1000 2000 5000 10000

Er
ro

r
 (

%
)

Population Size

Xqg237

SGA

IPGAC4

EPGAC4

IPGAC8

EPGAC8
0

5

10

15

20

25

30

35

40

45

500 1000 2000 5000 10000

Er
ro

r
 (

%
)

Population Size

Bcl380

SGA

IPGAC4

EPGAC4

IPGAC8

EPGAC8

0

10

20

30

40

50

500 1000 2000 5000 10000

Er
ro

r
 (

%
)

Population Size

Rbu737

SGA

IPGAC4

EPGAC4

IPGAC8

EPGAC8

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

106 | P a g e

www.ijacsa.thesai.org

In the xqg237 dataset, also, the EPGA obtains better results
than all other models in all population sizes. In (d) and (e), we
can observe that the SGA outperforms the PGA models in term
of solution quality in the population sizes between 500 and
2000, but at the same time it takes very long execution time in
against to PGAs. The PGAs obtained ‗similar‘ and ‗better‘
results faster than SGA but in larger population size. We can
say that scaling up PGAs with large population tend to find
better performance over the SGA within a reasonable time.

D. Overhead

The overhead time is the additional time other than the
computation, due to communication and Hadoop platform tasks.
The overhead is the reason that prevents the PGAs to have a
speedup near the ideal on Hadoop platform. To measure the
overhead for each PGA generation, we assign to each
MapReduce job an initialization, computation, and finalization
times for both Map and Reduce phases [16]. Fig. 7 shows the
time measurement method for a MapReduce job.

 Map Initialization time is the time required to let the first
Mapper start its computation.

 Map Finalization and Reducer Initialization time which is
the time of the last mapper and the first reducer. Both of
them are measured in the same way.

 Reducer Finalization time is the time of the last ending
reducer.

In general, the overhead time in Hadoop corresponds to the
sum of the overhead times of multiple jobs. Fig. 8 shows the
mean computation and overhead times for each PGA on two
datasets xqg237 and rbu737 in population size 2k. In Hadoop
MapReduce, the overhead can be calculated using the sum of
the overhead times of multiple jobs [16]. As we can see from
the figure that, the overhead time for the IPGA and EPGA is
the same and light in term of overhead time. That because we
reduced the number of launched jobs during the PGAs
execution time in order to control the overhead of HDFS
accesses, which is limited to the migration phase only. From
Fig. 8, we can observe that the overhead time is almost
constant over the different jobs, and the map initialization
phase takes longer time than the reducer initialization, that
because in reducer phase nodes are already prepared to start
reducer task when the Mappers are finishing. We also observed
the overhead time independent of the dataset size.

Fig. 7. The Time Measurement Method for Multiple Nodes.

(a) rbu737.

(b) xqg237.

Fig. 8. The Computation and Overhead Times for Each PGAs

Model.

VI. CONCLUSION

In this paper, we designed a Hadoop MapReduce platform
which is a general framework for implementing parallel
genetic algorithms based on two models; the island model and
the elite model. The traveling salesman problem is used as a
benchmark in the experimental evaluation of those two Parallel
Genetic Algorithms (PGAs).

We empirically assessed the effectiveness of those two
PGA models in terms of execution time, speed up, overhead
and solution quality by using five datasets form TSPLIB [24].
The datasets were chosen considering their different sizes in
order to vary the execution times of the GAs. Additionally,
varying population size and the cluster size were configured
based on 4 and 8 parallel nodes.

We found that the PGAs find better solutions faster than
Sequential Genetic Algorithm (SGA) when the problem size
increases as well as when the population size increases. The
EPGA outperforms the IPGA in term of the solution quality in
a similar time for all the considered datasets and clusters.

50

14.47 16.1
7.52 7.51

0.75 0.78

0.56 0.54

0

10

20

30

40

50

60

Ti
m

e
 (

m
in

u
te

s)

rbu737

Overhead

Computation

6.02

1.53 1.92

1.07 1.08

0.77
0.76

0.50 0.51

0

1

2

3

4

5

6

7

SGA IPGAC4 EPGAC4 IPGAC8 EPGAC8

Ti
m

e
 (

m
in

u
te

s)

xqg237

Overhead

Computation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

107 | P a g e

www.ijacsa.thesai.org

We observed the effect of large population size, large
populations (5k and 10k individuals) tend to find better
solutions and need fewer generation periods to obtain good
results which reduce the overall Hadoop overhead.

We also found that increasing the number of nodes in a
cluster reduces the execution time. The use of the PGA models
enabled to speed up the average execution time overall datasets
with respect to SGA and tend to the ideal speedup value.

The overhead of HDFS access and communication is
reduced in the PGAs since the number of operations performed
on the datastore is limited to the migration phase only.
However, Hadoop overhead may impair PGA solutions when
executed on small problem instances.

We aim as a future work plan at comparing the
performance of our model with an iterative MapReduce
framework such as Haloop and Spark. Also, we aim to evaluate
both parallel models by applying them to a challenging
software engineering problem.

REFERENCES

[1] Y. J. Gong et al., ―Distributed evolutionary algorithms and their models:
A survey of the state-of-the-art,‖ Appl. Soft Comput. J., vol. 34, no. 2013,
pp. 286–300, 2015.

[2] H. Ra and N. Erdoğan, ―Parallel Genetic Algorithm to Solve Traveling
Salesman Problem on MapReduce Framework using Hadoop Cluster,‖
Int. J. Soft Comput. Softw. Eng. [JSCSE], vol. 3, no. 3, pp. 380–386,
2013.

[3] N. E. A. Khalid, A. F. A. Fadzil, and M. Manaf, ―Adapting MapReduce
framework for genetic algorithm with large population,‖ in Proceedings -
2013 IEEE Conference on Systems, Process and Control, ICSPC 2013,
2013, no. December, pp. 36–41.

[4] J. Dean and S. Ghemawat, ―MapReduce,‖ Commun. ACM, vol. 51, no. 1,
p. 107, Jan. 2008.

[5] P. Sachar and V. Khullar, ―Genetic Algorithm Using MapReduce-A
Critical Review,‖ i-manager‘s J. Cloud Comput., vol. 2, no. 4, pp. 35–42,
2015.

[6] E. Apostol, I. Băluţă, A. Gorgoi, and V. Cristea, ―A Parallel Genetic
Algorithm Framework for Cloud Computing Applications,‖ Pop F.,
Potop-Butucaru M. (eds). ARMS-CC 2014. Lect. Notes Comput. Sci. vol
8907. Springer, Cham, vol. 8907, pp. 113–127, 2014.

[7] W. Tom, Hadoop: The Definitive Guide. FOURTH EDITION The
Definitive Guide STORAGE AND ANALYSIS AT INTERNET
SCALE, 4th ed. O‘Reilly Media, 2015.

[8] R. Li, H. Hu, H. Li, Y. Wu, and J. Yang, ―MapReduce Parallel
Programming Model: A State-of-the-Art Survey,‖ Springer, Int. J.
Parallel Program., vol. 44, no. 4, pp. 832–866, 2016.

[9] F. Imeson and S. L. Smith, ―A language for robot path planning in
discrete environments: The TSP with Boolean satisfiability constraints,‖
in Proceedings - IEEE International Conference on Robotics and
Automation, 2014, pp. 5772–5777.

[10] D. W. Huang and J. Lin, ―Scaling populations of a genetic algorithm for
job shop scheduling problems using mapreduce,‖ in Proceedings - 2nd
IEEE International Conference on Cloud Computing Technology and
Science, CloudCom 2010, 2010, pp. 780–785.

[11] K. Miclaus, R. Pratt, and M. Galati, ―The Traveling Salesman Traverses
the Genome: Using SAS® Optimization in JMP® Genomics to build
Genetic Maps,‖ 2012.

[12] J. Singh and A. Solanki, ―An Improved Genetic Algorithm on
MapReduce Framework Using Hadoop Cluster for DNA Sequencing,‖
Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 5, no. 6, pp. 1238–1244,
2015.

[13] N. Bansal, A. Blum, S. Chawla, and A. Meyerson, ―Approximation
algorithms for deadline-TSP and vehicle routing with time-windows,‖ in
Proceedings of the thirtysixth annual ACM symposium on Theory of
computing, 2004, pp. 166–174.

[14] H. Bennaceur and E. Alanzi, ―Genetic Algorithm For The Travelling
Salesman Problem using Enhanced Sequential Constructive Crossover
Operator,‖ Int. J. Comput. Sci. Secur., vol. 11, no. 3, p. 42, 2017.

[15] Z. H. Ahmed, ―Genetic algorithm for the traveling salesman problem
using sequential constructive crossover operator,‖ Int. J. Biometrics
Bioinforma., vol. 3, no. 6, pp. 96–105, 2010.

[16] F. Ferrucci, P. Salza, and F. Sarro, ―Using Hadoop MapReduce for
Parallel Genetic Algorithms: A Comparison of the Global, Grid and
Island Models,‖ no. x, pp. 1–33, 2017.

[17] C. Jin, C. Vecchiola, and R. Buyya, ―MRPGA: an extension of
MapReduce for parallelizing Genetic Algorithms,‖ in Proceedings - 4th
IEEE International Conference on eScience, eScience 2008, 2008, pp.
214–221.

[18] A. Verma, X. Llorà, D. E. Goldberg, and R. H. Campbell, ―Scaling
Genetic Algorithms using MapReduce,‖ in In International Conference
on Intelligent Systems Design and Applications (ISDA), 2009, pp. 13–18.

[19] A. Subasi and D. Keco, ―Parallelization of genetic algorithms using
Hadoop Map / Reduce,‖ SouthEast Eur. J. Soft Comput., no. June, pp.
127–134, 2012.

[20] T. Enomoto and M. Kimura, ―Improving Population Diversity in
Parallelization of a Real-Coded Genetic Algorithm Using MapReduce,‖
in Scientific Cooperations International Workshops on Electrical and
Computer Engineering Subfields, 2014, no. August, pp. 234–239.

[21] R. Kondekar, A. Gupta, G. Saluja, R. Maru, A. Rokde, and P. Deshpande,
―A MapReduce based hybrid genetic algorithm using island approach for
solving time dependent vehicle routing problem,‖ in 2012 International
Conference on Computer and Information Science (ICCIS), 2012, vol. 1,
no. 2003, pp. 263–269.

[22] A. Rao, K. Hegde, K. Rao, IAnitha and Hegde, A. Rao, and S. K. Hegde,
―Literature Survey On Travelling Salesman Problem Using Genetic
Algorithms,‖ Int. J. Adv. Res. Eduation Technol., vol. 2, no. 1, p. 4, 2015.

[23] L. N. G. Sanchez, J. J. T. Armenta, and V. H. D. Ramırez, ―Parallel
Genetic Algorithms on a GPU to Solve the Travelling Salesman,‖
Difu100ci@, vol. 8, no. 2, pp. 79–85, 2014.

[24] A. Rohe, ―VLSI Data Sets.‖ [Online]. Available:
http://www.math.uwaterloo.ca/tsp/vlsi/index.html. [Accessed: 17-Nov-
2018].

[25] G. Reinelt, ―TSPLIB.‖ [Online]. Available: https://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/. [Accessed: 17-Nov-
2018].

