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Abstract—Dementia is considered one of the greatest global 

health and social care challenges in the 21st century. Fortunately, 

dementia can be delayed or possibly prevented by changes in 

lifestyle as dictated through known modifiable risk factors. These 

risk factors include low education, hypertension, obesity, hearing 

loss, depression, diabetes, physical inactivity, smoking, and social 

isolation. Other risk factors are non-modifiable and include 

aging and genetics. The main goal of this study is to demonstrate 

how machine learning methods can help predict dementia based 

on an individual’s modifiable risk factors profile. We use publicly 

available datasets for training algorithms to predict participant’ 

s cognitive state diagnosis, as cognitive normal or mild cognitive 

impairment or dementia. Several approaches were implemented 

using data from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) longitudinal study. The best classification results were 

obtained using both the Lancet and the Libra risk factor lists via 

longitudinal datasets, which outperformed cross-sectional 

baseline datasets. Moreover, using only data of the most recent 

visits provided even better results than using the complete 

longitudinal set. A binary classification (dementia vs. non-

dementia) yielded approximately 92% accuracy, while the full 

multi-class prediction performance yielded to a 77% accuracy 

using logistic regression, followed by random forest with 92% 

and 70% respectively.  The results demonstrate the utility of 

machine learning in the prediction of cognitive impairment based 

on modifiable risk factors and may encourage interventions to 

reduce the prevalence or severity of the condition in large 

populations. 
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I. INTRODUCTION 

Dementia presents enormous global health and social 
challenges. Currently, there are around 47 million people with 
dementia worldwide, and that number is expected to triple by 
2050. Dementia occurs mainly in people older than 65 years 
[1]. The aging population worldwide is almost certainly part of 
the reason behind this increase, especially in low- and middle-
income countries. 

Dementia is a collection of symptoms of cognitive defects, 
which could be delayed or possibly prevented by eliminating 
certain modifiable risk factors associated with the condition. 
However, few researches used machine learning approaches to 
detect dementia based on its modifiable risk factors, while 
most of the previous researches used machine learning to 

detect dementia based on imaging data or non-modifiable 
factors such as genetics. Although these methods are useful in 
diagnosing dementia, they may not be as much useful in term 
of delaying or preventing dementia as there is nothing that 
could be modified. 

This study aims to use a machine learning (ML) approach 
to classify the cognitive state and detect dementia based only 
on the modifiable risk factors. The main research objective is 
to determine to what extent it is possible to predict dementia 
based on an individual’s modifiable risk factors profile. 

The analysis of this research is applied to data from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
longitudinal study, using modifiable risk factors lists that have 
been already defined by the Lancet commission and the Libra 
index. As far as known, no previous work has explored Lancet, 
and Libra lists of modifiable risk factors on the ADNI dataset 
using a machine learning approach. 

Moreover, being able to accurately detect dementia based 
only on its modifiable risk factors would make it possible not 
only to predict dementia but also to target its risk factors. This 
will be useful in term of trying to delay or prevent the disease 
by eliminating these factors as possible. 

The remaining of this paper is structured as follows. 
Section II provides background on the domain and some 
related work. The methodology applied in this research is 
described in Section III. Moreover, the experiment and results 
are provided in Section IV. Finally, the conclusion of the 
research and its future work is provided in Section V. 

II. BACKGROUND 

Dementia is described as a collection of symptoms related 
to cognitive deficits and is not considered one single disease. In 
the Diagnostic and Statistical Manual of Mental Disorders 
(DSM-5) [2], dementia is listed under Major Neurocognitive 
Disorder (NCD), and is defined by the following: 

 There is evidence of a substantial cognitive decline in 
one or more cognitive domains. 

 The cognitive deficits interfere with independence in 
everyday activities, are not exclusively in the context of 
a delirium, and are not mainly attributable to another 
mental disorder. 

* Membership of the Alzheimer’s Disease Neuroimaging Initiative can be 
found in the Acknowledgment section. 
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Risk factors for dementia can be either modifiable or non-
modifiable [3]. Fortunately, dementia could be delayed or 
possibly prevented by eliminating some of its modifiable risk 
factors [4]. 

A. Dementia Risk Factors 

The Lancet Commission study found that around 35% of 
dementia risk factors are potentially modifiable [1]. These risk 
factors include less education, hypertension, obesity, hearing 
loss, depression, diabetes, physical inactivity, smoking, and 
social isolation. Although the impact of these factors varies at 
different life stages, eliminating them at any stage would be 
beneficial. Moreover, studies recommend active treatment and 
intervention of modifiable dementia risk factors, which would 
potentially delay or prevent 30% of dementia cases [1], [4]. 

On the other hand, completely eliminating the 
apolipoprotein E (APOE) ε4 allele, which is considered the 
major genetic risk factor of dementia, could reduce its 
incidence by 7% [1]. However, this and all other genetic 
factors are considered to be non-modifiable. Besides genetics, 
other non-modifiable risk factors include age and gender. 

A common method to calculate dementia risk based on its 
risk factors is by using the Lifestyle for Brain Health (LIBRA) 
index [5], [3], [6], which is calculated by the Innovative 
Midlife Intervention for Dementia Deterrence (In-MINDD) 
project [7]. 

Table I listed the modifiable risk factors defined by both 
Lancet commission and Libra index. 

The National Academy of Medicine committee [8] also 
identified cognitive training, blood pressure management for 
people with hypertension, and increased physical activities as 
three main classes of dementia intervention. 

Alzheimer’s disease (AD) is the most common type of 
dementia. The next most common type is vascular dementia 
(VaD), followed by dementia with Lewy bodies. 
Frontotemporal degeneration and dementia associated with 
brain injury, infections, and alcohol abuse are less common 
types of dementia [1]. 

TABLE. I. DEMENTIA RISK FACTORS AND DIAGNOSIS ATTRIBUTES 

# Risk Factor Lancet List Libra List 

1 Low Education   

2 Hypertension   

3 Obesity   

4 Smoking   

5 Depression   

6 Diabetes   

7 Physical inactivity   

8 Hearing loss   

9 Social isolation   

10 Cognitive inactivity   

11 Chronic Heart disease   

12 Alcohol use   

13 Chronic Kidney disease   

Tariq and Barber [9] suggested dementia prevention by 
targeting vascular modifiable risk factors, as these two types 
are often co‐existing in the brain and share some common 
modifiable risk factors. 

B. Current Approaches used in Detecting Dementia Risk 

Factors 

Many studies have aimed to predict an early diagnosis of 
dementia through magnetic resonance imaging (MRI) and 
genetic variables [10]. However, these measurements are 
expensive and not always available. 

Most of the research that has used machine learning applied 
classification methods from MRI data to classify or predict a 
diagnosis of different cognitive diseases and states [11], [12], 
[13]. 

On the other hand, only a few studies have used machine 
learning techniques to determine risk factors associated with 
dementia or one of its major causes (i.e., Alzheimer’s disease) 
[11]. Some of the studies combined modifiable and non-
modifiable risk factors in order to reach a higher level of 
accuracy. 

Most of the available research used large cohort studies and 
a population-based perspective to determine associated risk 
factors [14], while some used statistical analysis to provide a 
ranked risk-factor index [3], [6]. 

Two main studies used machine learning techniques to 
detect dementia’s risk factors and predict dementia risk 
accordingly [15], [16]. Both studies applied their analysis to 
one longitudinal cohort study with a relatively small size (i.e., 
840 and 746 subjects respectively). 

O'Donoghue, et al. [15] applied a non-linear dementia 
survival prediction model with a multilayer perceptron (MLP), 
which is an artificial neural network (ANN), and used both 
modifiable and non-modifiable risk factors defined in the In-
MINDD project [5]. They also examined the hidden layers to 
extract different clusters of risk factors and explore different 
interactions between them. Due to a class imbalance of the 
MAAS dataset, their models were able to predict survival 
better than predicting dementia. Their models overall accuracy 
ranges between 53.57% and 70.24%. 

Joshi, et al. [16] tried different attribute-evaluation methods 
on the major risk factors of both Alzheimer’s and Parkinson’s 
diseases, which included both modifiable and non-modifiable 
risk factors. They used a relatively small dataset of fewer than 
500 subjects from the ADRC and ISTAART studies [16]. Their 
attribute-evaluation methods included Chi-Squared, Gain 
Ratio, Info Gain, Relief F, and Symmetrical Uncertainty. They 
then applied several machine learning models, including 
Decision Tree, Random Forest (RF), and MLP to predict the 
patient’s future status based on the defined risk factors. Their 
models did not detect dementia itself but instead classify 
subjects’ diagnoses from three neurodegenerative diseases, 
which are AD, VaD, and Parkinson’s. 

Conversely, other studies aimed to predict dementia from 
neuroimaging data and in particular magnetic resonance 
imaging (MRI) or positron emission tomography (PET) scans 
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of the brain. Ding, et al. [17] were able to predict Alzheimer’s 
disease around six years before its diagnosis using fluorine 18 
fluorodeoxyglucose PET images of the brain. They achieved 
82% specificity at 100% sensitivity using a deep learning 
algorithm. In another study, Casanova, et al. [12] used both 
MRI images and cognitive tests to detect Alzheimer’s risk 
using regularized logistic regression. 

Although prediction using MRI or PET scans or even 
genetics data can be very accurate, it is not practical in many 
countries to scale such an approach for population screening, 
and it does not present direct links with potentially modifiable 
factors that could be taken into account by an individual patient 
to delay dementia. 

There have been no published studies to date investigating 
machine learning approaches with larger datasets to link 
modifiable risk factors to dementia and therefore providing 
suggestions for treatment and lifestyle change based on 
multiple population-based longitudinal studies. Modern 
machine learning methods over and above those used in the 
aforementioned studies focusing on modifiable risk factors and 
larger datasets should be explored to determine if they can 
produce better predictions and Insight. 

Moreover, using possibly interpretable models in clinical 
research is essential for intervention development and for 
gaining an understanding of the relationships and interactions 
between symptoms or risk factors and diagnosis. 
Interpretability is difficult to achieve using black-box models 
such as neural networks, which contains hidden layers, 
although they might yield higher prediction accuracy. The 
easiest way to achieve interpretability is through interpretable 
models such as linear and logistic regressions, decision trees, 
and Naïve Bayes [18]. Consequently, this paper focuses on 
such methods with modifiable risk factors as input variables 
trained and tested on datasets significantly larger than those 
reported upon to date. 

C. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

Study 

Early prediction of dementia requires tracking changes in 
cognitive ability over time. The ideal study type which can 
support this tracking is one yielding longitudinal data points. In 
longitudinal studies, data are collected on one or more 
variables repeatedly, over time, in contrast with cross-sectional 
studies, in which data are collected on one or more variables at 
a single time point [19] [20]. 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(http://adni.loni.usc.edu) is a longitudinal study that was 
launched in 2003 as a public-private partnership, led by 
Principal Investigator Michael W. Weiner, MD. Its primary 
goal has been to test whether MRI, PET, other biological 
markers, and clinical and neuropsychological assessment can 
be combined to measure the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease (AD) [21].  

The dataset consists of three longitudinal studies on around 
1900 participants in total. ADNI enrolls participants who are 
between the age of 55 and 90 and are either normal healthy 
older adults used as controls (CN), people with either early or 

late MCI, and people with AD. The cognitive-state diagnoses 
(as well as dementia status) rating assessment of the 
participants was also provided. 

The ADNI data set has been widely used in many research 
studies [11], [12], [13]. However, none of the published 
research that has used the dataset to date has attempted a 
machine learning approach to predict dementia based on 
established modifiable risk factors or even to explore the 
dataset for other possible dementia risk factors. Most of the 
research has instead focused on using MRI and PET scans or 
genetic data to predict Alzheimer’s disease. 

Most previous studies using the ADNI dataset and other 
longitudinal studies in the dementia field have used a complete 
case analysis (CCA) [22], and thus they considered only the 
cases with complete data and removed the missing values [11] 
[15] [23] [24]. Moreover, as per [25], if there is an overall 
worsening trend in health over time, missing data can be 
imputed from the same subject using their other available data. 

While researches have shown the importance of preventing 
or delaying dementia, which might be achieved by targeting 
known modifiable risk factors, few studies have applied 
machine learning approaches to selecting dementia’s risk 
factors and predicting dementia status. However, some studies 
combined both modifiable and non-modifiable risk factors. 

More research and work in this area would improve the 
early prediction of dementia and recommend actions that 
would possibly prevent or at least delay its onset by targeting 
only the non-modifiable risk factors. Using an interpretable 
machine learning approach on the attribute selection and 
prediction would help to predict dementia based on its 
modifiable risk factors. 

The main research contribution of this study is a 
demonstration of the utility of interpretable machine learning 
methods for the purposes of predicting future cognitive status 
for an individual based on modifiable risk factors that have 
been already defined by the Lancet commission and the Libra 
index. 

III. METHODOLOGY 

This research follows one of the most widely used process 
models for predictive data analytics, which is the Cross-
Industry Standard Process for Data Mining (CRISP-DM) 
model adapted from [26] (see Fig. 1). The project lifecycle 
phases, as illustrated in the diagram, are business 
understanding, data understanding, data preparation, modeling, 
evaluation, deployment, and monitoring. All phases are going 
to be included in this project except deployment and 
monitoring, which are beyond the scope of this research. 
Domain understanding has already been established in the 
background (Section II). 

A. Understanding the ADNI Dataset 

The ADNI dataset is extensive, containing hundreds of 
tables with different categories from primary patients’ 
demographics to highly complicated genes and imaging 
datasets; however, not all tables were useful for the scope of 
this research. Therefore, an initial investigation of the dataset 

http://adni.loni.usc.edu/
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and its categories, subcategories, tables, fields, and their 
descriptions were needed. Fortunately, ADNI provides a data 
dictionary and an inventory that describe each table and its 
fields. The risk factors features are the independent variables 
while the diagnoses of the cognitive state are the independent 
variable, which might be one of three: cognitive normal (CN), 
mild cognitive impairment (MCI), and Dementia. 

1) The modifiable risk factor attributes in ADNI: As the 

ADNI study dataset is extensive and consists of hundreds of 

tables and features under multiple categories, which may not 

be needed or useful for the aim of this research, the data 

dictionary, and the inventory were used to track only the 

necessary tables and features within them. 

After reviewing the tables listed, the attributes related to 
dementia risk factors and diagnoses were selected. These 
attributes are listed in Table II. Attributes were selected from 
all ADNI cohorts except ADNI3 as the protocol of taking the 
medical history was different, and thus, not all features were 
available. A total of 1812 subjects were considered in the 
analysis. 

2) Cross-Sectional vs. longitudinal data: As the dataset 

used in this research is longitudinal, another step was needed 

to understand the data through the study timeline. First, an 

understanding of how the data appear as cross-sectional, either 

at the baseline or at any single time point, was obtained. Then, 

a complete longitudinal view of the dataset was analyzed, 

including the differences between the main study parts (i.e., 

ADNI 1, Go, 2, and 3) and each visit’s collected data. 

B. Data Preparation 

In this phase, the data were prepared for modeling by 
applying various data mining techniques to clean and to 
preprocess the data. This includes handling missing values, 
feature extractions, features transformation, and other tasks. 
Dealing with longitudinal data adds a complexity level to the 
preparation process because there could be various reasons and 
explanations for the data over time. A summary of the data 
preparation steps is shown in Fig. 2. 

 

Fig. 1. CRISP-DM Model for the Project Phases (Adapted from [26]). 

TABLE. II. MODIFIABLE RISK FACTORS AND DIAGNOSIS ATTRIBUTES 

# Risk Factor Attributes Availability 

Potentially Modifiable 

1 Low Education Years of education 

2 Hypertension Detailed data available 

3 Obesity Can be calculated from weight\height 

4 Smoking Detailed data available 

5 Depression Detailed information 

6 Diabetes 
Check medical history and laboratory 

test results 

7 Physical inactivity Search relevant questioner’s answers 

8 Hearing loss 
Search related terms on reported 
medical history 

9 Social isolation 
Search questioner’s answers and related 

features (marital status, work) 

10 Cognitive inactivity 
Search relevant questioner’s answers 

and related features 

11 Chronic Heart disease Check medical history 

12 Alcohol use Available 

13 Chronic Kidney disease Check medical history 

Diagnosis 

14 Cognitive State 
CN, MCI, and Dementia (available: 

baseline, follow up) 

 

Fig. 2. A Summary of the Data Preparation Steps used in this Study. 

1) Dealing with missing values in longitudinal data: 

Based on the ADNI study description, missing data were 

coded with -1 or -4. Typically, -4 is used for not applicable 

(i.e., data is not collected at a specific visit), and -1 is used for 

confirmed missing data. The detailed study schedule shows 

the data collected at each visit for each cohort group (i.e., CN, 

MCI, and AD). 

To check the reason for missing data and to determine 
whether the data were missing completely at random (MCAR), 
missing at random (MAR), or not missing at random (NMAR) 
[22] [25], the visit schedule descriptions, the visit registry 
table, and the exclusion tables were checked. The exclusion 
tables helped determine the reason for dropout, which might 
not be related to dementia, such as study partner availability, 
moving to another city, or not being willing to undergo MRI 
scans. For the available records missing data, several reasons 
were identified, and different actions were applied. 
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a) Missing Data Due to Scheduled Visit Design: In 

some cases, the data were missing because they were not 

collected during a visit (e.g., some visits were only for MRI 

imaging session; some data were collected only at the 

baseline). The missing data in these cases were considered 

MCAR and were imputed using the same patient’s previous 

data, following the last observation carried forward (LOCF) 

[22] method. 

 Missing Height: In the detailed ADNI visit schedules, 
participant’s heights were only taken once during a 
screening visit, unlike their weights, which were 
repeatedly taken at each visit. Therefore, missing height 
data for each visit were filled in using a participant’s 
screening visit height. 

 Missing Demographics and Medical History: These 
data were collected only during the screening visit 
(repeated at the screening visit for each cohort, i.e., if a 
participant was included in ADNI1, 2, 3, medical 
history was taken at the screening visit for each cohort). 
The missing data were filled in using the same data for 
all visits (not imputation rather than fixed, although it 
might change, this is not recorded). 

b) Missing Data Due to ADNI Study Stage Design: If 

the data were not collected during a specific ADNI stage, this 

means that the data were missing for all patients enrolled only 

during this stage. Therefore, only available or complete cases 

were considered. Examples of this include detailed smoking 

history, alcohol use, and medical history, which are not 

available for the ADNI3 study design. This led to selecting 

only ADNI1, ADNIGo, and ADNI2 cohorts for the study. 

Also, cognitive activity data were collected only beginning 

from ADNIGo, and thus, participants who were enrolled only 

in ADNI1 were excluded. 

2) Feature transformation: Not all features have the 

desired format. Some new features must be calculated from 

existing ones, and some binary or categorical features must be 

factorized or encoded. Moreover, some features must be 

aggregated because they are repeated in multiple rows and 

could be defined as unique new features. The applied feature 

transformation included: 

a) Unit Modifications: Height and weight units were not 

unified for all entries. Some were recorded as kg\cm, lbs\inch, 

lbs\cm, or kg\inch. All measurements were modified to the 

metric unit kg\cm. 

b) Calculation: Some features needed to be calculated 

from other existing features. This may cause multicollinearity, 

which was reduced by selecting the best representative 

features which yield to better models results [11]. The 

calculated features were as follow: 

 BMI and Obesity: Body mass index (BMI) was 
calculated based on the height and weight of the 
participants. Moreover, obesity was recorded when 
BMI >30 [27]. 

 Social Isolation: Social isolation level has been detected 
by calculating the available relative features, which are 
the marital status and retirement (as per [28], [29]). 

 Physical Activity: Physical activity level has been 
calculated by adding up the related functional and 
physical assessment questioners’ answers such as going 
shopping, playing games, and going out of the 
neighborhood. 

c) Factorization: Visit codes were in a string format and 

were factorized to be numerical for simple computations and 

comparisons. 

d) Aggregation: Structured medical description row-

based fields were converted to binary column-based features 

 (i.e., row for each condition per participant converted to 1 

row with all conditions per participant). 

e) Normalization: For modeling purpose, numerical 

data has been normalized to range from 0 to 1 using the 

MinMaxScaler. 

f) Encoding Categorical Features: Categorical features 

were encoded using dummy variables by converting the 

feature of k-categories to k-1 different dummy variables [30]. 

This was applied to the marital status and gender variables. 

3) Feature extraction: Most risk factors available within 

the medical history description were text entries. These 

descriptions were entered as a free, unstructured text field with 

multiple variations of the same condition, which required 

some preprocessing to extract the features. 

Some basic text mining techniques were applied to extract 
the previously defined risk factors and then to check for other 
possible factors. Using the NLTK package, stop words were 
removed, the text was converted to lower case, the most 
common terms and n-grams were selected, word clouds were 
plotted, and the known risk factor terms were searched and 
selected. Fig. 3 illustrates how medical history descriptions 
differ between those with dementia and others. 

After applying text mining, each unstructured medical 
history text field was converted to a structured field 
(categorized), which is illustrated by Fig. 4. 

 

Fig. 3. Word Cloud of Most Common Medical History Descriptions 

   
(a) All Diagnosis  (b) Only with Dementia 
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Fig. 4. Unstructured to Structured Medical Descriptions. 

4) Feature selection: The previously defined features that 

were clinically approved to be relevant were selected. Both 

Lancet commission and Libra index modifiable risk factors 

features were considered in order to check, which gives better 

results. 

5) Data integration: All selected tables were integrated 

and merged into a single table with all considered features. 

C. Modeling 

This research focused on interpretable modeling because of 
its importance for informing clinicians managing patients. 
Interpretable machine-learning classification models, such as 
the Logistic Regression, Naïve Bayes, Decision Tree, and 
Random Forest. Both binary (dementia vs. non-dementia), and 
multi-class (CN vs. MCI vs. dementia) classifications were 
applied using the models. 

1) Logistic regression: Logistic regression (LR) is an 

extension of linear regression and is used to solve 

classification problems. Basically, it is designed to solve 

binary classification problems where there are only two 

outcomes, but eventually, it is extended to support multi-

classification, which is referred to as a multinomial logistic 

regression [26] [18]. A well-known method used to achieve a 

multinomial classification is using a set of one-versus-all 

models. For example, if there are n targets levels, n numbers 

of one-versus-all logistic regression models are created, and 

each model distinguishes between the features of one target 

level and all the others [26] [30]. 

2) Naïve bayes: In machine learning, the Naïve Bayes 

(NB) method serves as a probabilistic classifier that uses the 

Bayes’ theorem of conditional probabilities [18] [26]. It 

assumes a strong (naïve) independence between features and 

calculates the class probabilities for each feature 

independently. The conditional probability of a class is the 

normalized class probability times the probability of each 

feature given by a class [18]. 

3) Decision tree: A decision tree (DT) is a tree-based 

model that splits the data repeatedly according to specific 

cutoff values in the features [18] [26]. Different subsets are 

created through splitting, separating instances to belong to one 

subset. The intermediate subsets are the internal nodes, while 

the final subsets are the leaf nodes. Decision trees are most 

useful if the relationship between the features and the target 

are nonlinear or if there are interactions between features. 

4) Random forest (ensemble learning): The random forest 

(RF) model is an ensemble learning model that combines 

bagging, subspace sampling, and decision trees to create a 

more powerful model [26] [30]. The random forest model 

overcomes the overfitting problem of a decision tree, which is 

why it usually performs better. 

A random forest model is a collection of decision trees in 
which each tree is slightly different from another. Once each 
individual decision tree model has been created (bagging), the 
ensemble makes predictions by returning the majority vote of 
the classifiers. This reduces the overfitting amount by 
averaging the results while maintaining the predictive power of 
each tree [30]. 

D. Evaluation 

After the models are developed, the results were evaluated 
using multiple metrics and techniques to identify possible 
problems with overfitting and parameter tuning issues. 

1) Confusion Matrix-Based performance measures: A 

confusion matrix is a convenient method used to 

comprehensively describe the performance of classification 

evaluations, which can be either binary or multi-class [26] 

[30] [31]. Most other metrics are derived from the basic 

components of the confusion matrix, which are the True 

Positive (TP), True Negative (TN), False Positive (FP), and 

False Negative (FN), and their percentage conversions. From 

these components, main evaluation measures such as 

accuracy, precision, recall, and F-score were calculated [31]. 

In this study, recall (sensitivity) is defined as the proportion of 

subjects who have dementia that are correctly classified. 

Precision is defined as the proportion of subjects who did not 

have dementia that are correctly classified. Accuracy is 

defined as the proportion of all subjects that are correctly 

classified, while F1 is the weighted average of precision and 

recall. 

2) Sensitivity, specificity, and AUROC: The receiver 

operating characteristic (ROC) evaluates a model’s true 

performance while considering all possible probability cutoffs 

(thresholds). The default threshold is 0.5; however, it could 

range from 0 to 1, and the classification results may change 

accordingly. The area under the ROC (AUROC) summarizes 

thresholds changes of both TPR (sensitivity) and FPR (1-

specificity). The perfect fit is 1, the worst is 0, and the random 

prediction is 0.5. 

IV. EXPERIMENTS AND RESULTS 

The experiments and analysis conducted for this research 
were applied using the following environments, tools, and 
libraries: 

1) Environments Used: Python (3.6.4) and R. 

2) Tools Used: Jupyter Notebook version 5.4.0, Google 

Colab (for faster modeling), and SPSS version 24 (for missing 

data mechanism and quickly find and explore). 

3) Main Libraries and Packages: scikit-learn (for machine 

learning), NLTK (for text mining). 

Diabetes 

Type II 
Diabetes 

diabetes, 
type II 

diabetes 2 
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A. Model Validation 

A balanced train-and-test split was applied using the 
StratifiedKFold to split the data once into a 75% training set 
and a 25% testing set. This ensures the same percentage of 
each class per group. Moreover, longitudinal data grouping by 
the participant was performed using the GroupKFold, which is 
a special variant of cross-validation that takes into account the 
repeated measurements from the same subject and considers 
them as grouped data. Parameter tuning was achieved using 
nested cross-validation by applying GridSearchCV parameter 
tuning (inner loop) to cross-validation (outer loop). 

B. Feature Selection 

Using only statistically significant features either from the 
univariate analysis or per models was not sufficient because it 
decreased the accuracy from an average of 70% to 50%. This 
could be explained because there may be interactions between 
the features. The best feature selection was obtained using both 
the Lancet and the Libra index features. Using Lancet features 
alone gives an average of 59% accuracy only. 

On the other hand, using Libra features only gives an 
average of 68% accuracy meaning that it is more 
comprehensive and predictive to the machine learning models, 
although combining it with Lancet’s gives better results. 

C. Cross-Sectional vs. Longitudinal Data Evaluation 

Longitudinal data perform better than cross-sectional 
(baseline) data. However, the latest visit data gives the best 
results among them all. 

Table III summarizes the results of the multi-class 
classifications on different data subsets for all models using 
ten-fold cross-validation. 

TABLE. III. EVALUATION RESULTS SUMMARY (MULTI-CLASS) 

Model LR NB DT RF 

Longitudinal 

Accuracy 68.13% 57.99% 66.75% 68.55% 

Precision 68.49% 65.38% 67.05% 68.92% 

Sensitivity (Recall) 68.13% 57.99% 66.75% 68.55% 

F1 68.18% 53.82% 66.75% 68.61% 

Cross-Sectional (Baseline) 

Accuracy 63.71% 54.01% 60.34% 63.29% 

Precision 64.39% 57.52% 60.30% 65.60% 

Sensitivity (Recall) 63.71% 54.01% 60.34% 63.29% 

F1 63.11% 47.39% 60.29% 61.92% 

Latest Visit 

Accuracy 77.00% 66.77% 70.29% 71.57% 

Precision 76.76% 66.13% 70.18% 70.73% 

Sensitivity (Recall) 77.00% 66.77% 70.29% 71.57% 

F1 76.35% 66.38% 70.15% 70.51% 

As shown in the table, for longitudinal data, the best 
performance results are obtained by RF and reached around 
68%. Moreover, using the baseline data alone, best results 
reached around 63-65% only. 

Furthermore, using the latest visit data, the best 
performance results are obtained using LR and reached around 
77%, which is the best among all data subsets. The overall 
differences between metrics are relatively small for all models. 

Below figures illustrate the models' results of each 
longitudinal, baseline, and latest visit subsets respectively. The 
NB gives the least performance results for all data subsets. 

For both longitudinal and baseline data, the LR and RF 
results are very similar for all metrics, followed by the DT, 
while the NB results are very lower, as shown in Fig. 5 and 
Fig. 6. 

Fig. 7 shows the latest visit results, where it is clear how 
the LR outperformed the other models for all metrics. The DT 
and RF results for this subset are relatively similar to each 
other. 

As shown, considering only the latest visit subset gives 
better evaluation results for all models, followed by the 
longitudinal, and finally, the baseline subset. This performance 
difference is clearly illustrated in Fig. 8 for the LR model. 

 

Fig. 5. Longitudinal Evaluation - (Multi-Class). 

 

Fig. 6. Cross-Sectional (Baseline) Evaluation - (Multi-Class). 
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Fig. 7. Latest Visit Evaluation-(Multi-Class). 

 

Fig. 8. LR Evaluation Comparison of different Subsets-(Multi-Class). 

The area under the ROC curve (AUROC) of the dementia 
class was 96% for both top models (LR and RF) as illustrated 
in Fig. 9 and Fig. 10, respectively. Although the AUROC of 
MCI and CN classes are lower than the dementia class (CN: 
86%-88% and MCI: 67%-78% for LR and RF, respectively), 
the AUROC of the dementia is the more important in this 
study. 

D. Binary vs. Multi-Class Evaluation 

In addition to the multi-class classification (CN vs. MCI vs. 
dementia), binary classification (dementia vs. non-dementia) 
has been applied using all previous models. Binary 
classifications outperformed multi-class classification, 
although they are less informative. Table IV and Fig. 11 
demonstrates the results for both the binary and the multi-class 
classifications for the two top performed models (i.e., LR and 
RF). While the multi-class models' result reaches 70% only, the 
binary models reach around 92% on all metrics. The LR results 
are better than the RF for all metrics. 

E. Overfitting Check and Model Generalization 

All models have been checked against overfitting by 
comparing the training and testing accuracies. The difference 
between the train and test accuracies ranged between 0 (LR 
and NB), 0.02 (RF), and 0.04 (DT), which is considered small 
and acceptable. Moreover, to ensure cross-validation 
generalization, the standard deviation of the accuracy for all 

folds has been checked. This ranged between 0.02 and 
maximum 0.03, which is all considered small and acceptable. 
Table V shows the detailed results of the models check. 

 

Fig. 9. AUROC for LR–Multi-Class Classification (Longitudinal). 

 

Fig. 10. AUROC for RF–Multi-Class Classification (Longitudinal). 

TABLE. IV. EVALUATION RESULTS OF BINARY VS. MULTI-CLASS 

Model 
LR RF LR RF 

Binary Multi-class 

Accuracy 91.53% 91.24% 77.00% 71.57% 

Precision 91.34% 90.95% 76.76% 70.73% 

Sensitivity 91.53% 91.24% 77.00% 71.57% 

F1 91.41% 91.01% 76.35% 70.51% 

 

Fig. 11. Binary vs. Multi-Class Evaluation. 
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TABLE. V. OVERFITTING AND MODELS GENERALIZATION CHECK 

Results\ Model LR NB DT RF 

Train-Test Split 

Training Accuracy 0.92 0.87 0.94 0.93 

Testing Accuracy 0.92 0.87 0.90 0.91 

Training - Testing Accuracy 0.00 0.00 0.04 0.02 

Cross-Validation 

CV Folds Accuracy Mean 0.91 0.87 0.88 0.90 

Standard Deviation 0.02 0.03 0.02 0.03 

F. Feature Importance 

Feature importance was calculated using different models. 
For linear models, it was calculated based on the absolute 
values of the coefficients. For tree-based models, it was 
calculated based on the model’s feature importance. Table VI 
summarizes the risk factors’ importance for each model. From 
the table, it is clearly shown that BMI, Cognitive Activity, and 
Physical Activity feature importance are top across most 
models. The feature importance was extracted from the best 
performing models which combine both Lancet and Libra lists.  

G. Evaluation Summary 

The best classification results were obtained using both the 
Lancet and the Libra risk factor lists, considering the 
longitudinal data set which outperformed the cross-sectional 
baseline one. Moreover, using data of the most recent visits 
only provided even better results than using the whole 
longitudinal set. 

In some cases, it is important to detect whether a person has 
dementia or not, while in other cases, the exact cognitive state 
is needed. Therefore, both binary and multi-class 
classifications have been applied.  The binary classification 
yielded to about 92% accuracy, while the multi-class 
classification yielded to a 77% accuracy using logistic 
regression, followed by random forest with 92% and 70%, 
respectively. The area under the ROC of the dementia class 
was nearly perfect at 96% for both models. 

TABLE. VI. FEATURE IMPORTANCE FOR TOP MODELS 

# Feature\ Model 
Feature Importance Order 

LR NB DT RF All Models 

1 BMI 3 7 3 3 16 

2 Cognitive Activity 1 13 2 1 17 

3 Physical Activity   2 12 1 2 17 

4 Smoking 12 1 4 5 22 

5 Alcohol 4 2 9 11 26 

6 Heart 5 4 12 8 29 

7 Kidney 6 3 7 13 29 

8 Depression 8 9 8 6 31 

9 Hearing Loss 9 6 6 12 33 

10 Education 11 14 5 4 34 

11 Hypertension 7 10 10 10 37 

12 Diabetes 13 5 14 9 41 

13 Social Isolation 14 11 11 7 43 

14 Cholesterol 10 8 13 14 45 

Although features importance was not identical for all 
models, the top three features importance were identical for the 
two top performed models (i.e., LR and RF), which is a sign of 
model’s stability. Furthermore, as this is an observational study 
analysis, the feature importance of each model does not claim 
any causality of dementia or MCI. The importance derived 
from the available data may not be representative of a wider 
population. 

The best obtained results of this study were either 
competitive or even better than the results obtained by other 
previous studies which used MRI data and machine learning or 
deep learning methods [11], [12], [13]. Their best overall 
accuracies range between 65% and 92%. Moreover, the results 
of this study were better than a previous study that used a 
machine learning approach with modifiable risk factors, where 
their best accuracy reaches 75.24% only [15]. However, this is 
not considered as a complete comparison as the other studies 
used different datasets. 

V. CONCLUSION 

A. Achievements of the Research Objectives 

The research discussed and evaluated in the previous 
sections aims to use different interpretable machine-learning 
classification models to detect dementia based on its 
modifiable risk factors only. It explored and applied Lancet, 
and Libra lists of modifiable risk factors on the ADNI dataset, 
which is as far as known have not been applied on this dataset 
using machine learning approaches. 

The best classification results were obtained using both the 
Lancet and the Libra risk factor lists. Considering the 
longitudinal data set outperformed the cross-sectional baseline 
one. Moreover, using data of the most recent visits only 
provided even better results than using the whole longitudinal 
set. 

The binary classification yielded to about 92% accuracy, 
while the multi-class classification yielded to a 77% accuracy 
using logistic regression, followed by random forest with 92% 
and 70%, respectively. Furthermore, the best achieved overall 
accuracies were either competitive to or better than previous 
studies results. 

B. Limitations 

This research involved an experimental analysis of an 
observational study based on the ADNI dataset, and there is no 
claim to present causations. The ADNI study was not primarily 
designed to address the modifiable risk factors; thus, it may 
lack some useful features, especially during the early and 
middle life courses. Social isolation and physical activities are 
not explicitly addressed by the study, and the results may be 
more accurate if more detailed data for these factors were 
collected. Medical history and other important useful 
demographic features, such as occupation, were collected as 
free text and were not categorized in a structured format during 
the data collection stage, which may have helped make the 
analysis simpler and more accurate. 
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