
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

159 | P a g e

www.ijacsa.thesai.org

Most Valuable Player Algorithm for Solving

Minimum Vertex Cover Problem

Hebatullah Khattab1, Ahmad Sharieh2, Basel A. Mahafzah3

Department of Computer Science

King Abdulla II School of Information and Technology

The University of Jordan, Jordan

Abstract—Minimum Vertex Cover Problem (MVCP) is a

combinatorial optimization problem that is utilized to formulate

multiple real-life applications. Owing to this fact, abundant

research has been undertaken to discover valuable MVCP

solutions. Most Valuable Player Algorithm (MVPA) is a recently

developed metaheuristic algorithm that inspires its idea from

team-based sports. In this paper, the MVPA_MVCP algorithm is

introduced as an adaptation of the MVPA for the MVCP. The

MVPA_MVCP algorithm is implemented using Java

programming language and tested on a Microsoft Azure virtual

machine. The performance of the MVPA_MVCP algorithm is

evaluated analytically in terms of run time complexity. Its

average-case run time complexity is ceased to ,
where I is the size of the initial population, |V| is the number of

vertices and |E| is the number of edges of the tested graph. The

MVPA_MVCP algorithm is evaluated experimentally in terms of

the quality of gained solutions and the run time. The

experimental results over 15 instances of DIMACS benchmark

revealed that the MVPA_MVCP algorithm could, in the best

case, get the best known optimal solution for seven data

instances. Also, the experimental findings exposed that there is a

direct relation between the number of edges of the graph under

test and the run time.

Keywords—Most valuable player algorithm; minimum vertex

cover problem; metaheuristic algorithms; optimization problem

I. INTRODUCTION

In general, many heuristic and metaheuristic algorithms
were used to solve many optimization problems; such as
Minimum Vertex Cover Problem (MVCP), Traveling
Salesman Problem (TSP), 15 puzzle problem, task scheduling,
software testing, and non-optimization problems [1-4].
Examples of heuristic algorithms are A* heuristic search
algorithm and iterative deepening A* (IDA*) heuristic search
algorithm [5]. Examples of metaheuristic algorithms are sea
lion optimization, humpback whale optimization, Genetic
Algorithm (GA), Ant Colony Optimization (ACO), Artificial
Bee Colony (ABC), Particle Swarm Optimization (PSO), and
Chemical Reaction Optimization (CRO) [6-14].

The MVCP is a combinatorial optimization problem in
computer science. It is a classic example of an NP-hard
optimization problem. The MVCP is the problem of finding the
smallest set of vertices such that at least one endpoint of each
edge of the tested graph belongs to that set [15].

The Vertex Cover Problem (VCP) can be defined as
follows: let G = (V, E) be an undirected graph with set V of

vertices and set E of edges. If S is a subset of V (S ⊆ V) and (x,
y) is an edge in G, then S is the cover of G if either x S or y
S or both [15]. The MVCP is the problem of finding a subset S
such that |S| is the minimum. The MVCP can be formulated as
in (1).

 ∑ (1)

Subject to: ∑

where {

and

 {

For the sake of clarity, Fig. 1 depicts an illustrative
example for the MVCP. In this figure, the graph G consists of
6 vertices and 6 edges. For instance, the subset {1, 2, 5, 6}
represents a cover for G, but it is not the minimum. In fact, the
subsets {1, 5} and {1, 6} are the minimum ones.

Many real-life problems and applications can be
developed as MVCP. Therefore, many scientists have been
encouraged to create higher attempts to discover efficient
solutions. Networks and communications [16], engineering
[17], and bioinformatics [18] are some of the real-world
applications that they were represented and solved as MVCP.

To solve the MVCP, distinct kinds of algorithms were
developed to introduce worthy solutions. Several exact [19,
20], heuristic [21-23], and metaheuristic [10-14, 24] algorithms
were presented to achieve the purpose of solving the MVCP.
The exact algorithms always find the optimal solution to the
optimization problems if the problem size is comparatively
small. This is because, in a feasible time, the optimal solution
can be achieved. But once the problem size starts to increase,
heuristic and metaheuristic algorithms are needed. Both of
these types of algorithms can find a solution as close as
possible to the optimal solution. Maximum Degree Greedy
(MDG), Vertex Support Algorithm (VSA), and New Modified
Vertex Support Algorithm (NMVSA) [21, 22] are some of the
heuristic algorithms that were introduced specifically for the
MVCP.

Many researchers adapted metaheuristic algorithms to
handle MVCP. The GA was used to solve the MVCP in [10,
11]. The ACO algorithm also tackled the MVCP in [12, 13].
Furthermore, it was addressed by the CRO algorithm in [14].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

160 | P a g e

www.ijacsa.thesai.org

Fig. 1. A Graph G with 6 Vertices and 6 Edges, where MVC = {1, 5}.

The Most Valuable Player Algorithm (MVPA) is a recent
metaheuristic algorithm that was introduced in 2017 for
solving optimization problems [25]. The algorithm is inspired
by sport, where the players make up teams, then they compete
(in teams) together to win the championship. They also
compete for the best player award on an individual basis.

In this paper, the MVPA is adapted and implemented for
treating the MVCP. This algorithm is implemented using Java
programming language and executed on a Microsoft Azure
virtual machine. The performance of the implemented
algorithm is evaluated analytically in terms of run time
complexity and cost function metrics. Furthermore, it is
evaluated experimentally in terms of solution quality and run
time. The experiments have been conducted using different
DIMACS benchmark instances for MVCP.

The structure of this paper is summarized as follows:
Section II reviews some of the related work. In Section III, the
MVPA is briefly lunched and explained. Section IV shows
how the MVPA is tailored to the MVCP. Section V
analytically evaluates the implemented MVPA. Section VI
shows and discusses the experimental outcomes. Finally,
Section VII concludes the conducted work and suggests some
future work.

II. RELATED WORK

As several essential applications are depicted as MVCP, it
has been the heart of extensive research. In [26], a new local
search algorithm that is named NuMVC (New Minimum
Vertex Cover) has been introduced to tackle the MVCP. The
primary concept for NuMVC was to confront some
weaknesses, which normally occur in the local search
algorithms, linked to the exchange of vertices and weight of
edges. NuMVC has come up with new approaches to address
these weaknesses.

VEWLS (Vertex Edge Weighting Local Search) algorithm
is presented in [27]. This algorithm integrates the vertex
weighting scheme with the edge weighting scheme. In
comparison with the NuMVC algorithm, VEWLS performance
was evaluated. The findings showed that the VEWLS
algorithm was superior to the NuMVC algorithm.

Moreover, GA has been used to solve the MVCP in [10].
The primary objective of this research was to demonstrate the
effects of growing the population size. The results exposed that
the number of generations required getting the optimal solution
decreases as the population size increases.

The ACO algorithm has been exploited in [13] to solve the
minimum weight VCP. In this research, a heuristic strategy has

been put forward to rule out suspicious elements to correct the
pheromone. This strategy is based on extracting information
related to the best solution. This information enhanced the
canonical ACO algorithm by avoiding the premature trapping
of the local optima. The findings indicated a noticeably shorter
time, while the results achieved were somewhat better.

A version of CRO algorithm called Hybrid Chemical
Reaction Optimization Algorithm (HCROA) was designed to
solve the minimum vertex cover problem for an undirected
graph in [14]. In this algorithm, a greedy approach is adopted

for implementing the main reactions operators. The HCROA

was compared with genetic algorithm and branch and bound
approach. The comparison was in terms of the number of
iterations that were executed to reach the optimal solution. The
results exposed that HCROA outperformed the genetic
algorithm and the branch and bound approach.

There are not many research work so far as the MVPA is
concerned. This is due to the fact that MVPA is invented so
recently [25]. However, the same author who introduced the
MVPA has investigated his algorithm to tackle the optimal
design of circular antenna arrays for maximum sidelobe levels
reduction [28]. The results of testing the proposed algorithm
showed that it is superior to many other counterpart algorithms.

In [29], a comparison has been conducted between the
MVPA and other sport-inspired metaheuristic algorithms. All
compared algorithms have been tested using unimodal and
multimodal problems. The MVPA has been proved to be the
best algorithm regarding unimodal problems. For the
multimodal problems, it has been the best together with two
other algorithms.

III. MOST VALUABLE PLAYER ALGORITHM

As previously stated, Bouchekara has recently introduced
the MVPA in 2017 [25]. He inspired the idea of the MVPA
from the team-based sports; where all participated players are
grouped in teams. Algorithm 1 illustrates the MVPA phases.

The inputs of the MVPA are the problem size (the
dimension of the tackled problem), players size (the number of
players), teams size (the number of teams), and MaxNFix (the
maximum number of fixtures (iterations)). The Most Valuable
Player (MVP) that represents the best-obtained players is the
output of the MVPA.

The MVPA begins with the initial phase. In this phase, the
initial population of players is randomly created. In the main
phase, all other phases are executed and repeated until the stop
condition is satisfied. The first step that is executed in the main
phase is the distribution of the players of the population into
teams. The competition phase iterates for all teams. For each
selected team, two types of competitions are carried out,
individual and team competitions. In the individual
competition, each player of the selected team tries to improve
his sporting skills to be the best player in his team and the
league. Concerning the team competition, it is performed
among the competed teams. Each selected team plays against
another randomly picked team. As a result of this play, the
players of the selected team follow a certain mechanism to
update their skills.

6

1

4

2

3

5

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

161 | P a g e

www.ijacsa.thesai.org

It must be mentioned that the player skills have lower and
upper bounds, and in each competition, all players are
constantly seeking to improve their skills. So, if the
improvement tries updating the players' skills out of these
bounds, these skills must be brought back to their bounds. This
checking of the player's skills bounds is regularly performed in
the bound checking phase.

At the end of the competition phase, the new population of
players is shaped. This new population faces the greediness
phase where the player who only got better skills is accepted,
otherwise, his skills remain without accepting the conducted
changes. In the elitism phase, a specific number of worst
players in the new population are replaced with the same
number of elite players who have the best skills. As a final
phase, any duplicated player is replaced by a player from the
winning teams.

As mentioned beforehand, the main phase iterates until the
stop condition is satisfied. In [25], this condition is determined
by the number of iterations which equals a specific number that
is assigned to the MaxNFix. All information about the MVPA
designing details can be found in [25].

IV. MOST VALUABLE PLAYER ALGORITHM FOR THE

MINIMUM VERTEX COVER PROBLEM

The first step of adapting the MVPA for the MVCP is to
align its main concepts of the MVPA with the MVCP. Table I
shows the main concepts of the MVPA and their related
meanings of the MVCP. The player concept in the MVPA
represents a solution of the graph considered. In order to
implement a solution, let a graph G = (V, E), then the vector a
= (a1, a2, ..., a|V|) where ai {0, 1}, is a binary vector that
represents the solution. If the ith vertex contributes to covering
the graph G, then ai = 1, otherwise, ai = 0. In consequence, the
number of ones in the binary vector represents the solution size
which is noted as player skills in the MVPA. To clarify the
idea, consider the following example. For instance, for a graph

G with 6 vertices, if a = (1, 1, 0, 1, 0, 1), then the solution size
is 4 and vertices 1, 2, 4 and 6 cover all edges of the graph G.

The problem size in the MVPA corresponds to the number
of vertices in the graph considered for the MVCP; which
represents the length of the created binary vector.

In the MVCP, the number of initial solutions that are
created to form the initial population corresponds to the players
size concept in the MVPA. When the initial population's
solutions are distributed over teams, the solution which has the
minimum size in a team represents the Franchise player.
However, the solution which has the minimum size in all teams
is considered the most valuable player. The best-gained
solution is the most valuable player after all the MaxNFix
iterations.

The adaptation of MVPA for the MVCP is described in
Algorithm 2. As inputs, the algorithm requires a graph to be
tested, it is denoted as G. The initial population size which
represents the number of initial solutions is symbolized by I.
Variable T stands for the number of groups that the population
solutions will be distributed into. The maximum number of
times that the algorithm should iterate is denoted by M. The
best solution obtained after the M iterations is represented by
the Minimum Vertex Cover (MVC) which is the output of
Algorithm 2.

In regards to MVPA phases, they are adapted for the
MVCP firstly by assembling the competition, bound checking,
greediness, and elitism phases in the main phase. Duplicates
removing phase is ignored because of what will be explained
after a while. Besides, the original order of the MVPA phases
is modified to meet the needs of adaptation.

In the initial phase, as in line 1 of Algorithm 2 shows, I of
initial solutions are randomly created to form the initial
population. The initial solutions are created using a Random
Bit-Vector (RBV) approach [30]. In RBV, the solution binary
vector is made up by assigning each vertex value of 0 or 1
based on a generated random number. If this number is greater
than a predefined constant, then the value of the vertex will be
1, or 0 otherwise. Calculating the sizes of these initial solutions
is the next step. After then, the best solution (i.e. the solution
with the minimum size) of the initial population is determined
as illustrated in line 2.

TABLE. I. THE MVPA CONCEPTS FOR THE MVCP

MVPA Concept MVCP Meaning

Player Solution.

Player skills Solution size.

Problem size Tested graph size (the number of its vertices).

Players size
The number of initial solutions (initial population

size).

Franchise player The solution with the minimum size in a team.

Most valuable player The solution with the minimum size in all teams.

Algorithm 1: MVPA

Inputs: problem size, players size, teams size, and MaxNFix.

Output: MVP

Initial Phase:

Creation of the initial population of players

Main Phase:

Distribution of population players in teams

Do

Competition Phase:

for all teams

Individuals Competition Phase

Team Competition Phase

Bound Checking Phase

end for

Greediness Phase

Elitism Phase

Duplicates Removing Phase

Until the stop criterion is satisfied

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

162 | P a g e

www.ijacsa.thesai.org

Algorithm 2: MVPA_MVCP

Inputs Graph G (V, E),

I (initial population size),

T (number of groups) and

M (maximum number of iterations)

Output MVC (minimum vertex cover; i.e. the best solution

obtained)

 // Initial Phase

1 Create the initial population (P) by generating I random

initial solutions and calculate the sizes of these solutions.

2 Find the best solution in P (i.e. the solution with

minimum size) and denoted as L.

 // Main Phase
3 for f = 1 to M

4 Distribute P solutions over T groups

 // Competition Phase
5 for i = 1 to T

6 Retrieve group i (gi)

7 Pick randomly group j (gj), given that i ≠ j

8 Find the best solutions in gi and gj. Denote them

as Bi and Bj, respectively.

 // Individual Competition Phase

9 for each solution (X) in gi Do

10 for each vertex d of X Do

11 Xd=Xd +rand×(Bi-d –Xd)+2×rand ×(Ld −Xd)

 //Bound Checking Phase - Stage 1

12 if Xd ≤ 0 then Xd = 0, else Xd =1

13 end for

 // Greediness Phase - Stage 1

14
if the new X cover graph G and its size

less than the original X size then

15 Accept the new X

16 else

17 keep the original X

18 end if

19 end for

 // Team Competition Phase

20 Calculate the probability of winning gi against gj

and gj against gi

21 for each solution (X) in gi Do

22 for each vertex d of X Do

23 if gi wins against gj

24 Xd = Xd +rand×(Xd −Bj-d)

25 else

26 Xd = Xd +rand×(Bj-d −Xd)

27 end if

 //Bound Checking Phase - Stage 2

28 if Xd ≤ 0 then Xd = 0, else Xd =1

29 end for

 // Greediness Phase - Stage 2

30
if the new X cover graph G and its size less

than the original X size then

31 Accept the new X

32 else

33 keep the original X

34 end if

35 end for

36 end for
 // Elitism Phase

37 Recollect the solutions from all groups in the

population (P).

38 Sort P solutions based on their sizes

39
Replace one-third of the worst solutions with one-

third of the best solutions

40 end for

41 Output the best solution as MVC.

The main phase, which is represented in lines 3-40, iterates
M times. The first step in each time is to subsequently spread
the population solutions across the T groups as depicted in line
4. Shortly afterwards, the competition phase (lines 5-36) starts
with retrieving the group that is due to be processed (gi) as
shown in line 6. In line 7, another group (gj) is randomly
retrieved to confront gi in the team competition phase, where gi

and gj should be different. Before delving in executing any of
the competition phases (individual or team), it is needed first to
find the best solution in gi and gj as exposed in line 8.
Concerning the individual competition phase, it extends
between lines 9 and 19. In this phase, each solution of gi
undergoes an improvement attempt to minimize its size using
the equation in line 11 [25]. In this equation, the vertices values
of each solution are updated based on the values of the vertices
of the best solution in the gi (Bi) and the best solution in
population P (L). Regarding the team competition phase, its
steps are allocated in lines 20-35. Its first step is to determine
the winner group by calculating the probability of winning gi
against gj and gj against gi. Equation (2) is used to calculate
these probabilities [25].

 (2)

where ga and gb are any competed groups, k is a constant
and is the normalized size of ga's solutions sizes
that is calculated as in (3) [25].

 (3)

On the consequence of the winner group determination, the
vertices values of gi solution are updated using either the
equation in line 24 or in line 26 [25].

As stated formerly, the solution vertices values are
restricted to be 0 or 1. However, when the equations in lines
11, 24, and 26 are used to update the values of the vertices,
some of the obtained values differ from 0 or 1. So, in the bound
checking phase, these values must be checked and brought
back to 0 or 1. Specifically, when the value acquired of
applying any of these equations is less than 1, then the vertex
value is determined to be 0. Otherwise, it is considered to be 1.
Since the values of the vertices are updated in both individual
and team competition phases, the bound checking phase is
executed twice, once after each updating process. This is
illustrated in lines 12 and 28.

Intuitively, after each updating, the sizes of the updated
solutions are re-calculated. Accepting these solutions
essentially is based on the fact that their sizes must be smaller
than the original one, with emphasizing that the accepted

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

163 | P a g e

www.ijacsa.thesai.org

solutions should cover the graph under test. The decision of
accepting the updated solutions or rejecting them mainly is
made in the greediness phase. Taking into consideration that
the solutions are updating twice, as mentioned beforehand, the
greediness phase is accomplished also twice, once is after the
updating process in the individual competition phase as shown
in lines 14-18. Once again is at the end of each iteration of the
team competition phase as presented in lines 30-34.

The last phase that is included in the main phase is the
elitism phase. In this phase, as recommended in [25], one-third
of all solutions which have worst sizes (i.e. largest sizes) are
replaced with these one-third solutions which have the best
sizes (i.e. smallest sizes). With an aim to perform this
replacement, first of all, the solutions from all groups must be
collected back to the population P. In the aftermath, these
solutions are sorted in a non-descending manner based on their
sizes. As clearly observed in Algorithm 2, the elitism phase is
implemented in lines 37-39. Ultimately, after executing all M
iterations, the best-obtained solution is announced as MVC like
is reveled in line 41.

It is worth noting that the duplicates removing phase is
ignored during the adaptation of MVPA to the MVCP. Since it
is inapplicable in case of the MVCP, this inapplicability
attributed to that in some cases, the number of solutions of the
graph under consideration is less than the initial population
size. Thereupon, the duplication is unavoidable. Consequently,
this phase cannot be applied.

V. ANALYTICAL EVALUATION

This section offers a detailed discussion of an analytical
evaluation for MVPA_MVCP algorithm in terms of the run time
complexity. Given that, M is the maximum number of
iterations, I is the initial population size, T is the number of
groups, and |V| and |E| are, respectively, the number of vertices
and edges in the graph under test.

The run time of an algorithm, as indicated in [15], is
described as the number of steps executed over a particular size
of input. The run time complexity calculated in this section is
the average-case of the run time.

The run time complexity of MVPA_MVCP algorithm is the
result of summing the run time complexity of its phases.
Nonetheless, the run time complexity of creating the initial
population solutions and calculating their sizes are not taken
into consideration. This is due to the fact that it is assumed to
be a preprocessing step. Theorem 1 remarks MVPA_MVCP
algorithm average-case run time complexity. Yet, the details of
calculating this complexity are illuminated in the following
proof based on tracing the steps and phases listed in
Algorithm 2.

Theorem 1 The average-case run time complexity of

MVPA_MVCP algorithm is ().

Proof: In the initial phase (lines 1-2), the process of
generating the initial population is ignored. This is because it is
assumed to be a preprocessing step. Finding the best solution in
P requires I steps. Thus, the total run time complexity of the
initial phase is I.

The main phase (lines 3-40) iterates M times. In each time,
the following steps and phases are executed:

 Distributing the population solutions into T groups
needs I steps.

 The competition phase (lines 5-36) iterates T times by
executing the following steps and phases:

- Finding the best solution in any group requires

 steps.

For the group that is currently processed and the

randomly retrieved group, they require

 steps.

- The individual competition phase (lines 9-19), in this

phase, processing all solutions of the group under

consideration requires

 iterations. In each iteration,

steps are needed to update the vertices of the processed

solution. Another steps are needed to check the

updated values of the vertices in the bound checking

phase. To accomplish the greediness phase, and in

order to decide on accepting the updated solutions or

not, it is needed to check the updated solution

capability of covering the graph under test. This

checking entails dropping all edges of the solution

vertices. The number of these edges may range from 1

to |E| as an upper limit. Therefore, the average number

of steps that are maybe needed is
∑

 steps. Consequently, the run time complexity of

the individual competition phase, including the first

executions of the bound checking phase and the

greediness phase, is

 ((

)*.

- The team competition phase (lines 20-35) follows the

same main steps and phases included in the individual

competition phase. It processes

 solutions. For each

solution, all its vertices values are updated and checked

with steps. Additionally, its capability of

covering the graph under test is checked with

steps, on average. As a result, the run time complexity

of the team competition phase is also

 (

(

)*. Based on the above analysis, the total run

time complexity of the competition phase is

 (

 (

 ((

)+),

 The elitism phase (lines 37-39), the first step of
applying this phase is to recollect the solutions from all
the groups back to the population P. Actually, this step

costs

 steps. Worst one-third solutions that

are replaced by the best one-third solutions costs

steps. But to be able to do this replacement, sorting the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

164 | P a g e

www.ijacsa.thesai.org

solutions regarding their sizes is needed. Radix sort is
chosen to perform this task. The time complexity of
radix sort is , where D is the number of digits
of the largest number to be sorted [14]. Accordingly,
the elitism phase run time complexity is

.

That is to say, the total run time complexity of the main
phase is

(

(

 (

 (

 ((

)+),

)

 (

*

)

In conclusion, the overall run time complexity of the
MVPA_MVCP algorithm is

(

(

(

 (

 (

 ((

)+),

)

 (

*

)

)

However, M, T and D can be dropped since they are
constants which are much less than I, |V|, and |E|. As a result
and by dropping all other constants, the average-case run time
complexity of MVPA_MVCP algorithm is ended to be
 . This completed the proof of Theorem 1.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of the MVPA_MVCP
algorithm experimentally, it is first implemented using Java
programming language under 64-bit windows 10 pro operating
system. Then, the MVPA_MVCP algorithm was tested on a
Microsoft Azure virtual machine which has a 2.00 GHz Intel
Xeon processor with 64 GB memory. Different instances of the
DIMACS benchmark for the MVCP have been used to test the
MVPA_MVCP algorithm. These instances are listed in
Table II [31, 32], where the benchmark instances name,
number of vertices, number of edges and their best known
optimal solutions sizes [32] are presented.

As an overview of Microsoft Azure, it is one of the most
recent services of Microsoft [33]. It is a cloud computing
service that provides facilities for building, testing, deploying,
and managing applications and services over Microsoft global
datacenters network. In addition to supporting many
frameworks and tools, it supports various programming
languages. One of the most important facilities that Microsoft
Azure implemented as a computer service is the creation of
virtual machines [33].

TABLE. II. DIMACS INSTANCES FOR MINIMUM VERTEX COVER

PROBLEM

Benchmark

Instances

Number of

Vertices

Number of

Edges

Best Known Optimal

Solution Size

johnson8-2-4 28 168 24

graph50_6 50 857 38

graph50_10 50 612 35

Hamming6-4 64 1312 60

graph100_10 100 4207 70

johnson16-2-4 120 1680 112

keller4 171 5100 160

cfat200_1 200 18366 188

brock200_2 200 10024 188

Hamming8_4 256 11776 240

phat300_1 300 33917 292

phat300_2 300 22922 275

sanr400_0.5 400 39816 387

johnson32-2-4 496 14880 480

phat700-1 700 99800 689

In point of fact, the evaluation of the MVPA_MVCP
algorithm is based on two performance metrics, the gained
solution quality and the run time. For each benchmark instance,
all tests are performed 10 times. The best-case, average-case
and worst-case of these 10 tries are recorded for the solution
quality metric. The run times of these three cases are also
recorded. Besides, it is important to emphasize that the
average-case of the solution quality metric is calculated as

⌊
∑

⌋, where ri is the minimum solution size gained in try i.

It is essential to draw the attention to the values of the main
variables of the MVPA_MVCP algorithm before beginning to
show and discuss the experimental outcomes. Regarding the
initial population size, the number of groups, and k constant
that is used in (2), they are specified as recommended in [25].
Their values are 100, 5, and 1, respectively. As regards the
maximum number of iterations (M), several experiments have
been performed to explore its best possible value that achieves
a compromise between the gained solution quality and the run
time. Three instances were used as samples for the conducted
exploratory experiments. These instances varied in size; small
(graph50_6, 50 vertices), medium (Hamming8_4, 256 vertices)
and large (phat700-1, 700 vertices). The implemented
MVPA_MVCP algorithm was executed using these three
instances with M values 2, 4, 6, 8, and 10. The results showed
that the most appropriate value was 6. This is because of the
fact that the value of best-gained solutions of all three instances
has not changed after the sixth iteration. On this foundation, M
was assigned to 6 in all conducted experiments.

A. Solution Quality

First and foremost, solution quality is considered as one of
the most expressive performance metrics to evaluate the
metaheuristic algorithms. It specifies how much a gained
solution has diverted from the optimal one. In the conducted
experiments, the quality of a gained solution can be assessed
since the best known optimal sizes of the solutions of the
selected DIMACS data instances are recorded [32]. As an

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

165 | P a g e

www.ijacsa.thesai.org

evaluator metric of the quality of gained solutions, the
approximation ratio concept is used as in [21]. Mathematically,

the approximation ratio is calculated as

, where is the

approximation ratio of the size of gained solution (α), and β is
the size of the best known optimal solution. If the value of
 equals to 1, then the size of the gained solution is the same
as the size of the best known optimal solution. But with a value
above 1, the size of the gained solution is worse than the size of
the best known optimal solution.

In light of that, Table III demonstrates the best, average,
and worst sizes of the obtained solutions and their respective
approximation ratios. In this table, the chosen benchmark
instances are sorted in non-descending order according to their
number of vertices. Additionally, the noted bolded values
appear in Table III indicate to those solutions that their sizes
equal to the best known optimal solutions sizes. For the best
case, average case and worst case, the MVPA_MVCP
algorithm could gain respectively, seven, three and two
solutions, with sizes equal to the best known optimal solutions
sizes.

With respect to the approximation ratio, the gained
solutions that have sizes equal to the sizes of the best known
optimal solutions, their approximation ratios are equal to 1.
Intuitively, the solutions that have sizes larger than the sizes of
the best known optimal solutions, their values of the
approximation ratios are greater than 1. All approximation
ratios that have values equal to 1 are also bolded in Table III.

As an accumulated view, the last row of Table III shows
the average of the approximation ratio values of all benchmark
instances for all cases (i.e. best, average, and worst). These
average values indicate that, on average, the MVPA_MVCP
algorithm slightly diverted by only 0.01, 0.021, and 0.033 from

the best known optimal solutions in the best case, average case
and worst case, respectively.

B. Run Time

In order to discuss the run time (RT), the number of edges
of a graph must be taken into consideration. Indeed, this
number significantly impacts the entire RT, based on the fact
that it impacts one process that is frequently repeated. Usually,
this process checks the solution's capability to cover the
involved graph. Actually, this check is performed by removing
the edges of those vertices which are composing the solution.
Thusly, when the number of edges becomes larger, more RT is
needed to end the checking test. Consequently, the total RT
will increase. Taking this fact into account, the DIMAC
benchmark instances in Table IV are re-sorted in an ascending
manner depending on their number of edges to clarify the
effect of this number on the RT.

In Table IV, the RT (in seconds) of executing the
MVPA_MVCP algorithm over the selected benchmark
instances are recorded. The relationship between the number of
edges and the RT, which outlined beforehand, can be clearly
observed in all cases (best, average and worst) of gained
solutions sizes. In fact, the general observation in Table IV is
that, as the number of edges increases, the RT increases too.

Furthermore, Fig. 2 is created to graphically clarify the
behaviour of the RT when the number of edges increases.
Particularly, Fig. 2 demonstrates how long the average-case
solutions can be accomplished. Moreover, since there is a large
difference between the smallest and largest values of the RT in
Table IV, the vertical axis of Fig. 2 is labelled by the
logarithmic values of base 10 of the RT. This is to present these
times more clearly. As laid out in Fig. 2, it also depicts the
direct relationship between the RT and the number of edges.

TABLE. III. THE BEST, AVERAGE AND WORST GAINED SOLUTIONS SIZES () AND THEIR APPROXIMATION RATIOS ()

Benchmark

Instances

Number of

Vertices

Best Known Optimal

Solution Size β
Best_α Best_ Average_α Average_ Worst_α Worst

johnson8-2-4 28 24 24 1 24 1 24 1

graph50_6 50 38 38 1 39 1.026 40 1.053

graph50_10 50 35 35 1 38 1.086 40 1.143

Hamming6-4 64 60 60 1 61 1.017 62 1.033

graph100_10 100 70 72 1.029 73 1.043 76 1.086

johnson16-2-4 120 112 112 1 112 1 113 1.009

keller4 171 160 162 1.013 164 1.025 165 1.031

cfat200_1 200 188 188 1 188 1 188 1

brock200_2 200 188 191 1.016 192 1.021 193 1.027

Hamming8_4 256 240 248 1.033 248 1.033 249 1.038

phat300_1 300 292 292 1 293 1.003 294 1.007

phat300_2 300 275 285 1.036 285 1.036 287 1.044

sanr400_0.5 400 387 393 1.016 393 1.016 395 1.021

johnson32-2-4 496 480 482 1.004 482 1.004 483 1.006

phat700-1 700 689 694 1.007 694 1.007 696 1.01

 Average of 1.01 1.021 1.033

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

166 | P a g e

www.ijacsa.thesai.org

TABLE. IV. THE RUNTIME (RT) (IN SECONDS) OF THE TESTED

BENCHMARK INSTANCES

Benchmark

Instances

Number

of Edges

johnson8-2-4 168 0.021 0.021 0.025

graph50_10 612 0.109 0.109 0.094

graph50_6 857 0.2 0.28 0.213

Hamming6-4 1213 0.295 0.262 0.239

johnson16-2-4 1680 0.587 0.532 0.445

graph100_10 4207 1.469 1.689 1.407

keller4 5100 1.9 2.218 2.201

brock200_2 10024 4.995 5.271 6.457

Hamming8_4 11776 8.772 9.176 8.448

johnson32-2-4 14880 10.75 19.622 12.687

cfat200_1 18366 15.806 16.106 16.13

phat300_2 22922 20.02 24.803 22.758

phat300_1 33917 28.682 27.965 27.077

sanr400_0.5 39816 38.961 60.254 38.665

phat700-1 183651 133.538 115.903 61.814

Fig. 2. The Run Time of Gaining Average-Case Solutions.

VII. CONCLUSIONS AND FUTURE WORK

On one side, the MVCP is one of the NP-hard problems
that many scientists have been dealing with. This is because it
has demonstrated its flexibility in solving problems in several
applications in real-life. On the other side, the MVPA has
recently developed as one of the metaheuristic algorithms that
has been influenced by its concept in team sports. In this paper,
the MVPA_MVCP algorithm is presented as an adaptation of
the MVPA for the MVCP. The MVPA_MVCP algorithm is
analytically evaluated, and several tests are conducted with a
target of experimental evaluation. Regarding the analytical
evaluation, the MVPA_MVCP algorithm is evaluated in terms
of the run time complexity. It has been shown that its average-
case run time complexity ended to be , where I
is the size of the initial population, |V| is the number of vertices
and |E| is the number of edges of the graph under test.

For the conducted experiments, the MVPA_MVCP
algorithm is developed using Java programming language and
it is executed on a Microsoft Azure virtual machine that has a

2.0 GHz Intel Xeon processor with 64 GB memory. As test
data set, 15 DIMACS benchmark instances for minimum
vertex cover problem are used.

The experimental results are evaluated in terms of the run
time; in addition to the quality of the gained solutions. These
results clarified that there is a direct relation between the
number of edges of the processed graph and the run time.
Where when the number of edges increases, the run time
increases too. Besides, they showed that, in the best case, the
MVPA_MVCP algorithm could gain seven solutions that have
sizes exactly as the best known optimal solutions sizes.

As future work, the MVPA_MVCP algorithm can be
compared with other metaheuristic algorithms such as GA and
ACO. Microsoft Azure service of creating multi-core virtual
machines can be also invested to parallelize the MVPA_MVCP
algorithm. Additionally, it can be parallelized over some types
of interconnection networks like Chained-Cubic Tree
interconnection network (CCT) [34], Optical Chained-Cubic
Tree interconnection network (OCCT) [35], and Optical
Transpose Interconnection System (OTIS) networks; such as
OTIS-hypercube, OTIS-mesh, OTIS hyper hexa-cell, and
OTIS mesh of trees [36, 37]. These interconnection networks
exposed their usefulness for solving various problems in a
parallel mode [36-38]. Solving the MVPA_MVCP algorithm
on parallel computing environment could greatly reduce the
run time, and it should not affect the quality of the obtained
solutions.

REFERENCES

[1] Y. Raju, and N. Devarakonda, “Cluster based Hybrid Approach to Task
Scheduling in Cloud Environment,” International Journal of Advanced
Computer Science and Applications(IJACSA), vol. 10, no. 4, pp. 425–
429, 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100452.

[2] A. Alazzawi, H. Rais, and Sh. Basri, “ABCVS: An Artificial Bee
Colony for Generating Variable T-Way Test Sets,” International Journal
of Advanced Computer Science and Applications(IJACSA), vol. 10, no.
4, pp. 259-274, 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100431.

[3] I. Sabbani, B. Omar, and D. Eszetergar-Kiss, “Simulation Results for a
Daily Activity Chain Optimization Method based on Ant Colony
Algorithm with Time Windows,” International Journal of Advanced
Computer Science and Applications(IJACSA), vol. 10, no. 1, pp. 425-
430, 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100156.

[4] A. Wicaksono, and A. Supianto, “Hyper Parameter Optimization using
Genetic Algorithm on Machine Learning Methods for Online News
Popularity Prediction,” International Journal of Advanced Computer
Science and Applications(IJACSA), vol. 9, no. 12, pp. 263-267, 2018.

http://dx.doi.org/10.14569/IJACSA.2018.091238.

[5] D. Poole, and A. Mackworth, Artificial Intelligence: Foundations of
Computational Agents, 2nd ed., Cambridge University Press, 2017.

[6] R. Masadeh, B. Mahafzah, and A. Sharieh, “Sea lion optimization
algorithm,” International Journal of Advanced Computer Science and
Applications, vol. 10, no. 5, pp. 388–395, 2019.

[7] R. Masadeh, A. Sharieh, and B. Mahafzah, “Humpback whale
optimization algorithm based on vocal behavior for task scheduling in
cloud computing,” International Journal of Advanced Science and
Technology, vol. 13, no. 3, pp. 121–140, 2019.

[8] M. Alshraideh, E. Jawabreh, B. Mahafzah, and H. AL Harahsheh,
“Applying genetic algorithms to test JUH DBs exceptions,”
International Journal of Advanced Computer Science and Applications,
vol. 4, no. 7, pp. 8–20, 2013.

[9] M. Alshraideh, B. Mahafzah, H. Eyal Salman, and I. Salah, “Using
genetic algorithm as test data generator for stored PL/SQL program
units,” Journal of Software Engineering and Applications, vol. 6, no. 2,
pp. 65–73, 2013.

http://dx.doi.org/10.14569/IJACSA.2019.0100452
http://dx.doi.org/10.14569/IJACSA.2019.0100431
http://dx.doi.org/10.14569/IJACSA.2019.0100156
http://dx.doi.org/10.14569/IJACSA.2018.091238

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

167 | P a g e

www.ijacsa.thesai.org

[10] U. Chakraborty, D. Konar, and C. Chakraborty, “A GA based Approach
to Find Minimal Vertex Cover,” International Journal of Computer
Applications (IJCA), National Conference cum Workshop on
Bioinformatics and Computational Biology, NCWBCB, vol. 3, pp. 5–7,
2014.

[11] H. Bhasin and M. Amini, “The applicability of genetic algorithm to
vertex cover,” International Journal of Computer Applications, vol. 123,
no. 17, pp. 29-34, 2015.

[12] A. Pat, "Ant colony optimization and hypergraph covering problems,"
IEEE Congress on Evolutionary Computation (CEC), Beijing, China,
July 6-11, 2014.

[13] R. Jovanovic and M. Tuba, “An ant colony optimization algorithm with
improved pheromone correction strategy for the minimum weight vertex
cover problem,” Applied Soft Computing, vol. 11, no. 8, pp. 5360–5366,
2011. https://doi.org/10.1016/j.asoc.2011.05.023.

[14] Z. Guangyong, X. Yuimg, L. Kenli, and S. Shibing, “Hybrid chemical
reaction optimization algorithm for minimum vertex cover problem,”
Electronic Technology and Information Science, vol. 33, no. 9, 2016.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed., The MIT Press, 2009.

[16] V. Kavalci, A. Ural, and O. Dagdeviren, “Distributed vertex cover
algorithms for wireless sensor networks,” International Journal of
Computer Networks and Communications, vol. 6, no. 1, pp. 95–110,
2014.

[17] M. Barah and E. Mazaheri, Matching Theory. In: Farahani R,
Miandoabchi E (ed) Graph Theory for Operations Research and
Management: Applications in Industrial Engineering. Portland, Book
News Inc., pp 127–141, 2012.

[18] T. Can, Introduction to Bioinformatics. In: Yousef M., Allmer J. (eds)
miRNomics: MicroRNA Biology and Computational Analysis. Methods
in Molecular Biology (Methods and Protocols), vol 1107, pp. 51-71.
Humana Press, Totowa, NJ, 2014. https://doi.org/10.1007/978-1-62703-
748-8_4.

[19] H. Moser, Exact algorithms for generalizations of vertex cover. Master
thesis, Friedrich-Schiller University, Jena, Germany, 2005.

[20] G. Kochenberger, M. Lewis, F. Glover, and H. Wang, “Exact solutions
to generalized vertex covering problems: A comparison of two models,”
Optim. Lett., vol. 9, no. 7, pp. 1331–1339, 2015.
https://doi.org/10.1007/s11590-015-0851-1.

[21] I. Khan and S. Khan, “Experimental comparison of five approximation
algorithms for minimum vertex cover,” International Journal of u-and e-
Service, vol. 7, no. 6, pp. 69–84, 2014.

[22] M. Eshtey, A. Sliet, and A. Sharieh, “NMVSA greedy solution for
vertex cover problem,” International Journal of Advanced Computer
Science and Applications, vol. 7, no. 3, pp. 60–64, 2016.

[23] S. Cai, K. Su, and A. Sattar, “Local Search with edge weighting and
configuration checking heuristics for minimum vertex cover,” Artificial
Intelligence, vol. 175, pp. 1672–1696, 2011.
https://doi.org/10.1016/j.artint.2011.03.003.

[24] S. Balachandar and K. Kannan, “A Meta-heuristic algorithm for vertex
covering problem based on gravity,” International Journal of
Mathematical and Statistical Sciences, vol. 1, no. 3, pp. 130–136, 2009.

[25] H. Bouchekara, “Most valuable player algorithm: a novel optimization
algorithm inspired from sport,” Oper. Res. Int. J., 2017.
https://doi.org/10.1007/s12351-017-0320-y.

[26] Sh. Cai, K. Su, C. Luo, and A. Sattar, “NuMVC: an efficient local
search algorithm for minimum vertex cover,” Journal of Artificial
Intelligence Research, vol. 46, pp. 687–716, 2013.

[27] Z. Fang, Y. Chu, K. Qiao, X. Feng, and K. Xu, “Combining edge weight
and vertex weight for minimum vertex cover problem,” Proceedings of
International Workshop on Frontiers in Algorithmics, vol. 1,
Zhangjiajie, China, pp. 71–81, June 2014.

[28] H. Bouchekara, A. Orlandi, M. Al-Qda, and F. Paulis, “Most valuable
player algorithm for circular antenna arrays optimization to maximum
sidelobe levels reduction,” IEEE Transactions on electromagnetic
compatibility, vol. 60, no. 6, pp. 1655-1661, 2018.

[29] B. Alatas, “Sports inspired computational intelligence algorithms for
global optimization,” Artif. Intell. Rev., 2017.
https://doi.org/10.1007/s10462-017-9587-x.

[30] S. Luke, Essentials of Metaheuristics. Lulu Publisher, 2013.
http://cs.gmu.edu/~sean/book/metaheuristics/

[31] D. Johnson and M. Trick, Cliques, Coloring and Satisfiability: Second
DIMACS Implementation Challenge, DIMACS Series, American
Mathematical Society, Providence RI, 26, 1996.

[32] F. Mascia, DIMACS benchmark set, 2015. http://iridia.ulb.ac.be
/~fmascia/maximum_clique/DIMACS-benchmark. Accessed 1 June
2019.

[33] M. Collier and R. Shahan, Fundamentals of Azure. Microsoft Press,
Redmond, Washington, 2016.

[34] M. Abdullah, E. Abuelrub, and B. Mahafzah, “The chained-cubic tree
interconnection network,” International Arab Journal of Information
Technology, vol. 8, no. 3, pp. 334–343, 2011.

[35] B. Mahafzah, M. Alshraideh, T. Abu-Kabeer, E. Ahmad, and N. Hamad,
“The optical chained-cubic tree interconnection network: topological
structure and properties,” Computers & Electrical Engineering, vol. 38,
no. 2, pp. 330–345, 2012. https://doi.org/10.1016/
j.compeleceng.2011.11.023

[36] A. Al-Adwan, B. Mahafzah, and A. Sharieh, “Solving traveling
salesman problem using parallel repetitive nearest neighbor algorithm on
OTIS-Hypercube and OTIS-Mesh optoelectronic architectures,” Journal
of Supercomputing, vol. 74, no. 1, pp. 1–36, 2018.
https://doi.org/10.1007/s11227-017-2102-y

[37] A. Al-Adwan, A. Sharieh, and B. Mahafzah, “Parallel heuristic local
search algorithm on OTIS hyper hexa-cell and OTIS mesh of trees
optoelectronic architectures,” Applied Intelligence, vol. 49, no. 2, pp.
661–688, 2019. https://doi.org/10.1007/s10489-018-1283-2

[38] S. Baddar and B. Mahafzah, “Bitonic sort on a chained-cubic tree
interconnection network,” Journal of Parallel and Distributed
Computing, vol. 74, no 1, pp. 1744–1761, 2014.
https://doi.org/10.1016/j.jpdc.2013.09.008.

https://doi.org/10.1016/j.asoc.2011.05.023
https://doi.org/10.1007/s11590-015-0851-1
https://doi.org/10.1016/j.artint.2011.03.003
https://doi.org/10.1007/s12351-017-0320-y
https://doi.org/10.1007/s10462-017-9587-x
http://cs.gmu.edu/~sean/book/metaheuristics/
https://doi.org/10.1007/s11227-017-2102-y
https://doi.org/10.1007/s10489-018-1283-2
https://doi.org/10.1016/j.jpdc.2013.09.008

