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Abstract—Minimum Vertex Cover Problem (MVCP) is a 

combinatorial optimization problem that is utilized to formulate 

multiple real-life applications. Owing to this fact, abundant 

research has been undertaken to discover valuable MVCP 

solutions. Most Valuable Player Algorithm (MVPA) is a recently 

developed metaheuristic algorithm that inspires its idea from 

team-based sports. In this paper, the MVPA_MVCP algorithm is 

introduced as an adaptation of the MVPA for the MVCP. The 

MVPA_MVCP algorithm is implemented using Java 

programming language and tested on a Microsoft Azure virtual 

machine. The performance of the MVPA_MVCP algorithm is 

evaluated analytically in terms of run time complexity. Its 

average-case run time complexity is ceased to              , 
where I is the size of the initial population, |V| is the number of 

vertices and |E| is the number of edges of the tested graph. The 

MVPA_MVCP algorithm is evaluated experimentally in terms of 

the quality of gained solutions and the run time. The 

experimental results over 15 instances of DIMACS benchmark 

revealed that the MVPA_MVCP algorithm could, in the best 

case, get the best known optimal solution for seven data 

instances. Also, the experimental findings exposed that there is a 

direct relation between the number of edges of the graph under 

test and the run time. 

Keywords—Most valuable player algorithm; minimum vertex 

cover problem; metaheuristic algorithms; optimization problem 

I. INTRODUCTION 

In general, many heuristic and metaheuristic algorithms 
were used to solve many optimization problems; such as 
Minimum Vertex Cover Problem (MVCP), Traveling 
Salesman Problem (TSP), 15 puzzle problem, task scheduling, 
software testing, and non-optimization problems [1-4]. 
Examples of heuristic algorithms are A* heuristic search 
algorithm and iterative deepening A* (IDA*) heuristic search 
algorithm [5]. Examples of metaheuristic algorithms are sea 
lion optimization, humpback whale optimization, Genetic 
Algorithm (GA), Ant Colony Optimization (ACO), Artificial 
Bee Colony (ABC), Particle Swarm Optimization (PSO), and 
Chemical Reaction Optimization (CRO) [6-14]. 

The MVCP is a combinatorial optimization problem in 
computer science. It is a classic example of an NP-hard 
optimization problem. The MVCP is the problem of finding the 
smallest set of vertices such that at least one endpoint of each 
edge of the tested graph belongs to that set [15]. 

The Vertex Cover Problem (VCP) can be defined as 
follows: let G = (V, E) be an undirected graph with set V of 

vertices and set E of edges. If S is a subset of V (S ⊆ V) and (x, 
y) is an edge in G, then S is the cover of G if either x   S or y   
S or both [15]. The MVCP is the problem of finding a subset S 
such that |S| is the minimum. The MVCP can be formulated as 
in (1). 

   ∑                    (1) 

Subject to:     ∑               

where    {
                                              
                                        

 

and 

       {
                                               
                                             

 

For the sake of clarity, Fig. 1 depicts an illustrative 
example for the MVCP. In this figure, the graph G consists of 
6 vertices and 6 edges. For instance, the subset {1, 2, 5, 6} 
represents a cover for G, but it is not the minimum. In fact, the 
subsets {1, 5} and {1, 6} are the minimum ones. 

Many real-life problems and applications can be 
developed as MVCP. Therefore, many scientists have been 
encouraged to create higher attempts to discover efficient 
solutions. Networks and communications [16], engineering 
[17], and bioinformatics [18] are some of the real-world 
applications that they were represented and solved as MVCP. 

To solve the MVCP, distinct kinds of algorithms were 
developed to introduce worthy solutions. Several exact [19, 
20], heuristic [21-23], and metaheuristic [10-14, 24] algorithms 
were presented to achieve the purpose of solving the MVCP. 
The exact algorithms always find the optimal solution to the 
optimization problems if the problem size is comparatively 
small. This is because, in a feasible time, the optimal solution 
can be achieved. But once the problem size starts to increase, 
heuristic and metaheuristic algorithms are needed. Both of 
these types of algorithms can find a solution as close as 
possible to the optimal solution. Maximum Degree Greedy 
(MDG), Vertex Support Algorithm (VSA), and New Modified 
Vertex Support Algorithm (NMVSA) [21, 22] are some of the 
heuristic algorithms that were introduced specifically for the 
MVCP. 

Many researchers adapted metaheuristic algorithms to 
handle MVCP. The GA was used to solve the MVCP in [10, 
11]. The ACO algorithm also tackled the MVCP in [12, 13]. 
Furthermore, it was addressed by the CRO algorithm in [14]. 
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Fig. 1. A Graph G with 6 Vertices and 6 Edges, where MVC = {1, 5}. 

The Most Valuable Player Algorithm (MVPA) is a recent 
metaheuristic algorithm that was introduced in 2017 for 
solving optimization problems [25]. The algorithm is inspired 
by sport, where the players make up teams, then they compete 
(in teams) together to win the championship. They also 
compete for the best player award on an individual basis. 

In this paper, the MVPA is adapted and implemented for 
treating the MVCP. This algorithm is implemented using Java 
programming language and executed on a Microsoft Azure 
virtual machine. The performance of the implemented 
algorithm is evaluated analytically in terms of run time 
complexity and cost function metrics. Furthermore, it is 
evaluated experimentally in terms of solution quality and run 
time. The experiments have been conducted using different 
DIMACS benchmark instances for MVCP. 

The structure of this paper is summarized as follows: 
Section II reviews some of the related work. In Section III, the 
MVPA is briefly lunched and explained. Section IV shows 
how the MVPA is tailored to the MVCP. Section V 
analytically evaluates the implemented MVPA. Section VI 
shows and discusses the experimental outcomes. Finally, 
Section VII concludes the conducted work and suggests some 
future work. 

II. RELATED WORK 

As several essential applications are depicted as MVCP, it 
has been the heart of extensive research. In [26], a new local 
search algorithm that is named NuMVC (New Minimum 
Vertex Cover) has been introduced to tackle the MVCP. The 
primary concept for NuMVC was to confront some 
weaknesses, which normally occur in the local search 
algorithms, linked to the exchange of vertices and weight of 
edges. NuMVC has come up with new approaches to address 
these weaknesses. 

VEWLS (Vertex Edge Weighting Local Search) algorithm 
is presented in [27]. This algorithm integrates the vertex 
weighting scheme with the edge weighting scheme. In 
comparison with the NuMVC algorithm, VEWLS performance 
was evaluated. The findings showed that the VEWLS 
algorithm was superior to the NuMVC algorithm. 

Moreover, GA has been used to solve the MVCP in [10]. 
The primary objective of this research was to demonstrate the 
effects of growing the population size. The results exposed that 
the number of generations required getting the optimal solution 
decreases as the population size increases. 

The ACO algorithm has been exploited in [13] to solve the 
minimum weight VCP. In this research, a heuristic strategy has 

been put forward to rule out suspicious elements to correct the 
pheromone. This strategy is based on extracting information 
related to the best solution.  This information enhanced the 
canonical ACO algorithm by avoiding the premature trapping 
of the local optima.  The findings indicated a noticeably shorter 
time, while the results achieved were somewhat better. 

A version of CRO algorithm called Hybrid Chemical 
Reaction Optimization Algorithm (HCROA) was designed to 
solve the minimum vertex cover problem for an undirected 
graph in [14]. In this algorithm, a greedy approach is adopted 

for implementing the main reactions operators. The HCROA 

was compared with genetic algorithm and branch and bound 
approach. The comparison was in terms of the number of 
iterations that were executed to reach the optimal solution. The 
results exposed that HCROA outperformed the genetic 
algorithm and the branch and bound approach. 

There are not many research work so far as the MVPA is 
concerned. This is due to the fact that MVPA is invented so 
recently [25]. However, the same author who introduced the 
MVPA has investigated his algorithm to tackle the optimal 
design of circular antenna arrays for maximum sidelobe levels 
reduction [28].  The results of testing the proposed algorithm 
showed that it is superior to many other counterpart algorithms. 

In [29], a comparison has been conducted between the 
MVPA and other sport-inspired metaheuristic algorithms. All 
compared algorithms have been tested using unimodal and 
multimodal problems. The MVPA has been proved to be the 
best algorithm regarding unimodal problems. For the 
multimodal problems, it has been the best together with two 
other algorithms. 

III. MOST VALUABLE PLAYER ALGORITHM 

As previously stated, Bouchekara has recently introduced 
the MVPA in 2017 [25]. He inspired the idea of the MVPA 
from the team-based sports; where all participated players are 
grouped in teams. Algorithm 1 illustrates the MVPA phases. 

The inputs of the MVPA are the problem size (the 
dimension of the tackled problem), players size (the number of 
players), teams size (the number of teams), and MaxNFix (the 
maximum number of fixtures (iterations)). The Most Valuable 
Player (MVP) that represents the best-obtained players is the 
output of the MVPA. 

The MVPA begins with the initial phase. In this phase, the 
initial population of players is randomly created. In the main 
phase, all other phases are executed and repeated until the stop 
condition is satisfied. The first step that is executed in the main 
phase is the distribution of the players of the population into 
teams. The competition phase iterates for all teams. For each 
selected team, two types of competitions are carried out, 
individual and team competitions. In the individual 
competition, each player of the selected team tries to improve 
his sporting skills to be the best player in his team and the 
league. Concerning the team competition, it is performed 
among the competed teams. Each selected team plays against 
another randomly picked team. As a result of this play, the 
players of the selected team follow a certain mechanism to 
update their skills. 
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It must be mentioned that the player skills have lower and 
upper bounds, and in each competition, all players are 
constantly seeking to improve their skills. So, if the 
improvement tries updating the players' skills out of these 
bounds, these skills must be brought back to their bounds. This 
checking of the player's skills bounds is regularly performed in 
the bound checking phase. 

At the end of the competition phase, the new population of 
players is shaped. This new population faces the greediness 
phase where the player who only got better skills is accepted, 
otherwise, his skills remain without accepting the conducted 
changes. In the elitism phase, a specific number of worst 
players in the new population are replaced with the same 
number of elite players who have the best skills. As a final 
phase, any duplicated player is replaced by a player from the 
winning teams. 

As mentioned beforehand, the main phase iterates until the 
stop condition is satisfied. In [25], this condition is determined 
by the number of iterations which equals a specific number that 
is assigned to the MaxNFix. All information about the MVPA 
designing details can be found in [25]. 

IV. MOST VALUABLE PLAYER ALGORITHM FOR THE 

MINIMUM VERTEX COVER PROBLEM 

The first step of adapting the MVPA for the MVCP is to 
align its main concepts of the MVPA with the MVCP. Table I 
shows the main concepts of the MVPA and their related 
meanings of the MVCP. The player concept in the MVPA 
represents a solution of the graph considered. In order to 
implement a solution, let a graph G = (V, E), then the vector a 
= (a1, a2, ..., a|V|) where ai   {0, 1}, is a binary vector that 
represents the solution. If the ith vertex contributes to covering 
the graph G, then ai = 1, otherwise, ai = 0. In consequence, the 
number of ones in the binary vector represents the solution size 
which is noted as player skills in the MVPA. To clarify the 
idea, consider the following example. For instance, for a graph 

G with 6 vertices, if a = (1, 1, 0, 1, 0, 1), then the solution size 
is 4 and vertices 1, 2, 4 and 6 cover all edges of the graph G.  

The problem size in the MVPA corresponds to the number 
of vertices in the graph considered for the MVCP; which 
represents the length of the created binary vector. 

In the MVCP, the number of initial solutions that are 
created to form the initial population corresponds to the players 
size concept in the MVPA. When the initial population's 
solutions are distributed over teams, the solution which has the 
minimum size in a team represents the Franchise player.  
However, the solution which has the minimum size in all teams 
is considered the most valuable player. The best-gained 
solution is the most valuable player after all the MaxNFix 
iterations. 

The adaptation of MVPA for the MVCP is described in 
Algorithm 2. As inputs, the algorithm requires a graph to be 
tested, it is denoted as G. The initial population size which 
represents the number of initial solutions is symbolized by I. 
Variable T stands for the number of groups that the population 
solutions will be distributed into. The maximum number of 
times that the algorithm should iterate is denoted by M. The 
best solution obtained after the M iterations is represented by 
the Minimum Vertex Cover (MVC) which is the output of 
Algorithm 2. 

In regards to MVPA phases, they are adapted for the 
MVCP firstly by assembling the competition, bound checking, 
greediness, and elitism phases in the main phase. Duplicates 
removing phase is ignored because of what will be explained 
after a while. Besides, the original order of the MVPA phases 
is modified to meet the needs of adaptation. 

In the initial phase, as in line 1 of Algorithm 2 shows, I of 
initial solutions are randomly created to form the initial 
population. The initial solutions are created using a Random 
Bit-Vector (RBV) approach [30]. In RBV, the solution binary 
vector is made up by assigning each vertex value of 0 or 1 
based on a generated random number. If this number is greater 
than a predefined constant, then the value of the vertex will be 
1, or 0 otherwise. Calculating the sizes of these initial solutions 
is the next step. After then, the best solution (i.e. the solution 
with the minimum size) of the initial population is determined 
as illustrated in line 2. 

TABLE. I. THE MVPA CONCEPTS FOR THE MVCP 

MVPA Concept MVCP Meaning 

Player Solution. 

Player skills Solution size. 

Problem size Tested graph size (the number of its vertices). 

Players size 
The number of initial solutions (initial population 

size). 

Franchise player The solution with the minimum size in a team. 

Most valuable player The solution with the minimum size in all teams. 

  

Algorithm 1: MVPA 

Inputs: problem size, players size, teams size, and MaxNFix. 

Output: MVP 

Initial Phase: 

Creation of the initial population of players  

Main Phase: 

Distribution of population players in teams 

Do 

Competition Phase: 

for all teams 

Individuals Competition Phase 

Team Competition Phase 

Bound Checking Phase 

end for 

Greediness Phase 

Elitism Phase 

Duplicates Removing Phase 

Until the stop criterion is satisfied 
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Algorithm 2: MVPA_MVCP 

Inputs Graph G (V, E), 

I (initial population size),  

T (number of groups) and  

M (maximum number of iterations) 

Output MVC (minimum vertex cover; i.e. the best solution 

obtained)  

 // Initial Phase 

1 Create the initial population (P) by generating I random 

initial solutions and calculate the sizes of these solutions. 

2 Find the best solution in P (i.e. the solution with 

minimum size) and denoted as L. 

 // Main Phase      
3 for f = 1 to M 

4 Distribute P solutions over T groups 

 // Competition Phase 
5 for i = 1 to T 

6 Retrieve group i (gi) 

7 Pick randomly group j (gj), given that i ≠ j 

8 Find the best solutions in gi and gj. Denote them 

as Bi and Bj, respectively. 

 // Individual Competition Phase 

9 for each solution (X) in gi Do 

10 for each vertex d of X  Do 

11 Xd=Xd +rand×(Bi-d –Xd)+2×rand ×(Ld −Xd) 

 //Bound Checking Phase - Stage 1 

12 if Xd ≤ 0 then Xd = 0, else Xd =1 

13 end for 

 // Greediness Phase - Stage 1 

14 
if the new X cover graph G and its size 

less than the original X size then  

15 Accept the new X  

16 else 

17 keep the original X 

18 end if 

19 end for 

 // Team Competition Phase 

20 Calculate the probability of winning gi against gj 

and gj against gi 

21 for each solution (X) in gi Do 

22 for each vertex d of X  Do 

23 if gi wins against gj 

24 Xd = Xd +rand×( Xd −Bj-d) 

25 else 

26 Xd = Xd +rand×( Bj-d −Xd) 

27 end if 

 //Bound Checking Phase - Stage 2 

28 if Xd ≤ 0 then Xd = 0, else Xd =1 

29 end for 

 // Greediness Phase - Stage 2 

30 
if the new X cover graph G and its size    less 

than the original X size then  

31 Accept the new X  

32 else 

33 keep the original X 

34 end if 

35 end for 

36 end for 
 // Elitism Phase 

37 Recollect the solutions from all groups in the 

population (P).  

38 Sort P solutions based on their sizes 

39 
Replace one-third of the worst solutions with one-

third of the best solutions 

40 end for 

41 Output the best solution as MVC. 

The main phase, which is represented in lines 3-40, iterates 
M times. The first step in each time is to subsequently spread 
the population solutions across the T groups as depicted in line 
4. Shortly afterwards, the competition phase (lines 5-36) starts 
with retrieving the group that is due to be processed (gi) as 
shown in line 6. In line 7, another group (gj) is randomly 
retrieved to confront gi in the team competition phase, where gi 

and gj should be different. Before delving in executing any of 
the competition phases (individual or team), it is needed first to 
find the best solution in gi and gj as exposed in line 8. 
Concerning the individual competition phase, it extends 
between lines 9 and 19. In this phase, each solution of gi 
undergoes an improvement attempt to minimize its size using 
the equation in line 11 [25]. In this equation, the vertices values 
of each solution are updated based on the values of the vertices 
of the best solution in the gi (Bi) and the best solution in 
population P (L). Regarding the team competition phase, its 
steps are allocated in lines 20-35. Its first step is to determine 
the winner group by calculating the probability of winning gi 
against gj and gj against gi. Equation (2) is used to calculate 
these probabilities [25]. 

          
   

            

                        
            (2) 

where ga and gb are any competed groups, k is a constant 
and           is the normalized size of ga's solutions sizes 
that is calculated as in (3) [25]. 

          
                                                     (3) 

On the consequence of the winner group determination, the 
vertices values of gi solution are updated using either the 
equation in line 24 or in line 26 [25]. 

As stated formerly, the solution vertices values are 
restricted to be 0 or 1. However, when the equations in lines 
11, 24, and 26 are used to update the values of the vertices, 
some of the obtained values differ from 0 or 1. So, in the bound 
checking phase, these values must be checked and brought 
back to 0 or 1. Specifically, when the value acquired of 
applying any of these equations is less than 1, then the vertex 
value is determined to be 0. Otherwise, it is considered to be 1. 
Since the values of the vertices are updated in both individual 
and team competition phases, the bound checking phase is 
executed twice, once after each updating process. This is 
illustrated in lines 12 and 28. 

Intuitively, after each updating, the sizes of the updated 
solutions are re-calculated. Accepting these solutions 
essentially is based on the fact that their sizes must be smaller 
than the original one, with emphasizing that the accepted 
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solutions should cover the graph under test. The decision of 
accepting the updated solutions or rejecting them mainly is 
made in the greediness phase. Taking into consideration that 
the solutions are updating twice, as mentioned beforehand, the 
greediness phase is accomplished also twice, once is after the 
updating process in the individual competition phase as shown 
in lines 14-18. Once again is at the end of each iteration of the 
team competition phase as presented in lines 30-34. 

The last phase that is included in the main phase is the 
elitism phase. In this phase, as recommended in [25], one-third 
of all solutions which have worst sizes (i.e. largest sizes) are 
replaced with these one-third solutions which have the best 
sizes (i.e. smallest sizes). With an aim to perform this 
replacement, first of all, the solutions from all groups must be 
collected back to the population P. In the aftermath, these 
solutions are sorted in a non-descending manner based on their 
sizes. As clearly observed in Algorithm 2, the elitism phase is 
implemented in lines 37-39. Ultimately, after executing all M 
iterations, the best-obtained solution is announced as MVC like 
is reveled in line 41. 

It is worth noting that the duplicates removing phase is 
ignored during the adaptation of MVPA to the MVCP. Since it 
is inapplicable in case of the MVCP, this inapplicability 
attributed to that in some cases, the number of solutions of the 
graph under consideration is less than the initial population 
size. Thereupon, the duplication is unavoidable. Consequently, 
this phase cannot be applied. 

V. ANALYTICAL EVALUATION 

This section offers a detailed discussion of an analytical 
evaluation for MVPA_MVCP algorithm in terms of the run time 
complexity. Given that, M is the maximum number of 
iterations, I is the initial population size, T is the number of 
groups, and |V| and |E| are, respectively, the number of vertices 
and edges in the graph under test. 

The run time of an algorithm, as indicated in [15], is 
described as the number of steps executed over a particular size 
of input. The run time complexity calculated in this section is 
the average-case of the run time. 

The run time complexity of MVPA_MVCP algorithm is the 
result of summing the run time complexity of its phases. 
Nonetheless, the run time complexity of creating the initial 
population solutions and calculating their sizes are not taken 
into consideration. This is due to the fact that it is assumed to 
be a preprocessing step. Theorem 1 remarks MVPA_MVCP 
algorithm average-case run time complexity. Yet, the details of 
calculating this complexity are illuminated in the following 
proof based on tracing the steps and phases listed in 
Algorithm 2. 

Theorem 1 The average-case run time complexity of 

MVPA_MVCP algorithm is  (           ). 

Proof: In the initial phase (lines 1-2), the process of 
generating the initial population is ignored. This is because it is 
assumed to be a preprocessing step. Finding the best solution in 
P requires I steps. Thus, the total run time complexity of the 
initial phase is I. 

The main phase (lines 3-40) iterates M times. In each time, 
the following steps and phases are executed: 

 Distributing the population solutions into T groups 
needs I steps. 

 The competition phase (lines 5-36) iterates T times by 
executing the following steps and phases: 

- Finding the best solution in any group requires 
 

 
 steps. 

For the group that is currently processed and the 

randomly retrieved group, they require   
 

 
 steps. 

- The individual competition phase (lines 9-19), in this 

phase, processing all solutions of the group under 

consideration requires 
 

 
 iterations. In each iteration,     

steps are needed to update the vertices of the processed 

solution. Another     steps are needed to check the 

updated values of the vertices in the bound checking 

phase. To accomplish the greediness phase, and in 

order to decide on accepting the updated solutions or 

not, it is needed to check the updated solution 

capability of covering the graph under test. This 

checking entails dropping all edges of the solution 

vertices. The number of these edges may range from 1 

to |E| as an upper limit. Therefore, the average number 

of steps that are maybe needed is  
∑  
   
   

   
 

           

     
 

     

 
 steps. Consequently, the run time complexity of 

the individual competition phase, including the first 

executions of the bound checking phase and the 

greediness phase, is      
 

 
 (      (

     

 
)*. 

- The team competition phase (lines 20-35) follows the 

same main steps and phases included in the individual 

competition phase. It processes 
 

 
  solutions. For each 

solution, all its vertices values are updated and checked 

with       steps. Additionally, its capability of 

covering the graph under test is checked with 
     

 
 

steps, on average. As a result, the run time complexity 

of the team competition phase is also 
 

 
 (      

(
     

 
)*.  Based on the above analysis, the total run 

time complexity of the competition phase is 

  (  
 

 
   (

 

 
 (      (

     

 
)+), 

 The elitism phase (lines 37-39), the first step of 
applying this phase is to recollect the solutions from all 
the groups back to the population P. Actually, this step 

costs   
 

 
   steps. Worst one-third solutions that 

are replaced by the best one-third solutions costs 
 

 
  

steps. But to be able to do this replacement, sorting the 
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solutions regarding their sizes is needed. Radix sort is 
chosen to perform this task. The time complexity of 
radix sort is       , where D is the number of digits 
of the largest number to be sorted [14]. Accordingly, 
the elitism phase run time complexity is         
 

 
. 

That is to say, the total run time complexity of the main 
phase is 

  

(

  
 
  

(

 
 
  (  

 

 
   (

 

 
 (      (

     

 
)+),

)

 
 

 (        
 

 
*

)

  
 

 

In conclusion, the overall run time complexity of the 
MVPA_MVCP algorithm is 

  

(

 
 
 
  

(

  
 
  

(

 
 
  (  

 

 
   (

 

 
 (      (

     

 
)+),

)

 
 

 (        
 

 
*

)

  
 

)

 
 
 

 

However, M, T and D can be dropped since they are 
constants which are much less than I, |V|, and |E|. As a result 
and by dropping all other constants, the average-case run time 
complexity of MVPA_MVCP algorithm is ended to be 
              . This completed the proof of Theorem 1. 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 

To evaluate the performance of the MVPA_MVCP 
algorithm experimentally, it is first implemented using Java 
programming language under 64-bit windows 10 pro operating 
system. Then, the MVPA_MVCP algorithm was tested on a 
Microsoft Azure virtual machine which has a 2.00 GHz Intel 
Xeon processor with 64 GB memory. Different instances of the 
DIMACS benchmark for the MVCP have been used to test the 
MVPA_MVCP algorithm. These instances are listed in 
Table II [31, 32], where the benchmark instances name, 
number of vertices, number of edges and their best known 
optimal solutions sizes [32] are presented. 

As an overview of Microsoft Azure, it is one of the most 
recent services of Microsoft [33]. It is a cloud computing 
service that provides facilities for building, testing, deploying, 
and managing applications and services over Microsoft global 
datacenters network. In addition to supporting many 
frameworks and tools, it supports various programming 
languages. One of the most important facilities that Microsoft 
Azure implemented as a computer service is the creation of 
virtual machines [33]. 

TABLE. II. DIMACS INSTANCES FOR MINIMUM VERTEX COVER 

PROBLEM 

Benchmark 

Instances 

Number of 

Vertices 

Number of 

Edges 

Best Known Optimal 

Solution Size 

johnson8-2-4 28 168 24 

graph50_6 50 857 38 

graph50_10 50 612 35 

Hamming6-4 64 1312 60 

graph100_10 100 4207 70 

johnson16-2-4 120 1680 112 

keller4 171 5100 160 

cfat200_1 200 18366 188 

brock200_2 200 10024 188 

Hamming8_4 256 11776 240 

phat300_1 300 33917 292 

phat300_2 300 22922 275 

sanr400_0.5 400 39816 387 

johnson32-2-4 496 14880 480 

phat700-1 700 99800 689 

In point of fact, the evaluation of the MVPA_MVCP 
algorithm is based on two performance metrics, the gained 
solution quality and the run time. For each benchmark instance, 
all tests are performed 10 times. The best-case, average-case 
and worst-case of these 10 tries are recorded for the solution 
quality metric. The run times of these three cases are also 
recorded. Besides, it is important to emphasize that the 
average-case of the solution quality metric is calculated as 

⌊
∑   

  
   

  
⌋, where ri is the minimum solution size gained in try i. 

It is essential to draw the attention to the values of the main 
variables of the MVPA_MVCP algorithm before beginning to 
show and discuss the experimental outcomes. Regarding the 
initial population size, the number of groups, and k constant 
that is used in (2), they are specified as recommended in [25]. 
Their values are 100, 5, and 1, respectively. As regards the 
maximum number of iterations (M), several experiments have 
been performed to explore its best possible value that achieves 
a compromise between the gained solution quality and the run 
time. Three instances were used as samples for the conducted 
exploratory experiments. These instances varied in size; small 
(graph50_6, 50 vertices), medium (Hamming8_4, 256 vertices) 
and large (phat700-1, 700 vertices). The implemented 
MVPA_MVCP algorithm was executed using these three 
instances with M values 2, 4, 6, 8, and 10. The results showed 
that the most appropriate value was 6. This is because of the 
fact that the value of best-gained solutions of all three instances 
has not changed after the sixth iteration. On this foundation, M 
was assigned to 6 in all conducted experiments. 

A. Solution Quality 

First and foremost, solution quality is considered as one of 
the most expressive performance metrics to evaluate the 
metaheuristic algorithms. It specifies how much a gained 
solution has diverted from the optimal one. In the conducted 
experiments, the quality of a gained solution can be assessed 
since the best known optimal sizes of the solutions of the 
selected DIMACS data instances are recorded [32]. As an 
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evaluator metric of the quality of gained solutions, the 
approximation ratio concept is used as in [21]. Mathematically, 

the approximation ratio is calculated as    
 

 
, where    is the 

approximation ratio of the size of gained solution (α), and β is 
the size of the best known optimal solution. If the value of 
   equals to 1, then the size of the gained solution is the same 
as the size of the best known optimal solution. But with a value 
above 1, the size of the gained solution is worse than the size of 
the best known optimal solution. 

In light of that, Table III demonstrates the best, average, 
and worst sizes of the obtained solutions and their respective 
approximation ratios. In this table, the chosen benchmark 
instances are sorted in non-descending order according to their 
number of vertices. Additionally, the noted bolded values 
appear in Table III indicate to those solutions that their sizes 
equal to the best known optimal solutions sizes. For the best 
case, average case and worst case, the MVPA_MVCP 
algorithm could gain respectively, seven, three and two 
solutions, with sizes equal to the best known optimal solutions 
sizes. 

With respect to the approximation ratio, the gained 
solutions that have sizes equal to the sizes of the best known 
optimal solutions, their approximation ratios are equal to 1. 
Intuitively, the solutions that have sizes larger than the sizes of 
the best known optimal solutions, their values of the 
approximation ratios are greater than 1. All approximation 
ratios that have values equal to 1 are also bolded in Table III. 

As an accumulated view, the last row of Table III shows 
the average of the approximation ratio values of all benchmark 
instances for all cases (i.e. best, average, and worst). These 
average values indicate that, on average, the MVPA_MVCP 
algorithm slightly diverted by only 0.01, 0.021, and 0.033 from 

the best known optimal solutions in the best case, average case 
and worst case, respectively. 

B. Run Time 

In order to discuss the run time (RT), the number of edges 
of a graph must be taken into consideration. Indeed, this 
number significantly impacts the entire RT, based on the fact 
that it impacts one process that is frequently repeated. Usually, 
this process checks the solution's capability to cover the 
involved graph. Actually, this check is performed by removing 
the edges of those vertices which are composing the solution. 
Thusly, when the number of edges becomes larger, more RT is 
needed to end the checking test. Consequently, the total RT 
will increase. Taking this fact into account, the DIMAC 
benchmark instances in Table IV are re-sorted in an ascending 
manner depending on their number of edges to clarify the 
effect of this number on the RT. 

In Table IV, the RT (in seconds) of executing the 
MVPA_MVCP algorithm over the selected benchmark 
instances are recorded. The relationship between the number of 
edges and the RT, which outlined beforehand, can be clearly 
observed in all cases (best, average and worst) of gained 
solutions sizes. In fact, the general observation in Table IV is 
that, as the number of edges increases, the RT increases too. 

Furthermore, Fig. 2 is created to graphically clarify the 
behaviour of the RT when the number of edges increases. 
Particularly, Fig. 2 demonstrates how long the average-case 
solutions can be accomplished. Moreover, since there is a large 
difference between the smallest and largest values of the RT in 
Table IV, the vertical axis of Fig. 2 is labelled by the 
logarithmic values of base 10 of the RT. This is to present these 
times more clearly. As laid out in Fig. 2, it also depicts the 
direct relationship between the RT and the number of edges. 

TABLE. III. THE BEST, AVERAGE AND WORST GAINED SOLUTIONS SIZES (  ) AND THEIR APPROXIMATION RATIOS (  ) 

Benchmark 

Instances 

Number of 

Vertices 

Best Known Optimal 

Solution Size β 
Best_α Best_   Average_α Average_   Worst_α Worst    

johnson8-2-4 28 24 24 1 24 1 24 1 

graph50_6 50 38 38 1 39 1.026 40 1.053 

graph50_10 50 35 35 1 38 1.086 40 1.143 

Hamming6-4 64 60 60 1 61 1.017 62 1.033 

graph100_10 100 70 72 1.029 73 1.043 76 1.086 

johnson16-2-4 120 112 112 1 112 1 113 1.009 

keller4 171 160 162 1.013 164 1.025 165 1.031 

cfat200_1 200 188 188 1 188 1 188 1 

brock200_2 200 188 191 1.016 192 1.021 193 1.027 

Hamming8_4 256 240 248 1.033 248 1.033 249 1.038 

phat300_1 300 292 292 1 293 1.003 294 1.007 

phat300_2 300 275 285 1.036 285 1.036 287 1.044 

sanr400_0.5 400 387 393 1.016 393 1.016 395 1.021 

johnson32-2-4 496 480 482 1.004 482 1.004 483 1.006 

phat700-1 700 689 694 1.007 694 1.007 696 1.01 

  Average of       1.01  1.021  1.033 
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TABLE. IV. THE RUNTIME (RT) (IN SECONDS) OF THE TESTED 

BENCHMARK INSTANCES 

Benchmark 

Instances 

Number 

of Edges 
                               

johnson8-2-4 168 0.021 0.021 0.025 

graph50_10 612 0.109 0.109 0.094 

graph50_6 857 0.2 0.28 0.213 

Hamming6-4 1213 0.295 0.262 0.239 

johnson16-2-4 1680 0.587 0.532 0.445 

graph100_10 4207 1.469 1.689 1.407 

keller4 5100 1.9 2.218 2.201 

brock200_2 10024 4.995 5.271 6.457 

Hamming8_4 11776 8.772 9.176 8.448 

johnson32-2-4 14880 10.75 19.622 12.687 

cfat200_1 18366 15.806 16.106 16.13 

phat300_2 22922 20.02 24.803 22.758 

phat300_1 33917 28.682 27.965 27.077 

sanr400_0.5 39816 38.961 60.254 38.665 

phat700-1 183651 133.538 115.903 61.814 

 

Fig. 2. The Run Time of Gaining Average-Case Solutions. 

VII. CONCLUSIONS AND FUTURE WORK 

On one side, the MVCP is one of the NP-hard problems 
that many scientists have been dealing with. This is because it 
has demonstrated its flexibility in solving problems in several 
applications in real-life. On the other side, the MVPA has 
recently developed as one of the metaheuristic algorithms that 
has been influenced by its concept in team sports. In this paper, 
the MVPA_MVCP algorithm is presented as an adaptation of 
the MVPA for the MVCP. The MVPA_MVCP algorithm is 
analytically evaluated, and several tests are conducted with a 
target of experimental evaluation. Regarding the analytical 
evaluation, the MVPA_MVCP algorithm is evaluated in terms 
of the run time complexity. It has been shown that its average-
case run time complexity ended to be              , where I 
is the size of the initial population, |V| is the number of vertices 
and |E| is the number of edges of the graph under test. 

For the conducted experiments, the MVPA_MVCP 
algorithm is developed using Java programming language and 
it is executed on a Microsoft Azure virtual machine that has a 

2.0 GHz Intel Xeon processor with 64 GB memory. As test 
data set, 15 DIMACS benchmark instances for minimum 
vertex cover problem are used. 

The experimental results are evaluated in terms of the run 
time; in addition to the quality of the gained solutions. These 
results clarified that there is a direct relation between the 
number of edges of the processed graph and the run time. 
Where when the number of edges increases, the run time 
increases too. Besides, they showed that, in the best case, the 
MVPA_MVCP algorithm could gain seven solutions that have 
sizes exactly as the best known optimal solutions sizes. 

As future work, the MVPA_MVCP algorithm can be 
compared with other metaheuristic algorithms such as GA and 
ACO. Microsoft Azure service of creating multi-core virtual 
machines can be also invested to parallelize the MVPA_MVCP 
algorithm. Additionally, it can be parallelized over some types 
of interconnection networks like Chained-Cubic Tree 
interconnection network (CCT) [34], Optical Chained-Cubic 
Tree interconnection network (OCCT) [35], and Optical 
Transpose Interconnection System (OTIS) networks; such as 
OTIS-hypercube, OTIS-mesh, OTIS hyper hexa-cell, and 
OTIS mesh of trees [36, 37]. These interconnection networks 
exposed their usefulness for solving various problems in a 
parallel mode [36-38]. Solving the MVPA_MVCP algorithm 
on parallel computing environment could greatly reduce the 
run time, and it should not affect the quality of the obtained 
solutions. 
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