
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

211 | P a g e

www.ijacsa.thesai.org

A Survey: Agent-based Software Technology

Under the Eyes of Cyber Security,

Security Controls, Attacks and Challenges

Bandar Alluhaybi1, Mohamad Shady Alrahhal2, Ahmed Alzhrani3, Vijey Thayananthan4

King Abdulaziz University (KAU), Jeddah, Saudi Arabia

Abstract—Recently, agent-based software technology has

received wide attention by the research community due to its

valuable benefits, such as reducing the load on networks and

providing an efficient solution for the transmission challenge

problem. However, the major concern in building agent-based

systems is related to the security of agents. In this paper, we

explore the techniques used to build controls that guarantee both

the protection of agents against malicious destination machines

and the protection of destination machines against malicious

agents. In addition, statistical-based analyses are employed to

evaluate the level of maturity of the protection techniques to

preserve the protection goals (the code and data, state, and

itinerary of the agent), with and without the threat of attacks.

Challenges regarding the security of agents are presented and

highlighted by seven research questions related to satisfying

cyber security requirements, protecting the visiting agent and the

visited host machine from each other, providing robustness

against advanced attacks that target protection goals, quantifying

the security in agent-based systems, and providing features of

self-protection and self-communication to the agent itself.

Keywords—Agent; attack; cyber; security; requirement;

maturity; protection goals

I. INTRODUCTION

One of the most important software technologies that is
used to manage and perform tasks over the Internet is agent-
based software technology (ABST). A software agent is
defined as an independent program that runs run on behalf of a
network user [1, 2, 3]. ABST has been involved in many
research fields, varying from network management tasks to
information management ones [4, 5]. The power of the ABST
is inspired by its valuable properties. The properties of this
technology can be summarized as follows [3, 6]:

 Mobility, which is a unique property of this technology.
It means that the agent can move from one machine to
another machine, performing a specific mission there,
and then it must come back to the original machine with
the results. In other words, the agent is goal-driven.

 Adaptability, which means platform independent. In
other words, this property enables the agent to be
executed on different machines regardless of the
operating system used.

 Transparency and accountability, which explains that
the software agent runs on behalf its owner, and the

owner of the agent can ask the agent about its current
location and about what has been accomplished.

 Ruggedness, which refers to the capability of the agent
to run on either low or high resources and to interpret
different data formats.

 Self-start or proactive means that the time of starting a
mission, the time of finishing a mission, and the time of
delivering results are features that are based on the
knowledge of the agent and have no relationship to the
owner of the agent.

Thus, the agent is not restricted by the machine where it is
written, but it has the ability of moving among machines via a
network [7]. This action is called migration, as shown in Fig. 1.

In Fig. 1, different machines are connected via a network.
The owner of the agent creates it at a machine called the home
machine (HM). Then, the mobile agent can migrate to other
machines called destination machines (DMs, where each DM
has its own operating system (OS) as well as its own hardware
(HW) specifications. A uniform agent manager, which is
middleware (MW), is installed at the HM and at each DM.
Concordia [8], Java Agent Development Framework (JADE)
[9], and Agelets [10] are examples of agent managers. Fig. 2
shows a code example written by Concordia to illustrate the
migration process of the mobile agent.

In the example above, the owner creates the agent, then
creates an itinerary to move it to a DM called "dbserver", then
back to an HM called "workstation". The agentsCodebase and
relatedClasses specify the objects containing the methods and
data necessary to complete the mission. More specifically, an
itinerary is created, and when the agent ready to migrate, it
prepares a list of its intended destinations. The itinerary of the
agent is used by the Concordia server to determine the network
destination of the agent. With each method included in the
itinerary (i.e., "queryDatabase" and "reportResults"), the local
Concordia server will move the agent and its objects to the
machine specified in the nest itinerary entry. When the
itinerary is exhausted, the trip of the agent is finished.
Therefore, the itinerary caused the agent to move to "dbserver"
and execute the "queryDatabase" method, then to move back to
"workstation" and execute the "reportResults" method. The last
line of the code illustrates an additional argument to the
"launchAgent" method, which causes the codebase and the
"QueryResults" class definitions to travel with the agent.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

212 | P a g e

www.ijacsa.thesai.org

Fig. 1. Migration of Mobile Agent.

Fig. 2. Concordia Code for Mobile Agent Migration.

From the description above, four parts of the mobile agent
are travelling during the migration. They are:

 The code of the mobile agent.

 The data, which are manipulated by the code.

 The itinerary information, which includes the HM and
the DM.

 The state, which describes data controlled by the CPU
and OS and includes the results of the executed mission.

Statement of the problem however, the mobile agents can
be targets for attackers, where any one of the parts (or all of
them) listed above can be the victim. This in turn can shoot the
functionalities of any agent-based system in the heart.
Specifically, passive attacks (such as eavesdropping and
repudiation attacks) or active attacks (such as alternation and
replay attacks) can be applied to the agents involved in the
system. In passive attacks, the information carried by the
mobile agent can be stolen to be misused later for malicious
purposes [11]; meanwhile, in active attacks, the carried
information is obtained and modified during the migration for
the purpose of performing malicious actions [12]. The two
previous kinds of attacks can be performed by an external
attacker (i.e., located between the HM and the DM), but do not
address the scenario in which the DM itself is the attacker. In
this case, the danger may reach severe levels because the DM
has full control of the execution of the hosted agent. On other
hand, the mobile agent may itself be the attacker, with the
ability of launching or performing poisonous pieces of codes
against the DM. As a result, ensuring the security of the mobile
agents as well as protecting the DMs against malicious agents
is a pressing issue.

In this survey, we review the different techniques proposed
previously to ensure the security in the software agent research
field as well as the potential cyber-attacks. The contribution of
this paper is as follows:

 We provide a statistical model called the maturity
model to evaluate the protection mechanisms in agent-
based systems. The maturity model relies on the
protection goals, which represent the main parts of the
mobile agent.

 We employ the maturity model for both evaluating the
protection mechanisms under threats of different attacks
and ranking the attacks according to their danger.

 We summarize the challenges of security of the agent's
research field by seven research questions.

The rest of the paper is structured as follows. In Section II,
we highlight the importance of agent-based software
technology. Section III provides the cyber security
requirements in agent-based systems. A classification of
security techniques is presented in Section IV. Section V
discusses achieving the cyber security requirements. In
Section VI, the protection goals, attacks, and maturity model-
based analyses are discussed. Section VII provides a strategy to
evaluate an agent-based system with the security metrics that
can be used. The challenges and the corresponding research
questions are presented in Section VIII. Finally, we conclude
the paper in Section IX.

II. IMPORTANCE OF ABST IN DISTRIBUTED SYSTEMS

Before the birth of ABST, many client-server-based
technologies have been used for developing distributed
systems, such as message passing (MP) [13], remote procedure
call (RPC) [14], and Code on Demand (CoD) [15]. Under the
interaction term between the client and the server, AGST
overcomes the previous technologies, as shown in Fig. 3.

Fig. 3 shows that in MP, RPC, and CoD technologies, if a
user wants to send requests to the server, the network
channel is occupied by sizes of the requests. After processing
the requests at the server side, the network channel will be
occupied by sizes of the responses. Formally, let
denote the size of the request and denote the size of the
response. denotes the band width of the network channel,
and denotes the network traffic. Then,

Fig. 3. ABST vs. other Technologies.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

213 | P a g e

www.ijacsa.thesai.org

 (1)

 (2)

In the worst case, the interaction between the client and the
server will be at a high level, which requires interleaving
among the out-coming requests and the in-coming responses
within the network channel. Thus,

 (3)

Compared to MP, RPC, and CoD technologies, the network
channel is occupied by only the size of the migrated agent
 , which is very small compared to
This, in turn, contributes to reduce the network traffic
efficiently. After processing the requests at the server side (i.e.,
executing the mission of the agent), the agent migrates back to
the client, carrying the responses included in the state part. It is
worth mentioning that there is no worst case in the ABST.
However, during the migration back, the four parts (i.e., state,
code, data, and itinerary information) are included within the
agent. This will increase the network traffic slightly.

More formally, let and
refer to the sizes of the state, code, data, and itinerary
information respectively. Then, the size of the agent during
migration is defined as:

 (4)

It is obvious that:

 (5)

During the agent’s migration back and because of the
results' size included in the state, the size of its state is:

 (6)

Thus, the size of the agent during migration back
 is updated to be:

 (7)

Because no interleaving exists when using agents, the size
of the agent that migrates back is less than the sum of the sizes
of the requests and responses of the worst case in other
technologies. This is represented by the following formula:

 (8)

Thus, the based on ABST is less than the
based on other technologies.

Moreover, under the first aspect of the scalability quality
attribute (i.e., increasing the number of users), the ABST also
overcomes other technologies. Let denote the number of
users that are using a system, where each user sends requests,
each one of size . Thus, the size of total number of sent
requests is defined as:

 (9)

Compared to MP, RPC, and CoD technologies, each user
creates an agent of size in the matched agent-based

system. Consequently, the size of the total sent agents
 is:

 (10)

When increasing the number of users (i.e., 1000,
2000, …, 10,000 users), it is obvious that:

 (11)

Furthermore, under the second aspect of the scalability
quality attribute (i.e., increasing the size of the manipulated
data), the ABST is efficient. Let refer to the size of

the manipulated data at the server side. When increasing the
size of the manipulated data, for example, such that
 , where 2, 4, 6, …, 10), the performance will

not dramatically deteriorate. This is quite true when dealing
with Big Data (BD) sizes [16, 17]. That lack of deterioration is
because the mobile agents migrate to the machines where the
BD is located, processing it there, and then returning back with
results of manipulation only. This provides an efficient solution
to what is called the transmission challenge, which occurs
because small sizes of codes (i.e., agents) migrate via the
network channel to end tasks, rather than transmitting huge
sizes of BD to the manipulating machines [18, 19, 20].

Since the time is tightly coupled with the transmission,
ABST can overcome the network latency, especially when
manipulating health data and multimedia [21, 22]. Moreover,
under access latency and tuning time terms [23], the ABST
outperforms other technologies. Access latency refers the time
elapsed between the moment when a request is issued and the
moment when it is satisfied. Let
 denote the access latency, computation time,

sending time, and receiving time respectively. Then, access
latency is defined as:

 (12)

Suppose that the is the same in both the ABST and

other technologies. Because based on ABST is less than
 based on other technologies, both and

are short, which in turn leads to shorter access latency in the
ABST. Tuning time is defined as the time a machine of a
client stays active to receive the requested data. Since the
is short in the ABST, the is also short compared to other
technologies. This is quite true when the client uses his/her
smart phone as a machine to send the requests and to receive
the corresponding results, contributing to power consumption
savings [24].

Table I highlights the characteristics of the ABST
compared to other technologies.

Other benefits of agents, such as executing dynamically,
asynchronously, and autonomously, are discussed in the work
[25], where the authors provided seven good reasons for using
the ABST.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

214 | P a g e

www.ijacsa.thesai.org

TABLE. I. CHARACTERISTICS OF THE AGENT-BASED SOFTWARE

TECHNOLOGY (ABST)

 Technology

Term
ABST MP RPC CoD

Network traffic Low High High High

S
ca

la
b
il

it
y
 i

n

b
ig

 d
a

ta

Increasing

NO. of

users

Efficient Inefficient Inefficient Inefficient

Increasing

size of data
Efficient Inefficient Inefficient Inefficient

Transmission challenge Solved Un-solved Un-solved Un-solved

Network latency Low High High High

M
a

n
ip

u
la

ti
o

n
 Access

latency
Short Long Long Long

Tuning

Time
Short Long Long Long

An additional feature is added to the ABST when
comparing it to other technologies, such as component-based
software technology (CBST) and web service-based software
technology (WSBST). This feature is related to architecture
building. In the CBST and WSBST, the architecture of the
proposed distributed system is built during the design time.
Meanwhile, the architecture is built during the run time in the
ABST. Moreover, the ABST adopts the three types of
architectures (i.e., sequential, parallel, and hybrid
architectures). Actually, Fig. 1 above represents the sequential
architecture, where the agent created at the HM visits a series
of DMs in a sequential manner. Finally, the agent migrates
back to the HM. Fig. 4 and 5 illustrate the parallel, and hybrid
architectures, respectively.

In Fig. 4, the owner creates three different agents at the
HM. Then, the agents are migrated in parallel to the
corresponding DMs. In detail, the first agent migrates to DM-1
to perform its own task. The same scenario is followed by the
second and third agent, where they migrate to DM-2 and DM-3
respectively. Finally, each agent migrates back to the HM with
the results once its mission is finished.

Fig. 5 illustrates a hybrid agent-based architecture, where
two different agents are created at the HM. The two agents start
their itinerary in parallel, where the first agent visits DM-1 and
DM-2, and then migrates back to the HM in a sequential
manner. The second agent behaves the same, but its itinerary
contains DM-3, DM-4, and DH-5.

Due to the benefits of the ABST explained above, it is
involved in building a wide spectrum of distributed systems.
Resource management in cloud computing [26], fault tolerance
[27], distributed network performance management [28],
security testing in web-based applications [29], and privacy
protection in location-based services [30] are agent-based
distributed systems, where agents play a significant role in
performing the functionalities of these systems. However,
again, the security of mobile agents at the interface remains a
critical issue.

Fig. 4. Parallel Agent-based Architecture.

Fig. 5. Hybrid Agent-based Architecture.

III. CYBER SECURITY REQUIREMENTS IN THE LIFECYCLE OF

MOBILE AGENT

This section explains the stages of the lifecycle of mobile
agents and defines the cyber security requirements (CSR)
needed to safely end the assigned mission.

A. Lifecycle of the Mobile Agent

There are three main stages involved in the lifecycle of the
mobile agent, which are creation, migration, and termination,
as shown in Fig. 6.

In the creation stage, the mobile agent is created (i.e., is
written by the owner using a specific agent manager) with its
itinerary as well as the mission that should be performed. This
stage is conducted at the HM. In the migration stage, the
mobile agent follows the path of the itinerary, visiting one or
more DMs. After completing the itinerary, the agent is
terminated. If the mobile agent safely returns to the HM, the
termination is performed by the owner of the agent. Otherwise,
it is killed or blocked by a visited DM (i.e., it is attacked). In
other words, the danger to the mobile agent starts at the
moment of leaving the HM, where it can be attacked during
moving among DMs or by any of the visited DMs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

215 | P a g e

www.ijacsa.thesai.org

Fig. 6. Lifecycle of the Mobile Agent.

B. Cyber Security Requirements

If we want to represent cyber security, we can represent it
as an umbrella under which two main aspects are located,
which are: security and privacy. Ensuring security means
establishing a secure communication between the sender and
receiver to safely exchange messages, where cryptography is
the core of the techniques used in this aspect. Meanwhile,
privacy means protecting sensitive data against misuse by
attackers. To highlight the importance of the privacy aspect, we
can consider location-based services (LBS), for example,
where the user sends a query asking for the nearest hospitals. In
LBS-enabled applications, the user is forced to reveal sensitive
data, such as the real location and the queried Point of Interest
(PoI), which in turn reflects personal aspects in his/her realistic
life, such as a religious or health state. Such sensitive data can
be exploited and misused later by attackers for blackmail or
mugging. Indeed, the authors of [31] and [32] provided surveys
on the techniques used to protect the privacy of the user, where
the dummy-based technique [32, 33] is considered a powerful
approach for this purpose.

In distributed systems, the key security requirements are
represented by the CIA triads (i.e., confidentiality, integrity,
and availability); meanwhile, the key privacy requirements are
represented by the TLI triads [34, 35] (i.e., tractability,
linkability, and identifiability). Fig. 7 illustrates the security
and privacy triads under the cyber security umbrella.

The CIA represents traditional security requirements for
designing and implementing any distributed system. However,
using the ABST demands additional security requirements,
which are the Six A's (i.e., anonymity, accountability,
authentication, authorization, accounting, and assurance) as
well as non-repudiation and verification. Table II below
describes the CSR needed in an agent-based distributed system.

Fig. 7. Security Triads and Privacy Triads.

TABLE. II. CYBER SECURITY REQUIREMENTS

 Term

Aspect
Abbr./Name Description

Security

Traditional security requirements

C

(confidentiality)

The information carried by the mobile

agent must be kept secret and only

authorized parties can access it.

I

(Integrity)

Guarding the carried information

against improper modification or

destruction.

A

(Availability)

The assurance that the carried data are

accessible when needed by authorized

parities, including users and DMs.

Six A's

An

(Anonymity)

Achieving load balancing between

keeping the actions of the agent

private and auditing the agent when

utilizing/logging the resources of the

DMs.

Ac

(Accountability)

All actions that are performed on a

DM should be traceable to the agent

who committed them (i.e., logs should

be kept, archived, and secured).

Au

(Authentication)

The positive identification of both the

agent seeking access to a current DM

and the carried information from a

previous machine in an itinerary

before execution of the mission on the

current DM.

Ar

(Authorization)

The act of granting the agent actual

access to information resources of the

DM, where the level of access may

change based on the agent's defined

access level.

At

(Accounting)

The logging of access and usage of the

DM's resources. In other words,

keeping track the agent who accesses

what resource, when, and for how

long.

As

(Assurance)

The controls used to develop

confidence that security measures are

working as intended. Auditing,

monitoring, testing, and reporting are

the foundations of assurance.

Additional security requirements

Non-R

(Repudiation)

The agent platform that sends the

information to an agent owner or other

DM cannot deny that he is the owner

of the specific information and agent.

Ve

(Verification)

Only the authenticated mobile agent is

permitted access into the DM, and the

code of the migrated agent from the

HM is verified before execution.

Privacy

T

(Tractability)

The ability to verify the history,

location, or application of an agent by

means of documented recorded

identification.

L

(Linkability)

The attacker can sufficiently

distinguish whether two or more

agents are related or not within the

system.

I

(Identifiability)

The attacker can sufficiently identify

the entities within the system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

216 | P a g e

www.ijacsa.thesai.org

Both security and privacy must be considered as top quality
attributes in designing agent-based distributed systems.
Consequently, the CSR mentioned above should be satisfied
over all stages of the agent's lifecycle, to ensure that the system
is perfect under the cyber security term.

IV. CLASSIFICATION OF SECURITY TECHNIQUES IN MOBILE

AGENTS

There are two main classes of approaches proposed in the
research field on the security of mobile agents, which are the
approaches that secure the agent platform (i.e., DM) against
malicious mobile agents and the approaches that secure the
mobile agents against malicious platforms. Each class has its
own techniques, as shown in Fig. 8.

There are two main classes of approaches proposed in the
research field on the security of mobile agents, which are the
approaches that secure the agent platform (i.e., DM) against
malicious mobile agents and the approaches that secure the
mobile agents against malicious platforms. Each class has its
own techniques, as shown in Fig. 8.

A. First Class: Protecting the Agent Platform

In this class, the attacker is the malicious mobile agent that
visits a DM, and the victim is the DM platform. Many
techniques have been proposed to protect the DM platform as
described below.

1) Sandboxing: This is a software technique that depends

on the principle of isolation of the execution of the suspected

code in a virtual space under tight restrictions. Relying on the

sandboxing technique, the authors in [36] proposed a

mechanism that enforces the mobile agent to follow a fixed

security policy for execution its code. This mechanism

succeeds in preventing the mobile agent from (1) interacting

with the local file system; (2) accessing the system properties;

and (3) opening a network connection. Under this technique, an

enhanced approach was proposed by Noordende et al. in [37].

The authors focused on the restrictions that deal with memory

to prevent the unauthorized access by the poisonous code.

However, the major drawback of the sandboxing technique
is that it consumes a long execution time (due to the strict
restrictions) even if the mobile agent's code is legal.

2) Code signing: This technique targets ensuring the

integrity of the code that is executed on the DM platform. It

tunes with both the one-way hash functions and the digital

signature concepts to ensure that no modification is done on

the code. Therefore, this technique assumes that the creator of

the code is trusted. The authors of the work [38] provide

shining proof about the resistance of this technique, where it is

used in ActiveX controls and Java applets. An enhanced

verification-based approach is introduced by Malik et al. [39].

Their key idea depends on using white and black lists of

entities, where a security manager checks the incoming code. If

it is coming from a trusted entity (i.e., included within the

white list), the code is then granted full permissions to be

executed. Otherwise, it will be frozen.

Fig. 8. Classification of Security Approaches in Mobile Agents.

However, the main drawback of this technique is that it
requires the continuous update of both white and black lists,
which is a large obstacle in light of the changing dynamic
nature of entities as time progresses. In addition, it is
computationally costly due to using hash functions in addition
to encryption and decryption [40].

3) Proof Carrying Code (PCC): In this technique, the

creator of the code marks the code (i.e., generates a proof

attached to the original code), so that any modification that

occurred will be detected and the code is not allowed to be

executed. Compared to the code signing technique, the PCC is

better regarding time and computation costs. The reason behind

this is that the PCC does not require cryptography for the

digital signature. In the work [41], the authors proposed a

foundational proof-carrying code, in which the code is verified

with the smallest possible set of axioms, using the simplest

possible verifier and the smallest possible runtime system. An

enhanced PCC-based technique is presented in [42], where the

major concern is allowing dynamic access to the platform of

DM, with a tolerance of the strict proof representation.

However, a sharp criticism was directed at this technique in
[43], where the proof generation is the main problem with
PCC, as well as the automation of this process.

4) Path histories: This technique embraces the principle of

ascertaining the level of trust of the visited DMs' platforms

during the life cycle of the agent. Therefore, the mobile agent

is forced to maintain an authenticable trajectory of the

previously visited DMs. Relying on this technique, the authors

of the works [44] and [45] proposed two approaches that grant

the mobile agent suitable privileges that match the

corresponding trust levels.

However, the problem of this technique is explained in
[46]. The cost of checking the trust level increases when the
number of visited DM involved in the path history is increased.
Moreover, it is complex to predict the trust level of the DMs
visited in the future that are included in the path history in
advance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

217 | P a g e

www.ijacsa.thesai.org

5) Resource protection: This technique employs the

fundamentals of authentication to allow only legal agents to

access the resources of the DM. Thus, the platform of the agent

at the DM is protected. An authentication-based proxy is

proposed in [12], where the mobile agent is not allowed to

access resources unless it reveals its identity using the public

and private keys. Another approach is presented with this

technique in [47]. The authors’ idea was inspired from the real-

world scenario, in which the mobile agent can prove its identity

by providing a passport and visa, which carries information

that describes the credibility of the agent.

However, the limitation of this technique is related to the
proxy overhead computation. In addition, the identity (i.e., the
passport) may be stolen or impersonated.

6) Digital signature: It is a common technique used in

secure communication networks that satisfies confidentiality

and integrity. It is similar to the code signing technique, but the

difference is applying a digital signature on the mobile agent

itself instead of the carried code. A digital signature-based

approach supported by a checkpoint mechanism is provided in

[48]. The objective of the checkpoint mechanism is to

guarantee the validity of the mobile agent using fragmentation

and defragmentation methods. Based on both the digital

signature and verifying method, another approach is proposed

in [49]. In this work, the authors mix the code signing

technique with the digital signature technique. The code of the

agent is signed by the creator, and the code is executed at the

DM after being verified by the owner of the agent.

However, supporting the digital signature-based technique
by fragmentation and verification leads to a trade-off between
the strength of the proposed approach and the computation
cost.

7) Policy-based model: In this technique, predefined

diagnosis methods are applied to the mobile agent once

reaching the DM. Based on the results of the diagnosis, the

agent is allowed or not allowed to execute. A malicious content

scanning-based approach is presented in [50]. The scanner

provides an alarm to the DM if any suspected content exists.

An immune system is proposed in [51]. Actually, the work [51]

is considered a development of the work [50], where

performance was the axis of the enhancement. The key idea is

to employ the pipelining concept in scanning, predicting, and

extracting the malicious piece of code.

However, although the performance is enhanced, the
process of scanning and discovering the malicious content is
still costly due to the different u of the mobile agents'
executions.

8) State appraisal. This technique tunes with the state

carried by the mobile agent in a pure programming way. In

depth, a maximum set of safe permissions that the agent could

request from the DM is encapsulated within a state appraisal

function, depending on the agent's current state. Based on this

technique, a state appraisal function is proposed in [52] to

ensure the security of the DM. The agent calls the state

appraisal function to retrieve the permissions of the current

visited DM and does not violate them. Then, when the mobile

agent leaves the current DM moving to the next one, the state

appraisal function is called again. Thus, the previous state,

which represents the input of the mission that should be

performed at the next DM, is ensured. In this way, the next DM

guarantees that the state was not modified, and consequently,

the arriving agent is not malicious. Similar to [52], the authors

of [53] rely on the state appraisal function, but the difference is

supporting the function by an authentication mechanism

between the sender of the mobile agent from the current DM

and the receiver of the mobile agent at the next DM.

However, the major issue in this technique is the difficulty
of formulating and adopting the mobile agent with the security
permissions of each visited DM.

9) Machine learning: This technique employs data mining

concepts to protect the visited DM, depending on a

classification data mining task. Recently, a supervised machine

learning classifier was proposed in [54] by Pallavi et al. The

authors used a data set that contains 80 mobile agents (half of

them are malicious, and the remaining are non-malicious).

Then, the features of all agents are extracted to determine the

behaviors of the agents. Finally, using the extracted features, a

decision tree-based algorithm is applied to the data set to make

the execution decision related to a mobile agent. Depending on

the data mining classification task, another approach is

introduced in [55]. The same strategy used in [54] is used in

[55], but the difference is that the authors used the K-nearest

neighbor algorithm to build the classifier instead of the

decision tree-based algorithm.

However, the main obstacle encountered with this
technique is the excessive expense of building a good
knowledge data base with a large number of agents. In
addition, using different classifiers leads to different results.

Second Class: Protecting the Mobile Agent

In this class, the attacker is the visited DM and the victim is
the mobile agent. Many techniques have been proposed to
protect the mobile agent against the DM, as described below.

10) Collaborative agents: The principle of this technique

relies on sharing secret information about the sensitive tasks

between two cooperating agents, so that the DM cannot steal

and tamper with the trajectory of the itinerary. Depending on

this technique, a secure communication protocol between the

agents is proposed in [56]. This protocol establishes an

authenticated communication channel between the cooperating

agents to share the content of the itinerary of the first agent

with the second agent. The content of the itinerary adjusts the

triads of visited DMs (i.e., the previous/last visited DM, the

current DM, and the future DM). The second cooperating agent

takes the responsibility for manipulating any inconsistency that

may occur, such as the current DM sending the agent to the

wrong future DM or generating an alarm about receiving the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

218 | P a g e

www.ijacsa.thesai.org

agent from a wrong source. Madkour et al. proposed another

cooperative approach to protect mobile agents against

malicious DMs in [57]. The key idea is to create an assistant

agent, called the shadow that follows the original one. If the

original agent is attacked by the DM, it informs the shadow,

kills itself, and the shadow in turn sends an acknowledgement

to inform the owner of the original agent about the attack. The

shadow then becomes the original agent, and the owner of the

agent creates a new agent to be a new shadow.

However, the gap of this technique is the cost of
configuration and establishing the authenticated
communication channel for each migration.

11) Result Partial Encapsulation (RPE): This technique is

designed to detect any changes that might occur regarding the

results of an executed mission at a DM by a mobile agent. To

end this, the results are encapsulated so that a verification step

is performed later at the HM to provide proof that no change

was performed by an attack. This technique is applied on the

agent's code to provide confidentiality using encryption based

on the secret key [58]. The key idea is to have a list of secret

keys stored within the mobile agent, used for encryption, such

that each key is related to a specific DM. In the current DM,

the agent uses the corresponding secret key to generate

message authentication code (MAC). Then, encapsulating the

MAC with a message that represents the results of the mission

execution generates partial result authentication code (PRAC).

Based on the RPF technique, the authors of [59] proposed an

approach to ensure both confidentiality and integrity of the

results using a digital signature. This approach is called sliding

encryption, which aims at decreasing both the time processing

and the required storage by encrypting a small amount of data.

The sliding encryption approach is developed so that it can be

adopted in certain applications where storage space is valuable,

such as smartcards.

However, the main drawback of this technique is ensuring
future integrity, where the next DM can obtain the secret key
of the previous DM to modify its generated results.

12) Obfuscated Code: In this technique, the mobile agent

travels through series of DMs that have different trust levels.

To ensure that no DM is able to extract sensitive data hidden in

the code (such as the secret key or credit card number), the

behavior of the mobile code is protected. The core protection

performs some obfuscating transformations on the code before

actual execution, so that the code cannot be understood by the

malicious DM. Based on the obfuscation code technique, Hohl

et al. [60] proposed the black box security approach to preserve

the behavior of the code. They obfuscated the data structure

used within the code without modifying the code itself.

Another approach is provided in the context of this technique

in the work [61]. The difference here is the way of modifying

the code, where the control flow in the code is modified

without affecting the computing part of the code.

However, the main challenge of this technique is adopting
it to suit different applications, where behaviors can
extensively change from one application to another.

13) Environmental Key Generation: This technique relies

on the principle that states "the execution is not allowed unless

some environmental conditions are satisfied at the DM". In the

work [62], the authors defined the environmental conditions as

matching a specific search string. When this condition is true,

an activation key is performed to allow the execution. The

activation key function is hidden within a file system. Similar

to [62], the authors of the work [63] used the same condition,

but the difference is that the activation key is included within

the content of an email.

However, the limitation associated with this technique is
that the DM may act maliciously after the condition is satisfied
and the activation key is performed. Moreover, the key
activation may be a virus file to be executed at the DM.
Therefore, the DM tries to not allow execution even if the
condition is satisfied.

14) Execution tracing: This technique targets discovering

malicious modifications that may be performed by DM on the

mobile agent code, state, and execution flow. The scenario

followed by this technique consists of three steps, which are

(1) a DM that receives the agent and agrees to execute it and

produce an associated trace during the agent's execution; (2) a

message is attached by DM to the mobile agent, containing

information about the unique identifier of the message, the

identity of the sender, the timestamp, the fingerprint of the

trace, and the final state carried by the agent; and (3) the HM

(i.e., the owner of the agent) asks the DM to provide the

previous message (the trace) to validate it by comparing it with

a fingerprint generated by the agent. In [64], a detailed protocol

for message exchanging is provided to adjust the previous three

steps in a mathematical manner. An enhancement is achieved

on the previous protocol by Tan et al. in [65]. The key

enhancement is assigning the mission of the trace validation to

a trusted third party (TTP) instead of the owner of the agent.

The TTP here is called validation or verification server.

However, the execution tracing technique suffers from the
potential malicious collaboration between the validation server
and a DM.

15) Watermarking: Originally, the watermarking term refers

to the process of embedding a watermark within an information

entity, such as image, audio, video, or text files for copyright

protection purposes. The authors of [66] exploit the

watermarking technique to detect an attack that aims at

modifying the results of the mobile agent's mission execution.

Consequently, the results are watermarked, and if a DM

attacked them, the embedded watermark is damaged or

destroyed. To detect the occurrence of the attack, the

watermark is extracted at the HM and compared with the

original one. The work [66] is developed by the same authors

in [67] to be adopted with various kinds of watermarks.

Therefore, during execution, the agent can employ any kind of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

219 | P a g e

www.ijacsa.thesai.org

available information as a watermark, such as dummy data,

input data, intermediate variable values, or data originating

from communications.

However, the watermarking technique has a critical gap,
which is that the embedded watermark can be destroyed by a
compression attack. Compression attacks can be performed by
any external attacker (i.e., not by the DM). Thus, the DM is
considered malicious while it is not.

16) Co-signing: This technique relies on hiring an external

trusted party to co-sign the migration of the agent. In [68], the

preceding DM is considered the external party, which acts as

an observer by taking the responsibility of co-signing the

mobile agent. Actually, the work [68] is proposed to give

mobile agents resistance against multiple colluded DMs that

target poisoning the results of execution. Another approach is

presented in [69] based on the co-signing technique. The key

idea is that after producing the results, the DMs encapsulate

them with the information of the mission carried by the mobile

agent. Then, the entire encapsulated package is encrypted and

sent to the next DM at the same time. When the mobile agent

reaches the next DM, a comparison is performed between the

generated results and the mission information to discover any

attack that may have occurred.

However, time consumption, network overhead, and
robustness against Denial of Service (DoS) attacks are
considered the main challenges in this technique, especially
when the mobile agent carries a time-sensitive task.

17) Separation of privileges: The essence of this technique

is managing the agent-based system by separating the tasks and

assigning them to some major agents. The goal of this

technique is to minimize the capabilities of the malicious DMs

to attack the visiting agents. In [70], three agents control the

system, which are controller agent (CA), worker agent (WA),

and itinerary register agent (IRA). The CA is responsible for

storing and manipulating the core data. The WA is responsible

for storing and manipulating functions that have less

importance than the previous one. The IRA is responsible for

storing the addresses of the visited DMs, and the time at which

the execution is performed on each DM. The authors of [71]

followed the same strategy as that presented in [70]. The

difference is that the privileges are supported by roles.

However, the process of extracting the privileges,
separating them, and supporting them with accurate roles that
control different cases that may be involved leads to increasing
the complexity of the agent-based system.

18) Fragmentation-based encryption: This technique aims

at enhancing the performance, where only the sensitive data

that may be exploited by a DM are first extracted. Then, these

sensitive data are encrypted. Finally, the encrypted sensitive

data are randomized so that only the agent knows the process

of backing the correct order. In [72], the bytes of the agent's

code are scanned, and then the sensitive parts are encrypted

and inserted within predefined arrays. When execution at the

DM occurs, the agent uses the same randomization key (i.e.,

the seed) to retrieve the correct ordering of all code bytes.

Similar to [72], the protocol proposed in [73] depends on a

fragmentation technique. The difference is that the extraction,

encryption, and randomization stages are performed by a TTP.

However, despite the performance enhancement achieved
through encrypting only the sensitive data of the agent's code,
the process of generating the seed of the randomization
algorithm, applying the algorithm, and reordering the
randomized code may lead (in some cases) to exceeding the
time needed for encrypting all of the agent's code.

V. ACHIEVING CYBER SECURITY REQUIREMENTS

Table III (a, b) below compares the approaches discussed in
the previous section in terms of satisfying the CSR.

Drawn conclusions from Table III (a, b), the following
observations can be made:

1) Among the six A's, anonymity and accountability

security requirements are not achieved in all approaches related

to protecting the agent platform. Actually, there is a clear and

strong trade-off between these two security requirements, as it

is obvious from their concepts. Anonymity and accountability

security requirements are critical for the second class (i.e.,

protecting the mobile agent).

2) Linkability and identifiability privacy requirements are

not achieved in all approaches related to protecting the agent

platform. Therefore, the attacker (malicious agent) has the

ability of revealing some entities of the system within the DMs.

For example, in [50] and [51], the policy file used for

protecting the agent's platform is known by the visiting agent.

The policy file may reflect the sensitivity level of the system

installed on the DM where the mobile agent is executed.

3) Among CIA, the availability security requirement is not

achieved in all approaches related to protecting the mobile

agent class, which is normal. Actually, the availability security

requirement is critical for protecting the agent platform class,

where not achieving it means that the DMs suffer from the DoS

attack.

4) All of the six A's are critical and should be achieved in

any approach related to protecting the mobile agent class.

5) The non-repudiation and verification additional security

requirements are not achieved in all approaches related to

protecting the mobile agent class. Actually, these additional

security requirements are critical for protecting the agent

platform class, so that the code of the agent is verified before

execution and the HM cannot deny creating the mobile agent

and sending it to the DMs.

6) All privacy requirements (TLI) were completely

ignored and were not addressed in all approaches related to

protecting the mobile agent class.

7) The authorization, accounting, and assurance security

requirements are mandatory necessities and should be satisfied

by both classes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

220 | P a g e

www.ijacsa.thesai.org

TABLE. III. (A) SYMBOLS

Symbol C I A An Ac Au Ar

Based on Confidentiality Integrity Availability Anonymity Accountability Authentication Authorization

Symbol At As Non-R Ve T L I

Based on Accountability Assurance Non-Repudiation Verification Tractability Linkability Identifiability

(B) SATISFYING THE CYBER SECURITY REQUIREMENTS

 CSR

 Class Tech

Security aspect Privacy aspect

CIA Six A's Add. SR TLI

C I A An Ac Au Ar At As Non-R Ve T L I

P
r
o

te
c
ti

n
g
 a

g
e
n

t
p

la
tf

o
r
m

Sandboxing
[36] √ √ √ × × √ × √ × × × √ × ×

[37] √ √ √ × × × × × × × × √ × ×

Code signing

[38] √ × × × × √ × × × × × √ × ×

[39] √ × × × × √ × × × × √ √ × ×

PCC
[41] √ × × × × × × × × × √ √ × ×

[42] √ √ × × × × × × × × √ √ × ×

Bath history

[44] × √ × × × √ √ × √ √ × × × ×

[45] × √ × × × √ √ × √ √ × × × ×

Resource protection
[12] √ √ √ × × √ × √ √ × √ × × ×

[47] √ √ √ × × √ × √ √ × √ × × ×

Digital signature

[48] √ √ × × × √ × × × × × √ × ×

[49] √ √ × × × √ × × × × × √ × ×

Policy-based model
[50] √ √ √ × × × × √ × √ √ × × ×

[51] √ √ √ × × × × √ × √ √ × × ×

State appraisal

[52] √ × × × × × √ × × × × √ × ×

[53] √ × × × × √ √ × × × × √ × ×

Machine learning
[54] √ √ √ × × × × × × × × × × ×

[55] √ √ √ × × × × × × × × × × ×

P
r
o

te
c
ti

n
g
 m

o
b

il
e
 a

g
e
n

t

Collaborative agents

[56] × √ × × √ √ × × × × × × × ×

[57] × √ × × √ √ × × × × × × × ×

RPE
[58] √ × × × √ × × × × × × × × ×

[59] √ √ × × √ √ × × × × × × × ×

Obfuscated code

[60] √ × × × √ × × × × × × × × ×

[61] √ × × × √ × × × × × × × × ×

Environment key generation

[62] √ × × × × √ √ √ √ × × × × ×

[63] √ × × × × √ √ √ √ × × × × ×

Executing tracking

[64] √ √ × × √ √ × × √ × × × × ×

[65] √ √ × × √ √ × × √ × × × × ×

Watermarking

[66] × √ × × × × × × × × × × × ×

[67] × √ × × × × × × × × × × × ×

Co-signing

[68] √ √ × × × √ × √ × × × × × ×

[69] √ √ × × × √ × √ × × × × × ×

Separation of privileges

[70] √ √ × × √ × √ √ √ × × × × ×

[71] √ √ × × √ × √ √ √ × × × × ×

Fragmentation-based encryption

[72] × √ × √ × × × × × × × × × ×

[73] √ √ × × × √ × × × × × × × ×

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

221 | P a g e

www.ijacsa.thesai.org

TABLE. IV. SECURITY REQUIREMENTS ACCORDING TO THE CLASS OF

SECURITY AGENTS

Class Distinguished security requirements

protecting mobile agent Anonymity, Accountability

protecting agent platform Availability, Non-Repudiation, Verification

Security requirements needed in both classes
Confidentiality, Integrity, Authentication, Authorization, Accounting, and

Assurance

Based on the conclusions drawn and represented by the
points discussed above, we distinguish the security
requirements that are individually needed for each of the two
classes as well as those needed for both. Table IV separates the
security requirements according to the classes. It is worth
mentioning that all privacy aspects are needed for the two
classes.

VI. PROTECTION GOALS AND ATTACKS

When a mobile agent migrates from an HM to a DM, it
might be attacked by the DM. In this section, we define the
protection goals that an approach aims to guarantee in
protecting the mobile agent class. Then, we explore the
potential attacks and measure their impacts on the protection
goals based on a maturity-based model.

A. Protection Goals

As mentioned in the introduction section, the mobile agent
consists of four main parts, which are the code, the data, the
state, and the itinerary. Since the code of the mobile agent and
the data are tightly coupled, we refer to them as the first
protection goal. The second and third protection goals are the
state and the itinerary respectively. To explain how these goals
are attacked, we provide an example inspired from a smart city
environment, as described below.

In smart cities, ensuring comprehensive safety is an
important issue for saving people's lives. Smart warning
systems (SWSs) can contribute to achieve this noble goal
through alarming the decision makers to take the
corresponding steps that ensure avoiding disasters [74, 75, 76].
Fig. 9 illustrates the general concept of SWS.

Fig. 9. Smart Warning System.

In Fig. 9, fixed cameras record the motion of different
objects in smart cities. The motion magnification centre
(MMC) processes the recorded video to enlarge the unseen,
abnormal, and critical motions that may cause disasters. Color
clustering-based and phase-based video motion processing
techniques, which resemble a microscope that amplifies subtle
motions in a video sequence allowing visualization of
deformations that would otherwise be invisible, can be found
in [77, 78].

When agent software technology is employed to build such
an SWS, the architecture of the SWS is illustrated in Figure 10.

As shown in Fig. 10, a mobile agent is created at the
decision-making centre (the HM), and this mobile agent then
migrates to the recording video centre (the DM) to perform a
magnification task on the recorded video. After performing the
magnification task at the DM, the mobile agent migrates back
to the HM carrying the results to be analysed at the decision-
making centre for the purpose of avoiding disasters.

As a first scenario, the code and the data of the mobile
agent as well as the code of the task can be attacked by the
DM, so that a modification can skew the task intended to be
performed. As a second scenario, the code and the data are not
modified, where the task is performed correctly at the
recording video centre, but the results of the task execution are
modified. In other words, the mobile agent will carry the
wrong results to be analysed at the decision-making centre. As
a third and final scenario, when many DMs are involved in the
itinerary, the itinerary information of the mobile agent can be
changed so that the agent migrates to the wrong next DM.
However, in the all three scenarios, the disaster may occur with
a high probability.

To avoid any of dangerous scenarios mentioned above, the
protection mechanisms should guarantee the protection of the
three goals at the same time. In terms of goals’ protection,
Table V compares the approaches proposed to protect the
mobile agent against the DM as an attacker.

As inferred from Table V, the majority of the approaches
succeed in protecting the first goal (17 out of 18), while they
fail in protecting the second and third goal (1 out of 18 and 2
out of 18, respectively).

Fig. 10. Agent-based SWS Architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

222 | P a g e

www.ijacsa.thesai.org

TABLE. V. ACHIEVING PROTECTION GOALS IN PROTECTING MOBILE

AGENT APPROACHES

 Term

Category Tech

Protection Goals

Code & Data State Itinerary

P
ro

te
ct

in
g

 m
o

b
il

e
 A

g
en

t

Collaborative agents

[56] √ × √

[57] × × √

RPE

[58] √ × ×

[59] √ × ×

Obfuscated code

[60] √ × ×

[61] √ √ ×

Environment Key Generation

[62] √ × ×

[63] √ × ×

Execution tracking

[64] √ × ×

[65] √ × ×

Watermarking

[66] √ × ×

[67] √ × ×

Co-signing

[68] √ × ×

[69] √ × ×

Separation of Privileges

[70] √ × ×

[71] √ × ×

Fragmentation based encryption

[72] √ × ×

[73] √ × ×

B. Attacks

Exploitation of vulnerabilities is actually considered the
spirit of the attacks. Therefore, there is a strong relation
between the attacks and vulnerabilities. The protection
mechanisms or measures address the control of the
vulnerabilities, aiming at mitigating, detecting, or preventing
the attacks. Fig. 11 illustrates the relation between
vulnerabilities, attacks and protection mechanisms.

For more explanation, Table VI (a and b) elaborates the
details of the major security requirements (i.e. CIA) in relation
to vulnerabilities, attacks, and protection mechanisms.

Fig. 11. Relation between Vulnerabilities, Attacks and Protection

Mechanisms.

TABLE. VI. (A) CIA IN RELATION TO VULNERABILITIES, ATTACKS, AND

PROTECTION MECHANISMS

 CIA

Term
1 Confidentiality 2 Integrity 3 Availability

Vulnerabilities

Attacks

Protection

Mechanisms

(B) DESCRIPTION OF CODES

Code Description Code Description Code Description

Disclosure to

unauthorized

party.

Eavesdropping

attack
 Encryption

Modification

by

unauthorized

party.

Tampering

attack
 Access control

Man-in-the-

middle attack
 Authentication

Authorized

parties are not

able to access

data.
 DoS attack

Hashing and

digital

signature

Natural

disasters

C. Classification of Attacks

In the mobile agent-based systems, attacks can be classified
based on the nature of the attacks or based on the victim of the
attack, as shown in Fig. 12.

According to the nature of the attack, attacks can be passive
or active. In passive attacks, the attacker collects some
information about the victim to be used later for malicious
purposes. Therefore, no updates can affect the resources of the
system. In active attacks, the attacker modifies the resources of
the system so that there will be direct damage. As a result,
active attacks are more dangerous than passive attacks.
According to the victim of the attack, malicious agents can
attack the operation execution on the platform, and in contrast,
malicious platforms can attack the visiting mobile agents.
Attacking the visiting mobile agents by platforms is more
dangerous than attacking the platform by agents, which is
because the platform has full control of the execution of the
visiting agents within its operational environment. Table VII
summarizes the most common possible attacks that agent-
based systems suffer from, as well as their types.

Fig. 12. Classification of Attacks in Agent-based Systems.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

223 | P a g e

www.ijacsa.thesai.org

TABLE. VII. POSSIBLE ATTACKS

Victim of

attack
Possible attacks

Nature of attack

Active Passive

Mobile

agent

1- DoS attack by the host of the agent √

3- Eavesdropping on an agent's

activities
 √

3- Blocking attack by the host √

4- Modification of an agent by the host √
5- Multiple colluded attack by hosts √

Agent

platform

1- DoS attack with overmuch requests

or exhausting the platform's memory or

resources

√

2- Unauthorized access attack for:

 * shutting down platform

 * modifying policy file

 * performing any malicious

 activity

√

D. Overview of Attacks

For the attacks that target the agent platform by a malicious
agent, Fig. 13 and Fig. 14 illustrate the mechanisms by which
the DoS and unauthorized access attacks are performed.

As shown in Fig. 13, a malicious agent migrates from an
HM to a DM, asking to execute infinite requests of the same
mission, so that the DM goes through an infinite loop of
execution, thereby resulting in exhausting the resources of the
host machine. In this case, if any other agent that exists in the
DM asks for execution of its own mission, it is forced to wait
forever, due to the allocation of the DM's resources for the
malicious agent [79].

In Fig. 14, a malicious agent gains unauthorized access to a
DM by exploiting some gaps in the system. After accessing the
DM, the malware carried by the agent is then executed to
damage some critical system files [80].

For the attacks that target the agent itself by a malicious
DM, the DoS attack has a special case, as shown in Fig. 15.

Fig. 13. Concept of the DoS Attack.

Fig. 14. Concept of the unauthorized Access Attack.

Fig. 15. Special Case of the DoS Attack.

In the DoS attack, the mobile agent carries a mission (time
sensitive task TST), for which its execution time is restricted
by a deadline . After the mobile agent migrates to
the DM, the TST is executed there. The malicious DM
deliberately delays (or lengthens) the execution time of the
TST, so that it exceeds the predefined . It is worth
mentioning that even when the malicious DM does not modify
the result of the TST, the result will be invalid and unused
when it is received by the HM [81, 82].

Eavesdropping on an agent is applied by the malicious DM
by monitoring and recording the activities of the agent during
the time in which the agent executes its mission [83]. In the
worst case, the eavesdropping attack can be turned into a
blocking attack, where the DM completely prevents the agent
from execution after a short period of monitoring [84].

Fig. 16 shows how the modification attack is applied on the
visiting mobile agent by the DM. The DM does not monitor or
block the agent, such that it is allowed to execute smoothly, but
after generating the results of the execution, the DM tampers or
changes the results. In other words, the mobile agent migrates
back to the HM carrying wrong results [85].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

224 | P a g e

www.ijacsa.thesai.org

Fig. 16. Concept of the Modification Attack.

The modification attack becomes more dangerous when
two or more DMs collude together to modify the results of the
execution. This kind of attack is called the multiple colluded
attack, as illustrated in Fig. 17.

In the multiple colluded attack, a series of DMs
(collude each other for a common
malicious purpose, which is tricking the HM. Tricking the HM
is achieved in such a way that: (1) two DMs, or more, modify
the result generated after execution of the mission of the
visiting mobile agent; and (2) all malicious DMs that modify
the result use the same modification process [50]. Upon
enacting this, the success of the multiple colluded attack can be
adjusted by the following two conditions:

1) The original result , generated at |
 , is modified to be ̂ .

2) At the HM, all the received results are modified, so that:

 ̂ ̂
̂ ̂

Fig. 17. Concept of the Multiple Colluded Attack.

E. Maturity Model

To show the negative impact of the attacks, we propose a
statistical model called the maturity model. The maturity model
deals with the protection goals (i.e., code, status, and itinerary)
as affected aspects of attacks. Since the protection goals are
limited to the class of protecting the mobile agent compared to
unlimited protection goals in the class of protecting the agent
platform (i.e., any part of the system in the DM's platform can
be a victim of attack), we deal only with those attacks that
target the mobile agent as a victim (Table VII). Among the
attacks that target the mobile agent as a victim (in Table VII),
we consider only the DoS, modification, and multiple colluded
attacks since they are considered as advanced attacks. Upon
this consideration, in the maturity model, the DoS,
modification, and multiple colluded attacks are considered as
main criteria factors, while the protection goals are considered
as affected aspects. All approaches contained in Table V above
are evaluated. Our evaluation relies on three options to measure
the negative impact of the criteria factors. Table VIII provides
a description of the three used options.

TABLE. VIII. OPTIONS OF MEASUREMENT

Option Description

√ When the factor has high negative impact.

× When the factor has a low negative impact.

P When the factor has a partially negative impact.

1) Analysis and discussion: Table IX below can be read

horizontally or vertically, as illustrated in Fig. 18.

Fig. 18. Horizontal and Vertical Reading of Table IX.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

225 | P a g e

www.ijacsa.thesai.org

TABLE. IX. EFFECT OF THE DOS ATTACK

 Term

Class Technique

Protection Goals Sub Totals

Code & Data State Itinerary √ × P

P
ro

te
ct

in
g

 m
o

b
il

e
 A

g
en

t

Collaborative agents Maturity: 2

[56] P √ × 1 1 1

[57] × √ × 1 2 0

RPE Maturity: 2

[58] P √ × 1 1 1

[59] P √ × 1 1 1

Obfuscated code Maturity: 1

[60] P √ × 1 1 1

[61] P P × 0 1 2

Environment Key Generation Maturity: 2

[62] × √ × 1 2 0

[63] × √ × 1 2 0

Execution tracking Maturity: 2

[64] P √ × 1 1 1

[65] P √ × 1 1 1

Watermarking Maturity: 3

[66] √ √ × 2 1 0

[67] √ P × 1 1 1

Co-signing Maturity: 0

[68] P P × 0 1 2

[69] P P × 0 1 2

Separation of Privileges Maturity: 2

[70] P √ × 1 1 1

[71] P √ × 1 1 1

Fragmentation-based encryption Maturity: 0

[72] P P × 0 1 2

[73] P P × 0 1 2

Sub Totals:

√ High negative impact 2 12 0 14

× Low negative impact 3 0 18 21

P Partial negative impact 13 6 0 19

Total: 54

If Table IX is read horizontally, then the numbers on the
table represent the total points that each approach has obtained
from all of the protection goals for each one of the three
options. Each option has a score that varies in the range of [0,
1, 2, 3]. For instance, the corresponding numbers of the
collaborative agents’ technique are 2, 3, and 1 for the √, ×, and
P options respectively. This in turn means that the DoS attack
has a moderate impact on the approaches proposed under this
technique because the score of the √ option equals 2. Thus, the
maturity of the collaborative agents’ technique is moderate
under the threat of the DoS attack. A reasonable justification is
that this technique was originally designed to protect the code

itself, where assistant agents contribute to prevent the illegal
redundancy of the same request (or the mission under
execution). RPE, environment key generation, execution
tracking, and separate of privileges techniques have the same
level of maturity as the collaborative agents’ technique. The
maturity of the watermarking-based technique under the threat
of the DoS attack is low because the score of the √ option
equals 3, which is because the objective of this technique is to
detect any modification in the code, not to prevent redundancy.
The maturity of the obfuscated code-based technique under the
threat of the DoS attack is high because the score of the √
option equals 1. The score is 1 because the obfuscation of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

226 | P a g e

www.ijacsa.thesai.org

code prevents the attacker from extracting the real code so that
it can be redundant. For the co-signing and fragmentation-
based encryption techniques, the maturity level under the threat
of the DoS attack is very high since the score of the √ option in
each one equals 0. The score is 0 because the code is highly
protected against being decrypted, and then against being
exploited for redundancy. Within four groups, Table X ranks
the previous techniques according to their maturity levels.

If Table IX is read vertically, then the numbers represent
the total points that each protection goal has obtained for each
one of the three options and is related to all of the approaches
provided in protecting the mobile agent class. From the
numbers that appear in Table IX, it can be noticed that the total
number of points that the (√) option achieved is 14 points.
These points distribute over the (code & data, state, and
itinerary) protection goals with (2, 12, and 0) values
respectively. For the (×) option, the protection goals achieved
(3, 0, and 18) values from the sub-total points, with a total of
21. The corresponding values related to the protection goals for
the (P) option are (13, 6, and 0) from the sub-total points, with
a total of 19. In terms of percentages, Fig. 19(a) above shows
the negative impact of the DoS attack's threat on the protection
goals of all techniques (i.e., overall maturity against the DoS
attack).

In Fig. 19(a), the high negative impact option (√) has the
lowest percentage (0.25), while the low negative impact option
(×) has the highest percentage. This in turn reflects a good
maturity of the security approaches against the DoS attack. The
reason behind this is that most of the approaches in all
techniques are designed to protect the code of the agent.

Regarding modification and multiple colluded attacks, we
rebuilt Table IX, scanned it vertically, and determined the
percentages, as shown in Fig. 19(b), (c) above, respectively.

According to Fig. 19(b) and (c), most of the approaches
suffer from the modification attack, with the percentage equal
to 0.73 for the high negative impact option, which indicates a
low overall maturity level. Compared to the modification
attack, the security approaches have very poor maturity against
the multiple colluded attack, with the percentage equal to 0.92
for the high negative impact option. The reason behind this is
that both the state (which contains the results of the mission
execution) and the code can be modified by a series of
malicious DMs during the itinerary of the mobile agent.

Based on the analysis derived from Fig. 19, Table XI ranks
the attacks according to their danger on the visiting mobile
agents.

TABLE. X. RANKING TECHNIQUES ACCORDING TO MATURITY LEVEL

Group Techniques
Score of

√ option

Maturity

level

G1
Co-signing, fragmentation-based

encryption
0 Very high

G2 Obfuscated code 1 High

G3

Collaborative agents, RPE,

environment key generation, execution

tracking, separation of privileges

2 Moderate

G4 Watermarking 3 Low

TABLE. XI. DANGER-BASED RANKING ATTACKS

Attack
Percentage of high

 negative impact option (√)
Ranking

Multiple colluded attack 0.92 First

Modification attack 0.73 Second

DoS attack 0.25 Third

(a) Overall Negative Impact of DoS attack (b) Maturity Against Modification attack (c) Maturity Against Multiple Colluded attack.

Fig. 19. Overall Negative Impact of Modification and Multiple Colluded Attacks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

227 | P a g e

www.ijacsa.thesai.org

VII. EVALUATION OF SECURITY OF AGENT-BASED SYSTEMS

Designing a secure agent-based system requires defining a
threat model at the beginning. The clear threat model contains
four parts, as shown in Fig. 20.

The first part of the threat model is the attacker. In agent-
based systems, the attacker can be the mobile agent, the
destination machine, or any malicious party in the system such
as the man-in-the-middle. After deciding who the attacker is, it
determines his objective, which is the second part on the threat
model. The objective of the attacker can be attacking one or
more of the protection goals if the victim is the mobile agent or
applying any malicious activity if the victim is the agent
platform. Based on the determined objective, the type of the
attack is defined to be active or passive. Finally, the capability
of the attacker is listed in the context of the attacks that the
attacker can apply, such as eavesdropping, modification, DoS,
or multiple colluded attacks, etc.

After defining the threat model, the agent-based system is
built so that defenses (or security controls) against the
capability of the attacker are implemented. After building the
system, it undergoes a validation process to ensure that the
security controls are able to detect or prevent the attacks.
Finally, to measure the efficiency of the security controls,
security metrics-based evaluation must be performed. In this
context, we explore the security metrics used in agent-based
systems. We classify the security metrics into three main
categories, as shown in Fig. 21.

For the first group, the number of security requirements
that are achieved is used as a metric to evaluate the proposed
agent-based system. Therefore, the strength of the system is
linked to satisfying a higher number of security requirements.
An available tool, called Scyther [86], can be employed in this
group to check if a certain security requirement is satisfied or
not.

Fig. 20. Parts of the Threat Model.

Fig. 21. Classification of Security Metrics.

For the second group, time is mainly employed in different
forms as a metric. Such forms are: (1) the time needed for
scanning the code of the agent; (2) the time needed for
encryption and decryption; (3) the time needed for calculation
of the hash of the agent's code; and (4) the time gap, which is
the time consumed between the attack detection and the actual
update that is applied to the system.

For the third group, the size of the agent can be used as a
metric as well as the events that occur in the system and are
related to the agent, such as the number of agents that are
dropped by the platform, and the number of agents that are
attacked in time units.

VIII. CHALLENGES AND RESEARCH QUESTIONS

In this section, we provide the challenges encountered by
the corresponding research questions (five questions)
according to the section presented in this work. In addition, we
present an additional two research questions as inferred ones.

1) According to Section III (Cyber Security requirements

in the lifecycle of mobile agent), requirements related to

security and those related to privacy are the challenges. The

two kinds of requirements should be achieved in agent-based

systems to state that we have a comprehensive secure system in

terms of cyber security. However, researchers distinguish

between security and privacy and rank security at the top

compared to privacy. Therefore, how to satisfy all the security

requirements simultaneously in an agent-based system is the

first research question.

2) According to Section IV (Classification of security

techniques in mobile agents), the visiting mobile agent my

damage the destination machine, and at the same time, the

visited destination machine may attack the incoming agent.

This leads to the challenge that can be represented by the

second research question: how to ensure that the visiting

mobile agent and the host machine do not attack each other so

that each party operates in a completely secure manner.

3) According to section VI (Protection goals and attacks),

two research questions are motivated as follows:

 Since one of the most important benefits of mobile
agents is reducing the network overhead as well as
solving the transmission challenge problem, protecting
the state (which carries the results of execution back to
the home machine) is a major challenge. Therefore, the
research question related to how to guarantee the
integrity of the results is a critical one to be answered.

 Regarding attacks, the major concern occurs when the
destination machine tries to apply advanced attacks on
the visiting mobile agent, such as modification, DoS,
and multiple colluded attacks. Therefore, how to build
strong protection mechanisms that ensure high
resistance against such attacks is the corresponding
research question.

4) According to Section VII (evaluation of security of

agent-based systems), ensuring efficient and standard security

metrics related to the protection mechanisms (i.e., out of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

228 | P a g e

www.ijacsa.thesai.org

three groups mentioned in Fig. 21) is a challenge. Therefore,

how to quantify the security of agent-based systems by an

efficient mathematical model is an important aspect for the

evaluation process. This will be a strong point with respect to

comparing different protection mechanisms.

5) It is argued that the need of an effective protection

mechanism is mandatory. However, how to equip the agent

with a protection mechanism that provides a self-protection

feature is another research question.

6) Since the destination machine has full control over the

visiting mobile agent, it is important from the security point of

view to isolate communications with the destination machine.

In other words, during the performance of the agent's mission

within the operational environment of the destination machine,

how to endow the agent with a self-communication feature is

an overarching research question.

IX. CONCLUSION

Compared to other software technologies, agent-based
software technology presents itself as an effective solution for
many problems in distributed systems, such as network
overhead and transmission challenge. However, the security
issue is a main factor that contributes to limitations of the
benefits of agent-based software technology as well as its
applications. The main reason behind this issue is that the
agents can be attacked by the destination machines where they
perform the missions, or the visiting agents can perform
malicious activities on the host machine. Moreover, advanced
attacks such as DoS, modification, and multiple colluded
attacks can exacerbate the security problem. Based on the
attacker (the visiting mobile agent and the destination or host
machine), we review different techniques used to ensure the
security in agent-based systems, critique them, and compare
them according to well-defined cyber security requirements (in
both the security and privacy aspects). Based on protection
goals (code and data, state, and itinerary of the mobile agent), a
maturity model is employed to analyse the security techniques
as well as rank the strength of the attacks. Finally, seven
research questions are provided in the research field of agent
security that should be answered to ensure comprehensive
security in agent-based systems.

REFERENCES

[1] Padgham, Lin, and John Thangarajah. "Agent Oriented Software
Engineering: Why and How." VNU Journal of Science: Natural
Sciences and Technology 27.3 (2016).

[2] Qiu, Linrun, and Kangshun Li. "The Research of Intelligent Agent
System Architecture Based on Cloud Computing." Computational
Intelligence and Security (CIS), 2016 12th International Conference on.
IEEE, 2016.

[3] [Caglayan, Alper, and Colin Harrison. "Agent sourcebook." (2011).

[4] Satoh, Ichiro. "Building reusable mobile agents for network
management." IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 33.3 (2003): 350-357.

[5] Bieszczad, Andrzej, Bernard Pagurek, and Tony White. "Mobile agents
for network management." IEEE Communications Surveys 1.1 (1998):
2-9.

[6] Bergenti, Federico, Eleonora Iotti, and Agostino Poggi. "Core features
of an agent-oriented domain-specific language for JADE agents." Trends
in Practical Applications of Scalable Multi-Agent Systems, the PAAMS
Collection. Springer, Cham, 2016. 213-224.

[7] Urra, Oscar, et al. "Mobile agents and mobile devices: Friendship or
difficult relationship?." (2009). J. Phys. Agents 3, 2 (2009), 27–37.

[8] Mobil Agent Computing website, online, available:
https://www.cis.upenn.edu/~bcpierce/courses/629/papers/Concordia-
WhitePaper.html , (2018), 6th October.

[9] Jade website, online, available: http://jade.tilab.com/ , (2018), 6th
October.

[10] Binu A website, online, available: http://csr.cusat.ac.in/people/binua
/blog/ibm-aglets-workbench-installation-agent-programming,(2018), 6th
October.

[11] Wu, Bing, et al. "A survey of attacks and countermeasures in mobile ad
hoc networks." Wireless network security. Springer, Boston, MA, 2007.
103-135.

[12] Karnik, Neeran M., and Anand R. Tripathi. "A security architecture for
mobile agents in Ajanta." Distributed Computing Systems, 2000.
Proceedings. 20th International Conference on. IEEE, 2000.

[13] Bakre, Ajay, and B. R. Badrinath. "M-RPC: A remote procedure call
service for mobile clients." Proceedings of the 1st annual international
conference on Mobile computing and networking. ACM, 1995.

[14] Stamos, James W., and David K. Gifford. "Implementing remote
evaluation." IEEE Transactions on Software Engineering 16.7 (1990):
710-722.

[15] Carzaniga, Antonio, Gian Pietro Picco, and Giovanni Vigna. "Designing
distributed applications with mobile code paradigms." Proceedings of
the 19th international conference on Software engineering. ACM, 1997.

[16] Ali, Anwaar, et al. "Big data for development: applications and
techniques." Big Data Analytics 1.1 (2016): 2.

[17] Ramírez-Gallego, Sergio, et al. "Big data: tutorial and guidelines on
information and process fusion for analytics algorithms with
MapReduce." Information Fusion 42 (2018): 51-61.

[18] Boubiche, Sabrina, et al. "Big Data Challenges and Data Aggregation
Strategies in Wireless Sensor Networks." IEEE Access 6 (2018): 20558-
20571.

[19] Zhu, Li, et al. "Big Data Analytics in Intelligent Transportation Systems:
A Survey." IEEE Transactions on Intelligent Transportation
Systems (2018).

[20] Kavak, Hamdi, et al. "Big data, agents, and machine learning: towards a
data-driven agent-based modeling approach." Proceedings of the Annual
Simulation Symposium. Society for Computer Simulation International,
2018.

[21] Karami, Mahtab, and Ali HOSSEINI SHAHMIRZADI. "Applying
Agent-based Technologies in Complex Healthcare
Environment." Iranian journal of public health 47.3 (2018): 458.

[22] Kaeri, Yuki, et al. "Agent-Based System Architecture Supporting
Remote Collaboration via an Internet of Multimedia Things
Approach." IEEE Access 6 (2018): 17067-17079.

[23] Sun, Weiwei, et al. "An air index for spatial query processing in road
networks." IEEE Transactions on Knowledge and Data Engineering 27.2
(2015): 382-395.

[24] Alrahhal, Mohamad Shady, Maher Khemekhem, and Kamal Jambi.
"Achieving load balancing between privacy protection level and power
consumption in location based services." (2018).

[25] Lange, Danny B., and Mitsuru Oshima. "Seven good reasons for mobile
agents." Communications of the ACM 42.3 (1999): 88-89.

[26] Chaabouni, Taha, and Maher Khemakhem. "Resource Management
Based on Agent Technology in Cloud Computing." Advances in
Information Technology for the Holy Quran and Its Sciences (32519),
2013 Taibah University International Conference on. IEEE, 2013.

[27] Arfat, Yasir, and Fathy Elbouraey Eassa. "A Survey on Fault Tolerant
Multi Agent System." IJ Inf. Technol. Comput. Sci 9 (2016): 39-48.

[28] Madkour, Mohamed A., et al. "Mobile Agent Framework for Distributed
Network Performance Management." International Journal of Computer
Applications 88.5 (2014).

[29] Imran, Muhammad, Fathy Eassa, and Kamal Jambi. "Using Agent
Technology for Security Testing of WEB Based Applications." SEDE–
2015: 3-10.

https://www.cis.upenn.edu/~bcpierce/courses/629/papers/Concordia-WhitePaper.html
https://www.cis.upenn.edu/~bcpierce/courses/629/papers/Concordia-WhitePaper.html
http://jade.tilab.com/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

229 | P a g e

www.ijacsa.thesai.org

[30] Alrahhal, Mohamad Shady, Maher Khemakhem, and Kamal Jambi.
"Agent-Based System for Efficient kNN Query Processing with
Comprehensive Privacy Protection." International Journal Of Advanced
Computer Science And Applications 9.1 (2018): 52-66.

[31] Wernke, Marius, et al. "A classification of location privacy attacks and
approaches." Personal and ubiquitous computing18.1 (2014): 163-175.

[32] Alrahhal, Mohamad Shady, Maher Khemakhem, and Kamal Jambi. "A
Survey on Privacy of Location-Based Services: Classification, Inference
Attacks, And Challenges." Journal of Theoretical & Applied
Information Technology 95.24 (2017).

[33] Alrahhal, Mohamad Shady, et al. "AES-Route Server Model for
Location based Services in Road Networks." International Journal Of
Advanced Computer Science And Applications 8.8 (2017): 361-368.

[34] Kharaji, Morteza Yousefi, and Fatemeh Salehi Rizi. "A fast survey
focused on methods for classifying anonymity
requirements." International Journal of Computer Science and
Information Security 12.4 (2014): 59.

[35] Deng, Mina. "Privacy Preserving Content Protection (Privacy behoud
content protection)." (2010).

[36] Wahbe, Robert, et al. "Efficient software-based fault isolation." ACM
SIGOPS Operating Systems Review. Vol. 27. No. 5. ACM, 1994.

[37] Van’t Noordende, Guido, Frances MT Brazier, and Andrew S.
Tanenbaum. "A security framework for a mobile agent
system." Proceedings of the 2nd International Workshop on Security in
Mobile Multiagent Systems (SEMAS 2002), associated with AAMAS-
2002, Bologna, Italy. 2002.

[38] Rights, Retains Full. "Secure Coding. Practical steps to defend your web
apps." (2007).

[39] Malik, Najmus Saqib, and Albert Treytl. "Optimizing Security
Computation Cost for Mobile Agent Platforms." Industrial Informatics,
2007 5th IEEE International Conference on. Vol. 1. IEEE, 2007.

[40] Cooper, David, et al. Security Considerations for Code Signing. No.
OTHER-. 2018.

[41] Appel, Andrew W., and David McAllester. "An indexed model of
recursive types for foundational proof-carrying code." ACM
Transactions on Programming Languages and Systems (TOPLAS) 23.5
(2001): 657-683.

[42] Sekar, R., et al. "Model-carrying code: a practical approach for safe
execution of untrusted applications." ACM SIGOPS Operating Systems
Review. Vol. 37. No. 5. ACM, 2003.

[43] Kim, Hyong-Soon, and Eunyoung Lee. "Verifying Code toward
Trustworthy Software." Journal of Information Processing Systems 14.2
(2018).

[44] Borselius, Niklas. "Mobile agent security." Electronics &
Communication Engineering Journal 14.5 (2002): 211-218.

[45] Chess, David, et al. "Itinerant agents for mobile computing." IEEE
Personal Communications 2.5 (1995): 34-49.

[46] Ordille, Joann J. "When agents roam, who can you trust?." Emerging
Technologies and Applications in Communications, 1996. Proceedings.,
First Annual Conference on. IEEE, 1996.

[47] Guan, Sheng-Uei, Tianhan Wang, and Sim-Heng Ong. "Migration
control for mobile agents based on passport and visa." Future Generation
Computer Systems 19.2 (2003): 173-186.

[48] Marikkannu, P., R. Murugesan, and T. Purusothaman. "AFDB security
protocol against colluded truncation attack in free roaming mobile agent
environment." Recent Trends in Information Technology (ICRTIT),
2011 International Conference on. IEEE, 2011.

[49] Hefeeda, Mohamed, and Bharat Bhargava. "On mobile code
security." Purdue University (Oct. 2001) (2001).

[50] Venkatesan, S., C. Chellappan, and P. Dhavachelvan. "Performance
analysis of mobile agent failure recovery in e-service
applications." Computer Standards & Interfaces 32.1-2 (2010): 38-43.

[51] Venkatesan, S., et al. "Artificial immune system based mobile agent
platform protection." Computer Standards & Interfaces35.4 (2013): 365-
373.

[52] Tsiligiridis, Theodore A. "Security for mobile agents: Privileges and
state appraisal mechanism." Neural Parallel And Scientific
Computatiions 12.2 (2004): 153-162.

[53] Farmer, William M., Joshua D. Guttman, and Vipin Swarup. "Security
for mobile agents: Authentication and state appraisal." European
Symposium on Research in Computer Security. Springer, Berlin,
Heidelberg, 1996.

[54] Bagga, Pallavi, Rahul Hans, and Vipul Sharma. "N-grams Based
Supervised Machine Learning Model for Mobile Agent Platform
Protection against Unknown Malicious Mobile Agents." International
Journal of Interactive Multimedia & Artificial Intelligence 4.6 (2017).

[55] Bagga, Pallavi, Rahul Hans, and Vipul Sharma. "A Biological Immune
System (BIS) inspired Mobile Agent Platform (MAP) security
architecture." Expert Systems with Applications 72 (2017): 269-282.

[56] Roth, Volker. "Mutual protection of co-operating agents." Secure
Internet Programming. Springer, Berlin, Heidelberg, 1999. 275-285.

[57] Madkour, A. M., et al. "Securing mobile-agent-based systems against
malicious hosts." World Applied Sciences Journal 29.2 (2014): 287-297.

[58] Yee, Bennet S. "A sanctuary for mobile agents." Secure Internet
Programming. Springer, Berlin, Heidelberg, 1999. 261-273.

[59] Young, Adam, and Moti Yung. "Sliding encryption: a cryptographic tool
for mobile agents." International Workshop on Fast Software
Encryption. Springer, Berlin, Heidelberg, 1997.

[60] Hohl, Fritz. "Time limited blackbox security: Protecting mobile agents
from malicious hosts." Mobile agents and security. Springer, Berlin,
Heidelberg, 1998. 92-113.

[61] Badger, Lee, et al. "Self-protecting mobile agents obfuscation
techniques evaluation report." Network Associates Laboratories,
Report (2002): 01-036.

[62] Riordan, James, and Bruce Schneier. "Environmental key generation
towards clueless agents." Mobile agents and security. Springer, Berlin,
Heidelberg, 1998. 15-24.

[63] Tschudin, Christian. "Apoptosis—The programmed death of distributed
services." Secure Internet Programming. Springer, Berlin, Heidelberg,
1999. 253-260.

[64] Tan, Hock Kim, and Luc Moreau. "Extending execution tracing for
mobile code security." Proceedings of Second International Workshop
on Security of Mobile MultiAgent Systems (SEMAS'2002). 2002.

[65] Tan, Hock Kim, and Luc Moreau. "Certificates for mobile code
security." Proceedings of the 2002 ACM symposium on Applied
computing. ACM, 2002.

[66] Esparza, Oscar, et al. "Mobile agent watermarking and fingerprinting:
tracing malicious hosts." International Conference on Database and
Expert Systems Applications. Springer, Berlin, Heidelberg, 2003.

[67] Esparza, Oscar, et al. "Punishing manipulation attacks in mobile agent
systems." Global Telecommunications Conference, 2004.
GLOBECOM'04. IEEE. Vol. 4. IEEE, 2004.

[68] Cheng, Jeff SL, and Victor K. Wei. "Defenses against the truncation of
computation results of free-roaming agents." International Conference
on Information and Communications Security. Springer, Berlin,
Heidelberg, 2002.

[69] Linna, Fan, and Liu Jun. "A free-roaming mobile agent security protocol
against colluded truncation attack without trusted third party." Business
Management and Electronic Information (BMEI), 2011 International
Conference on. Vol. 2. IEEE, 2011.

[70] Al-Jaljouli, Raja, and Jemal H. Abawajy. "Secure mobile agent-based e-
negotiation for on-line trading." Signal Processing and Information
Technology, 2007 IEEE International Symposium on. IEEE, 2007.

[71] Traut, Eric, et al. "Protection agents and privilege modes." U.S. Patent
No. 8,380,987. 19 Feb. 2013.

[72] Srivastava, Shashank, and G. C. Nandi. "Fragmentation based
encryption approach for self protected mobile agent." Journal of King
Saud University-Computer and Information Sciences 26.1 (2014): 131-
142.

[73] El Rhazi, Abdelmorhit, Samuel Pierre, and Hanifa Boucheneb. "A
secure protocol based on a sedentary agent for mobile agent
environments." Journal of Computer Science 3.1 (2007): 35-42.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

230 | P a g e

www.ijacsa.thesai.org

[74] Arepalli, Abhishek, S. Srinivasa Rao, and P. Jagadeeshwara Rao. "A
Spatial Disaster Management Framework for Smart Cities—A
Case." Proceedings of International Conference on Remote Sensing for
Disaster Management: Issues and Challenges in Disaster Management.
Springer, 2018.

[75] Hartama, D., et al. "Smart City: Utilization of IT resources to encounter
natural disaster." Journal of Physics: Conference Series. Vol. 890. No. 1.
IOP Publishing, 2017.

[76] Abid, A., A. Kachouri, and A. Mahfoudhi. "Data analysis and outlier
detection in smart city." Smart, Monitored and Controlled Cities
(SM2C), 2017 International Conference on. IEEE, 2017.

[77] Liu, Ce, et al. "Motion magnification." ACM transactions on graphics
(TOG). Vol. 24. No. 3. ACM, 2005.

[78] Wadhwa, Neal, et al. "Phase-based video motion processing." ACM
Transactions on Graphics (TOG) 32.4 (2013): 80.

[79] Mittal, Praveen, and Manas Kumar Mishra. "Trust and Reputation-
Based Model to Prevent Denial-of-Service Attacks in Mobile Agent
System." Towards Extensible and Adaptable Methods in Computing.
Springer, Singapore, 2018. 297-307.

[80] Samet, Donies, Farah Barika Ktata, and Khaled Ghedira. "Securing
Mobile Agents, Stationary Agents and Places in Mobile Agents

Systems." KES International Symposium on Agent and Multi-Agent
Systems: Technologies and Applications. Springer, Cham, 2018.

[81] Wood, Anthony D., and John A. Stankovic. "A taxonomy for denial-of-
service attacks in wireless sensor networks." Handbook of sensor
networks: compact wireless and wired sensing systems (2004): 739-763.

[82] Greenberg, Michael S., Jennifer C. Byington, and David G. Harper.
"Mobile agents and security." IEEE Communications magazine 36.7
(1998): 76-85.

[83] Prem, M. Vigilson, and S. Swamynathan. "Securing mobile agent and its
platform from passive attack of malicious mobile agents." IEEE-
International Conference On Advances In Engineering, Science And
Management (ICAESM-2012). IEEE, 2012.

[84] Singh, Rajwinder, and Mayank Dave. "Rescuing data of mobile agents
blocked by malicious hosts in e-service applications." 2011 International
Conference on Multimedia, Signal Processing and Communication
Technologies. IEEE, 2011.

[85] Mitrovic, Nikola, and Unai Arronategui Arribalzaga. Mobile Agent
security using Proxy-agents and Trusted domains. No. INPRO--2009-
035. 2002.

[86] Cremers, Cas JF. "The scyther tool: Verification, falsification, and
analysis of security protocols." International Conference on Computer
Aided Verification. Springer, Berlin, Heidelberg, 2008.

