
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

240 | P a g e  

www.ijacsa.thesai.org 

A New Security Model for Web Browser Local 

Storage 

Thamer Al-Rousan1 

Faculty of Information Technology 

Isra University 

Amman-Jordan 

Bassam Al-Shargabi2 

Faculty of Information Technology 

Middle East University 

Amman-Jordan 

Hasan Abualese3 

Faculty of Information Technology 

Ajloun National University 

Ajloun-Jordan 

 

 

Abstract—In recent years, the web browser has taken over 

many roles of the traditional operating system, such as acting as 

a host platform for web applications. Web browser storage, 

where the web applications can save data locally was one of the 

new functionalities added in HTML5. However, web 

functionality has increased significantly since HTML5 was 

introduced. As web functionality increased, so did the threats 

facing web users. One of the most prevalent threats was the 

user’s privacy violations. This study examines the existing 

security issues related to the usage of web browser storage and 

proposes a new model to secure the data saved in the browser’s 

storage. The model was designed and implemented as a web 

browser extension to secure the saved data. The model was 

experimentally demonstrated and the result was evaluated. 

Keywords—HTML5; security; local storage 

I. INTRODUCTION 

The internet and its applications have critically influenced 
us and becoming the main part of daily life. The internet 
provides information and opportunities, which were not 
accessible previously. The digital population has risen in the 
last few years; it reached 4.087 billion users in April 2018 [1]. 
With an increase in dependency on the internet, the 
importance of privacy protection has become significant. 

When browsing, users expose themselves and their 
personal information to several threats, such as malware or 
phishing, which directly disrupt privacy [2]. A user’s profile 
has been the target of many attacks. There are different 
reasons for an attack on a user’s profile, including identifying 
the characteristics of users to meet their requirements or 
selling this information for surveillance or advertising [3]. 
Over the years, many technologies have been utilized to track 
a user’s profile; the most well-known is cookies. 

HTML is a standard language used to develop web 
applications. HTML5 is the latest version of HTML that the 
W3C standard introduced as a written language for web pages 
and associated applications (APIs). HTML5 brings a set of 
new advancements to the browser, which didn't exist 
previously, including enhanced XMLHttpRequest (XHR) and 
webSocket [4]. Web-based applications can be run offline via 
local storage, meaning the data will be saved in the user-side 
storage and it can be accessed without having to connect to the 
network  [5]. User -side storage as indexed database APIs, 
web SQL databases, and web storage revolutionized the web 
and minimized the differences between native applications 

and web-based applications. Consequently, network 
connections’ lack of effectivity on the server-side and the 
visual uncertainty affected by refreshes could be avoided. 
Besides, HTML5 offers functionality that can be utilized by 
web-based applications on any platform and on different 
browsers. Thus, modern web browsers support the plurality of 
new HTML5 features [6]. 

In spite of the advantages, user-side storage did not come 
without a price. The data saved by user-side storage is 
unencrypted, so users may experience privacy violations, such 
as a tracking vector. The literature in [7], [8], [9] revealed that 
the data created by web applications and saved in user-side 
storage cannot be completely deleted, even when the users 
tried. Thus, there are dangerous privacy implications, such as 
the details of a user’s bank account or credit cards. 

Previous studies to protect user-side storage were rather 
limited. This study proposes a new model that aims to protect 
the user’s privacy. The proposed security model, which was 
based on the JavaScript encryption library (JSEL), was 
implemented as a web browser extension. The browser 
extension offered complete security protection, as the data 
were saved in encrypted form. 

The remainder of the paper is arranged as follows. The 
theoretical background is presented in Section 2. Section 3 
presents an overview of possible technical attacks associated 
with local browser storage and the current security solutions. 
Section 4 presents a new security model for browser-based 
storage. Related works are discussed in Section 5. The 
experimental study and the evaluation are presented in 
Sections 6 and 7, respectively. Finally, the conclusions and 
future work are presented in Section 8. 

II. BACKGROUND 

The most famous user-side database is HTTP cookies. 
Cookies are small packets of data (normally 4KB) sent from 
websites servers to users through HTTP headers or by 
utilizing user-side scripting. Cookies saved in a user’s browser 
are on the user’s machine. Every cookie is related to a source, 
i.e., a port number, HTTP protocols, and the hostname. It 
based on a security mechanism termed same-origin policy 
(SOP). Website servers use cookies to remember a user’s 
stateful information or to trace the browsing activity of the 
user. Security and privacy are the major challenges, as an 
attacker can steal data from cookies [10]. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

241 | P a g e  

www.ijacsa.thesai.org 

Over the years, many technologies appeared to save 
structured data in user-side storage. The majority appeared 
through third-party plugins, such as Oracle Java, Object of 
Adobe Flash, Google Gears, and Microsoft Silverlight [7]. As 
HTML5 appeared, browsers started to replace third-party 
plugins with built-in functionalities and new user-side storage 
technologies were established, such as “indexed database API, 
web SQL database, and web storage” [11]. 

Web storage provides a way for web applications to save 
data locally in the user’s browser without affecting website 
performance and provides more storage capacity than cookies. 
Depending on the user's browser, web storage capacity can be 
anywhere from 5MB to 25MB [11]. Web storage saves data in 
key/value pairs in the browser, and there two types. First is 
session storage data, which will be lost when the user browser 
is closed. Second is local storage data that are maintained even 
when the browser is closed [12]. Web storage is dependent on 
user-side scripting, such that the web application can retrieve 
locally stored data by utilizing a user-side JavaScript API even 
when the user’s browser is disconnected [11]. Besides, web 
storage differs from cookies, since the saved data cannot be 
transferred through HTTP headers. The security policy of web 
storage is the same as for cookies since each source is 
assigned to a unique web storage object. Therefore, using web 
storage on websites that do not support HTTPS or that use 
hostname sharing is not recommended [6]. 

A WebSQL database is another way for web applications 
to save huge amounts of information in the user’s browser, 
which can be queried by using standard SQL syntax. A 
WebSQL database is similar to Google Gears, and both 
depend on SQLite [13]. The main weakness of a WebSQL 
database is that it is not supported by W3C, and many 
browsers, for example, Mozilla, have decided to stop 
supporting WebSQL databases. Despite the W3C decision, 
three main browser vendors (Opera, Safari, and Chrome) still 
support WebSQL databases [11]. 

Indexed database API (Indexed DB) is a transactional 
database system that came from the W3C specification in 
2009. Indexed DB is a substitute for the deprecated WebSQL 
database [14]. Indexed DB has the same accessing mechanism 
as web storage, but the scale and structure of the saved data 
are different. Web storage saves data in key/value pairs and is 
suitable when the dataset is simple, whereas Indexed DB 
allows for a large amount of structured data to be saved in 
storage [15]. 

Compared to SQL-based relational database management 
system (RDBMS), which uses tables to save data, Indexed DB 
is an object-oriented database. Indexed DB allows for objects 
to be saved/retrieved with keys [16]. Web applications can 
only access and operate saved structured data through the API 
provided by Indexed DB. Indexed DB is built on a 
transactional database mode and is typically key-value 
asynchronous storage. It provides rapid access to a lot of 
organized information  [14]. In contrast, the security 
mechanism for Indexed DB is no different than web storage. 
The Indexed DB security mechanism is based on the 
principles of the SOP [13]. 

III. SECURITY ISSUES 

With the new functionalities of HTML5, which increased 
the accessibility to a user’s computer resources, including 
offline caching and local storage, new security issues arose. 
Most web browser security methods were not upgraded to the 
new technologies of HTML5. The only browser security 
method in place against possible risks was SOP [9]. SOP links 
the saved information to a specific domain, so the information 
can only be retrieved from the original domain. When SOP is 
applied, the browser tests the port number, name of host, and 
protocol against the source record of the saved data [2]. 

HTML5 has numerous new modules, such as 
“XMLHttpRequest (XHR), the document object model 
(DOM), and cross-origin resource sharing (CORS).” HTML5 
brought new technologies, such as local storage, web Socket, 
and enhanced XHR. With these technologies and modules, it 
has improved the surface of the attack and added new risks to 
the end-user, which means that the SOP will not help [2]. The 
weaknesses of SOP led to many aggressions, such as “cross-
site scripting (XSS), cross-site request forgeries (CSRF), 
cross-origin resource sharing (CORS) attacks, social 
engineering, and physical access” [17]. 

CORS is a technique that lets JavaScript make an XHR 
request from other domains outside the original domain. XHR 
is used by JavaScript to perform transfers between the server 
and the user. Cross-domain requests are normally prevented 
by web browsers, so CORS adds additional information to 
HTTP headers to permit the request [17]. A CORS technique 
allows for several domains (cross-domain requests) between 
the user and the server. However, hackers can make cross-site 
request forgeries by bypassing SOP and creating “cross-
domain connections” to permit the deployment of a CORS 
attack vector [3]. 

XSS is one the most common attacks in a web-based 
application. Based on the open software security community 
(OWASP) list, XSS ranks third place in OWASP list [18]. 
XSS is a security weakness, where malicious code (generally 
JavaScript) is injected into a web-based application and is 
comprised of dynamic content sent to a victim's browser. The 
victim’s browser cannot identify that the script is infected, and 
will execute the malicious script without being validated 
because it appears to have arrived from a trusted source. The 
malicious script can change or transmit session 
tokens, cookies, or any information via the victim’s browser 
[19]. There are many techniques to prevent XSS attacks, such 
as encoding output (stop executing URL links that include 
binary encoded characters), filtering (the input data is filtered 
before it saved in the database), and authenticating user input 
(checking the format of the user) [6]. 

Social engineering is a way of fooling and cheating users 
so that personal data is shared, such as bank accounts or 
passwords. The hackers can install malicious code to access 
data by controlling the user’s computer. Social engineering 
techniques are easier than other hacking techniques and can 
include calling by phone, sending an email, and real-life chats. 
An email from a known sender is a popular example of a 
social engineering technique. Hackers send an email message 
with a link to the victim contact list members. The link may 

https://en.wikipedia.org/wiki/Domain_name


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

242 | P a g e  

www.ijacsa.thesai.org 

contain a picture, audio, movie, or file that the malicious 
software is inserted in. If the member clicks on this link, that 
member could then be the next victim [20]. 

CSRF is also known as session riding or a one-click 
attack. An attacker could trick the victim into unintentionally 
performing an undesirable action in the web application [21]. 
CSRF is normally performed with the assistance of social 
engineering techniques. As the victim is currently 
authenticated by the web application, it is difficult for the 
server to differentiate between legal requests and fake requests 
[15]. CSRF attacks can harm both users and businesses. It can 
result in damaged user relationships, illegal money transfers, 
changed passwords, and stealing of data, including the session 
cookies [17]. 

Physical access is another security problem that occurs 
when the attacker has access to the user's computer. When this 
happens, the saved data and even the deleted data can be 
stolen. Recovering deleted data is primarily concerned for 
developers. The experiment conducted by Shahryar [22] 
showed that the location of the deleted data within a database 
was still physically reserved. The deleted data was only 
marked as deleted ,but the data existed in storage and could be 
retrieved with forensic tools. In most web browsers, the non-
deleted data will not be overwritten by newly saved data [9]. 
The data is saved in storage as non-encrypted, so it is not 
protected and presents a possible security issue. Encryption 
will prevent data from being attacked. User-side encryption is 
important since it offers a security mechanism for saved data 
and blocks unauthorized persons from stealing the user's data. 
Unfortunately, user-side encryption is not yet mature. In the 
next suction, this study proposes a new encryption model to 
protect a user's data.  

IV. SECURITY MODEL 

This study proposes a new security model to address issues 
caused by saving data in an unsafe manner. In the proposed 
model, an additional layer was added among the web browser 
storage and the web browser itself. The model contains a new 
algorithmic framework for improving security against threats. 
The model uses JavaScript encryption library, which was 
applied to the web browser as “an extension.” The extension 
was located at the top of the web browser storage, such that 
whenever writing or reading information, it is encrypted. 

Encryption/decryption can be implemented inside 
browsers via the” JavaScript crypto library.” There are a small 
number of JavaScript encryption libraries that may be applied 
to encrypt data in the client’s browser, such as 
WebCryptoAPI, PolyCrypt, Cryptos, Jscrypto, and SJCL [21]. 
Many factors affect the selected encryption library, including 
library size, hashing functions, key lengths, keyed-hash 
message authentication codes (HMAC), salt, and availability 
of multi-platform and multi-browser options [11]. 

This study selected the Stanford JavaScript crypto library 
(JSCL) to implement the encryption/decryption on the user’s 
browser. The SJCL library was chosen because it is a secure, 
small, multi-platform, and powerful library [23]. SJCL uses 
the advanced encryption standard (AES) to encrypt data at key 
sizes of 128/192/256 bits. It also uses an HMAC validation 

code, the SHA256 hash function, OCB and CCM 
authenticated modes, and the PBKDF2 to strengthen the 
password. BKDF2 applies a pseudorandom function to the 
entered password together with a salt value and reiterates the 
process several times to generate a derived key, which then 
can be utilized as a crypto key. PBKDF2 verifies each 
message it sends to avoid any changes. Furthermore, the tests 
conducted in several browsers on Windows, Linux, and Mac 
have shown that the SJCL was faster than any existing 
encryption library [23]. 

As the browser extension used the SJCL library, the same 
shared key was applied for both encryption and decryption, 
which made the data prone to malicious attacks. To overcome 
the limitations of the SJCL library, the study combined the 
RSA standard [9] with SJCL library. The combination resulted 
in a hybrid encryption algorithm comprised of both RSA and 
AES to guarantee data integrity. 

When the browser storage received a request from a web 
application to save data, the data was encrypted by the 
proposed browser extension. This ensured that the data was 
safe and secured against illegal access even if the attacker 
gained physical access to the machine. The data 
encryption/decryption steps are as follows: 

 Get Login: The initial step is to afford a secure log into 
the system. Web applications can handle this step for 
the users by using the login process. 

 Data Encryption: When a new request from a web 
application arises to save data in the database, the plain 
text data (PTORG) is encrypted by the designed 
extension and a public key (KSJCL) is generated. The 
KSJCL will be used when the SJCL library encrypting 
the data. The encrypted data is named ENORG. 
Simultaneously, when the encryption process is 
enabled in user-side, the RSA standard is generated. 
RSA standard is used to encrypt the ENORG by using 
the private key (PSJCL) to produce a “digital 
signature.” 

 Data Decryption: When a request from an authorized 
user to read data from the browser’s storage arises, the 
key (K SJCL) is encrypted using an RSA standard with 
the requester public key (RKPB). The encrypted key is 
named (RKEN SJCL). An XML file is then created, 
including ENORG and RKEN SJCL. Finally, the 
ENORG is decrypted using KSJCL. 

 Deletion of Data: The data in the session storage is 
safely deleted - that is, it was replaced with zeros. 
Thus, the deleted data cannot be read again, since the 
original data was set to zero. 

The goal of this study is to protect saved data on client-
side databases against illegitimate access. The study had many 
choices for encryption, but most tended to save encryption 
keys on the server-side and not on the user-side. One 
limitation of utilizing the server-side was associated with 
offline storage, the client won't almost certainly get to the 
information. Besides, if the webserver is vulnerable to any 
attack, then the encryption key will be perilous and thus, the 

https://dl.acm.org/author_page.cfm?id=81375599597&coll=DL&dl=ACM&trk=0
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Pseudorandom_function
https://en.wikipedia.org/wiki/Password
https://en.wikipedia.org/wiki/Salt_(cryptography)
https://en.wikipedia.org/wiki/Key_(cryptography)


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

243 | P a g e  

www.ijacsa.thesai.org 

encrypted information will be defenseless against unapproved 
access from attackers. Also, the W3C recommendation is to 
save the encryption keys on the client-side  [24]. 

Browser security models depend on an SOP mechanism. 
However, an SOP mechanism alone is not enough for 
sophisticated web-based applications’ local storage security. 
The proposed model differs in the security mechanism. Where 
the browser security models attempt to secure data amongst 
the user’s browser and web-based applications, the proposed 
model secures data saved in the user's database. Thus, users 
can visit other websites without worrying about the databases. 

V. RELATED WORK 

Previous studies regarding securing web browser storage 
and its effectiveness are still in early stages and are limited. 
Aggarwal et al. [25] conducted one of the first studies to 
analyze browsing security vulnerabilities. The results revealed 
that there was an insufficient implementation of the security 
mechanism in different web browsers, which pointed to user 
activities. Additionally, security control for Firefox was 
proposed, which protected users after private mode was 
enabled. In 2011, Oh et al. [26] analyzed the log files 
generated by a web browser, concentrating on search history, 
timeline analysis, and URL encoding. A Classification of Web 
Browser Log (CWB) tool was proposed to prove the analysis. 
Unfortunately, in the experiments, old versions of browsers 
were used that are currently outdated. 

Ohana and Shashidhar [27]studied portable browsers to 
determine if data still existed after the browser session 
stopped. Similarly, Said et al. [28] analyzed the RAM in the 
browser sessions, including authorizations, history, images, 
and videos. Satvat et al. [29] extended the work by analyzing 
the file system and the network, which exposed significant 
contradictions in the browsing implementation that violated a 
client’s privacy. Heule et al. [30]developed a security access 
control to protect confidential data that could be accessed and 
used by attackers, focusing on JavaScript extensions in 
Chrome. In the same manner, Lerner et al. [31] studied 
JavaScript extensions in Firefox from different perspectives, 
such as social, safety, and debugging, to determine which may 
be malicious. 

Ruiz et al. [32] concentrated on recovery techniques 
created during browsing. Experiments within four personal 
levels showed how the browser could be stopped, namely 
shutdown, power down, freeze, and kill processes. The results 
revealed that all levels included user privacy violations in 
terms of obtaining browsing data. In the same manner, 
Montasari and Peltola [33] studied both file systems and RAM 
in different browsers. The results revealed that the most secure 
browser was Chrome and in second place was Firefox. 

A survey conducted by Gao et al. [34] concentrated on 
awareness from a user’s viewpoint. Authors surveyed more 
than 200 users regarding the security and privacy mechanisms 
provided by the most common web browsers on smartphone 
and desktop platforms. The results revealed that better security 
guarantees were required concerning a user’s privacy. Tsalis 
et al. [35] studied the protection provided by different popular 
web browsers. A set of web data created in a usual browsing 

session was used to determine where these data were saved 
after the session was stopped. The results revealed that the 
deleted data after the browsing session were discovered 
straightforward or in a roundabout way in the database. 
Subsequently, any person who had “physical access” to the 
user’s machine with adequate IT abilities could access these 
browsing data. In addition, nearly all browsers provided a 
similar protection level, and only Chrome in the guest mode 
provided better protection. Belloro and Mylonas [30] 
investigated the most common user storage methods, namely 
“Web SQL database, web storage, and indexed database.” The 
outcomes revealed that web storage was the most utilized. 
Belloro and Mylonas also surveyed whether well-known 
mobile and desktop browsers that used “indexed database 
API, web SQL database and web storage” could defend clients 
from privacy violations. The results showed that the maturity 
of the security controls was inadequate to avoid privacy 
violations. 

VI. EXPERIMENT 

The experiment performed in this study was based on 
performance. The study tested the speed of 
encryption/decryption, which affected the performance of the 
model. Thus, the study tested the performance on the user-side 
to prevent the network and server latency impacting the 
results. The study selected indexed database as a 
representative for web browser local storage. 

Before running the test, the code was executed for a 
compatibility test in diverse browsers, including Firefox, 
Google Chrome, Safari, Mozilla, and Opera. The latest Google 
Chrome browser hosted by a Windows10 server was chosen 
as the test environment. The server was an HP with Intel I7 
8550U, and 8 GB DDR4 RAM. The test executed a small 
JavaScript by dexie.js, which is a powerful library for an 
indexed database and it can accelerate performance. Google 
private mode was used to the grantee that the test was 
executed without any additional load of scripts or any 
extension. Fig. 1 show the code used. 

The test was performed in steps. The first step was to save 
the data without encryption (in a standard manner). The 
second step was to save data with encryption, as seen in Fig. 2. 
The same password and username were saved with encryption. 

The test was executed without any user intervention. 
JavaScript read the entries of the database, placed the data into 
the table, and read it as a console output (console.log). All 
references employed in this study were based on Google 
performance analysis [17]. Fig. 3 shows the results of the 
performance test, it shows the top 10 bottom-up of processes 
that most consuming time. 

Because the indexed database is a NoSQL database, the 
script run time had to be tested independently of the 
transaction speed of the database. Consequently, the 
performance test depended on the reading and writing of 
database entries in a loop. The time was measured before the 
loop started and after the loop was finished. Finally, the data 
entries contained “Password + I and User + i” where “I” was 
the loop counter. The time in milliseconds to insert database 

https://dl.acm.org/author_page.cfm?id=81485644741&coll=DL&dl=ACM&trk=0


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

244 | P a g e  

www.ijacsa.thesai.org 

entries with and without encryption in Google Chrome is shown in Table I. 

 

Fig. 1. AES Sample. 

 

Fig. 2. Key and Values after Plain Text Encryption. 

 

Fig. 3. The Results in the Performance Test; Left the Plain Text Entries, Right Encrypted Entries.



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

245 | P a g e  

www.ijacsa.thesai.org 

TABLE. I. THE TIME TO INSERT DATA INTO INDEXEDDB 

Test 

Number 

Record 

Number 

Without 

Encryption (ms) 

With Encryption 

(ms) 

1 1 2 5 

2 100 5 53 

3 500 14 109 

4 1000 21 202 

5 5000 87 515 

6 10000 126 1185 

7 50000 554 4760 

8 100000 956 9008 

9 500000 6350 66187 

VII. EVALUATION 

Big O notation was used to evaluate the proposed model. It 
compares the effectiveness of different algorithms by 
revealing the time that the algorithm took to run. The runtime 
can be expressed with Big O Notation as how fast the runtime 
grew relative to the size of the input “n” (denoted O (n)). 

AES allows for three diverse key sizes of 128, 192, or 256 
bits. The processing required 10 rounds when encrypting with 
the 128-bit key, 12 rounds for the 192-bit key, and 14 rounds 
for the 256-bit key. When ciphering with the 128 bit key, all 
2128 keys mixtures must be inspected by decrypting the 
encrypted text with every one of those values [13]. 

For decryption and encryption, every round had four 
functions, excluding the final round with three. Encryption 
had the following functions: SubByte, ShiftRows, 
MixColumn, and AddRoundKey. A similar number of round 
functions were used for decryption, but with the opposite 
transformation. 

The algorithm takes into account the diverse runtime 
periods with the same inputs, based on the speed of the 
processor, disk speed, instruction set, and type of compiler. 
The measured runtime “T (n)” is the amount of primary steps, 
taking into account that every progression step requires steady 
time. Since the inner loop iterates, the runtime was computed 
as: 

T (n) = O (n2)              (1) 

Where n is the size of the input data. Thus, the 
performance of an algorithm is proportional to the square of n. 
The study tested the performance impact of including 
encryption steps to the key-value database of web storage. 
Fig. 4 shows the results. 

The results indicate that the process with encryption steps 
became slower by 10-40%. Therefore, applying 
encryption/decryption increased security but decreased 
response time. The process of encryption/decryption depended 
on hardware optimization and configuration. Devices with 
superior processors and greater memory storage sped up the 
process. AES functionality is now integrated into many 
processors, which helps to reduce encryption\decryption time. 

 
Fig. 4. The Time to Insert Data with and without Encryption into IndexedDB. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

246 | P a g e  

www.ijacsa.thesai.org 

VIII. CONCLUSION AND FUTURE WORK 

Local browser storage has important advantages, when 
compared with a server-side database, including fast response, 
offline usage, and decreased network latency. However, 
currently, local browser storage is not secure. The main 
security concern is that data saved locally is unencrypted. The 
literature confirmed that the unencrypted data was not the only 
problem facing local browser storage. Data recovery of 
previously deleted data was another serious problem. Current 
security methods do not provide adequate security defenses 
for data saved locally, particularly data that may contain 
private information. 

This study proposed and implemented a new security 
model for local browser storage. The new model added an 
additional layer amongst local browser storage and the web 
browser itself. The model contained an algorithmic framework 
for improving security against vulnerabilities identified in this 
study. JSCL was used in the proposed algorithm and was 
applied to the web browser as an extension. The SJCL library 
was chosen because SJCL is a secure, small, fast, multi-
platform and powerful library for cryptography in JavaScript. 
The study combined the RSA standard with an SJCL library, 
which resulted in a hybrid encryption algorithm to guarantee 
data integrity. 

When browser storage received a request from a web 
application to save data, the data was encrypted by the 
proposed browser extension. Encrypting data in browser 
storage kept data from being undermined regardless of 
whether the attackers acquired physical access to the machine, 
which may occur if a phone, tablet, or computer 
is lost or stolen. 

Although the proposed model has been effectively applied 
to local browser storage, additional enhancements could be 
made in the future by extending the performance and security 
model. For example, a complete security library could be 
written to utilize diverse JavaScript crypto libraries. Further 
experiments with different crypto libraries could also be 
performed to compare the results. 

ACKNOWLEDGMENTS 

We would like to express our deep appreciation to the 
people at Isra University who have helped us throughout our 
research. 

REFERENCES 

[1] S.Sheikh, and M. AdeelPasha,"Energy-Efficient Multicore Scheduling 
for Hard Real-Time Systems: A Survey," ACM Transactions on 
Embedded Computing Systems (TECS), vol. 17, no. 6, 2018. 

[2] N.Tahmasbi, and E. Rastegari, "A Socio-Contextual Approach in 
Automated Detection of Public Cyberbullying on Twitter," ACM 
Transactions on Social Computing, vol. 11, no. 4, 2018. 

[3] P.Gradinger, D. Strohmeierand C. Christiane, "Definition and 
measurement of cyberbullying," Journal of Psychosocial Research on 
Cyberspace , vol. 4, no. 2, 2015.A. Robert, and J. Ravenscroft, 
"Dynamic data structures, a web based tool for teaching linked lists and 
binary trees," Journal of Computing Sciences in Colleges, vol. 33, no. 6, 
pp. 97-106, 2018. 

[4] T. Al-Rousan, and H. Al Ese, "Impact of Cloud Computing on 
Educational Institutions: A Case Study," Recent Patents on Computer 
Science, vol. 8, no. 2, pp. 106-111, 2015. 

[5] M. Díaz, M.Martín, and B.Rubio, "State-of-the-art, challenges, and open 
issues in the integration of Internet of things and Cloud Computing," 

[6] Journal of Network and Computer Applications, vol. 67, no. 1, pp. 99-
117, 2016. 

[7] V. Karavirta, and C. Shaffe, "Creating engaging online learning material 
with the JSAV JavaScript algorithm visualization," IEEE Transactions 
on Learning Technologies, vol. 9, no. 2, pp. 171--183, 2016. 

[8] I. Koren, and R. Klamma, "The Exploitation of OpenAPI 
Documentation for the Generation of Web Frontends," in Proceedings of 
the The Web Conference 2018, Lyon, France, 2018. 

[9] N. Correia, and J. Kleimola, "Web browser as platform for audiovisual 
performances," in Proceedings of the 11th Conference on Advances in 
Computer Entertainment Technology, Funchal, Portugal, 2017. 

[10] A. McDonald, "Cookie confusion: do browser interfaces undermine 
understanding?," in Proceeding on Human Factors in Computing 
Systems, Atlanta, Georgia, USA, 2015. 

[11] W.Kuang, L. Wu, and Y.Liu, "Key Selection for Multilevel Indices of 
Large-scale Service Repositories," in Proceedings of the 10th 
International Conference on Utility and Cloud Computing, Austin, 
Texas, USA, 2016,pp. 139-144. 

[12] T. Al-Rousan, " An Investigation of User Privacy and Data Protection 
on User-Side Storage,” International Journal of Online Engineering, 
2019, vol. 15 no. 9, pp.17-30. 14, 2019. 

[13] J.Hamilton, "Internet scale storage," in Proceedings of the 5th ACM 
SIGMOD International Conference on Management of data, Athens, 
Greece, 2018. 

[14] M. Arenas, "Database Theory Column Report on PODS 2018," ACM 
SIGACT News, vol. 49, no. 4, pp. 55-57 , 2018. 

[15] H. Oosterhuis, J. Culpepper, and M. Rijke, "The Potential of Learned 
Index Structures for Index Compression," in Proceedings of the 23rd 
Australasian Document Computing Symposium, Dunedin, New 
Zealand, 2018. 

[16] R.Brunel, N. May, and A.Kemper, "Index-assisted hierarchical 
computations in main-memory RDBMS," VLDB Endowmen, vol. 9, no. 
12, pp. 1065-1076 , 2016. 

[17] L. Kim, and H. Lee , "Web-in-the-loop simulation framework for 
supporting CORS-based development," in Proceedings of the Poster 
Session and Student Colloquium Symposium, Alexandria, Virginia, 
2017. 

[18] J. Laassiri , "Data Security and risks for IoT in intercommunicating 
objects," in Proceedings of the 2nd international Conference on Big 
Data, Cloud and Applications, Tetouan, Morocco, 2017. 

[19] J. Bozic, and F. Wotawa, "XSS pattern for attack modeling in testing," 
in Proceedings of the 8th International Workshop on Automation of 
Software Test, San Francisco, California, 2016. 

[20] T. Al-Rousan, "Cloud Computing for Global Software Development: 
Opportunities and Challenges," in ransportation Systems and 
Engineering: Concepts, Methodologies, Tools, and Applications, IGI 
Global, 2015, pp. 897-908. 

[21] N. Meng, S. Nagy, D. Yao, and D. Zhuang, "Secure coding practices in 
Java: challenges and vulnerabilitie," in Proceedings of the 40th 
International Conference on Software Engineering, Gothenburg, 
Sweden, 2018. 

[22] H.Shahriar, "Security vulnerabilities and mitigation techniques of web 
applications," in Proceedings of the 6th International Conference on 
Security of Information and Networks, Aksaray, Turkey , 2016. 

[23] W. Groef, F. Massacci, and T. Piessens, "NodeSentry: least-privilege 
library integration for server-side JavaScript," in Proceedings of the 30th 
Annual Computer Security Applications Conference, Louisiana, USA , 
2017. 

[24] M. Olan, "HTML5 jumpstart," Journal of Computing Sciences in 
Colleges, vol. 28, no. 3, pp. 35-36 , 2016. 

[25] C. Aggarwal, Y. Li, P. Yu, and R. Jin, "On dense pattern mining in 
graph streams," VLDB Endowment, vol. 3, no. 1-2, pp. 975-984 , 2010. 

[26] J. Oh, N. Son, and S. Lee, "A Study for Classification of Web Browser 
Log and Timeline Visualization," Lecture Notes in Computer Science , 
2011. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

247 | P a g e  

www.ijacsa.thesai.org 

[27] D. Ohana, and N. Shashidhar, "Do Private and Portable Web Browsers 
Leave Incriminating Evidence? A Forensic Analysis of Residual 
Artifacts from Private and Portable Web Browsing Sessions," Journal on 
Information Security, vol. 10, no. 1, pp. 135-142, 2013. 

[28] H. Said, N. Al Mutawa, and I. Al Awadhi, “Forensic analysis of private 
browsing artifact, “Proceedings of the 11th Conference on Forensic 
analysis of privatbrowsing artifacts," 2011. 

[29] K. Satvat, M. Forshaw, F.Hao, and  E.Toreini, "On the privacy of private 
browsing –A forensic approach. ,," Journal of Information Security and 
Applications, vol. 19, no. 1, pp. 88-100, 2014. 

[30] D. Ruiz, F. Amatte, and K. Park, "Overconfidence: Personal Behaviors 
Regarding Privacy that Allows the Leakage of Information in Private 
Browsing Mode," International Journal of Cyber-Security and Digital 
Forensics , vol. 4, no. 36, pp. 104-416, 2015. 

[31] R. Montasari, and P. Peltola, "Computer Forensic Analysis of Private 
Browsing Modes," in Proceedings of the 10th Conference on Global 

Security, Safety and Sustainability: Tomorrow's Challenges of Cyber 
Security, Springer International Publishing, 2015. 

[32] X. Gao, Y. Yang, H. Fu, and J. Lindqvist, "Private Browsing: an Inquiry 
on Usability and Privacy Protection," in Proceedings of the 15th 
Conference on Privacy in the Electronic Society, ACM. 

[33] N.Tsalis , N. Virvilis, and A. Mylonas, "Browser Blacklists: A utopia of 
phishing protection. Security and Cryptography," in Security and 
Cryptography (Eds.), Lecture Notes (CCIS), Springer, 2017. 

[34] S. Belloro, and A. Mylonas,  "Security considerations around the usage 
of client-side storage APIs," Technical Report No. BUCSR-2018-01, 
2018. 

[35] K. Basques,  "Tools for Web Developers - Performance Analysis 
Reference," Google, [Online]. Available: Performance Analysis 
Reference. [Online]. [Accessed 3-12-2018]. 

 


