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Abstract—In Software Development Life Cycle, fixing defect 

bugs is one of the essential activities of the software maintenance 

phase. Bug severity indicates how major or minor the bug 

impacts on the execution of the system and how rapidly the 

developer should fix it. Triaging a vast amount of new bugs 

submitted to the software bug repositories is a cumbersome and 

time-consuming process. Manual triage might lead to a mistake 

in assigning the appropriate severity level for each bug. As a 

consequence, a delay for fixing severe software bugs will take 

place. However, the whole process of assigning the severity level 

for bug reports should be automated. In this paper, we aim to 

build prediction models that will be utilized to determine the 

class of the severity (severe or non-severe) of the reported bug.  

To validate our approach, we have constructed a dataset from 

historical bug reports stored in JIRA bug tracking system. These 

bug reports are related to different closed-source projects 

developed by INTIX Company located in Amman, Jordan. We 

compare eight popular machine learning algorithms, namely 

Naive Bayes, Naive Bayes Multinomial, Support Vector Machine, 

Decision Tree (J48), Random Forest, Logistic Model Trees, 

Decision Rules (JRip) and K-Nearest Neighbor in terms of 

accuracy, F-measure and Area Under the Curve (AUC). 

According to the experimental results, a Decision Tree algorithm 

called Logistic Model Trees achieved better performance 

compared to other machine learning algorithms in terms of 

Accuracy, AUC and F-measure with values of 86.31, 0.90 and 

0.91, respectively. 

Keywords—Software engineering; software maintenance; bug 

tracking system; bug severity; data mining; machine learning; 

severity prediction; closed-source projects 

I. INTRODUCTION 

Over the past years, the process of fixing bugs in the 
software maintenance phase has become a challenging task 
because the number of reported software bugs in large software 
systems (e.g., open-source projects) is growing massively [1]. 
For instance, the number of reported bugs submitted daily to 
Mozilla open-source system are 135 on average [2]. Managing 
a high volume of new bugs submitted daily by different 
reporters in these large open systems is a difficult task. 
Furthermore, this increases the amount of work done by the so-
called bug triager, who assesses and analyzes these bugs within 
the bounds of time and resources to assign an appropriate 

severity level and suitable developer(s) who will fix those 
defected bugs [3]. 

Bug report systems are important software artifacts. They 
are leveraged for various tasks during software maintenance, 
such as assigning bugs to appropriate developers, assessing the 
severity and priority of bugs and detecting duplicate bugs. The 
quality of bug reports relies, to a large extent, on the 
information written in these reports [4]. Thus, if the data in bug 
reports are incomplete, unclear or inaccurate, the tasks as 
mentioned above will lead to unpredictable results. 

Bug tracking systems such as Bugzilla [5] and JIRA [6]  
are utilized by open-source and closed-source projects during 
the software maintenance phase to collect, maintain, manage, 
and track issues related generally to bug reports (i.e. corrective 
maintenance) [7]. At present, developers, quality assurance 
testers, users and other team members are promoted to report 
and submit bugs they experience to bug repositories in a 
situation when the project behaves incorrectly and does not 
conform to the software requirements [8]. 

Bug severity “is the degree of impact that a defect has on 
the development or operation of a component or a system” [9]. 
Generally, bug reports are categorized according to their 
severity. High severity reports exemplify major (i.e. critical or 
fatal) errors and have a high impact on the functionality of the 
system, as well, they are given more top priority and should be 
resolved rapidly. While low severity reports exemplify trivial 
errors and minor problems that do not affect the execution of 
the system [10]. 

Initially, when a new bug is created, the reporter (e.g., 
developer) is required to fill in the fields of the bug report form 
such as a one-line summary for a specific project. As well, the 
reporter is required to estimate the severity level field (e.g., 
high, medium and low) of the observed bug according to their 
competence and knowledge. In practice, if the reporter is 
incapable of assessing the severity of the bug, they will assign 
a default value for the severity field and thus makes the 
triaging process more difficult [11]. One potential explanation 
for assigning a default value for the severity is that the 
reporters are unable to distinguish between different severity 
levels, or they have lack of knowledge and experience in 
assigning the value of the severity level [12]. Another potential 
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explanation is that the reporters do not take into consideration 
the severity estimation at all when they submit a report and 
leave the default value unchanged [10]. 

Even though there are rules on how to set the severity label 
of the encountered bugs, specifying proper severity level is 
mostly based on the expertise of who reports the bug. The 
developer has to determine the severity of these software bugs 
manually to prioritize which bug report needs more attention 
than others in terms of fixing. In the case of assigning an 
inaccurate value for the severity, this will result in 
postponement in fixing severe bugs, and this will expand the 
time to resolve these type of bugs [13]. However, a further 
validation step is required after the bug has been submitted 
where the bug triager has to confirm the validity of the severity 
value, whether it is adequately assigned or not. This process is 
called “severity identification” [14]. It is a tiresome and time-
consuming process and it increases the volume of work carried 
out by the triager especially when there is a massive number of 
bugs submitted daily to the bug tracking systems. 

Fig. 1 shows an example of the JIRA bug report used by 
INTIX Company. This bug report is reported by “Mohammad 
Yasser” and assigned to the developer “Mustafa Alqudah”. The 
one-line summary “Incorrect unit price in order details if a 

product has multi-selection attribute” is shown in the top left of 
the figure and the severity level assigned for this bug is high. 

To overcome the mentioned problems, there is a necessity 
to automate the whole process of assigning the severity level of 
newly reported bugs to replace the manual job. One reason for 
that is to decrease the amount of work done by the triager. 
Another reason is to improve the accuracy of severity 
identification. 

In this paper, we compare different machine learning 
algorithms applied on the textual description of the bug reports 
(i.e. one-line summary field). Unlike most of the research 
works reported in the literature, we applied the proposed 
methodology to a private dataset related to bug reports. These 
bugs are associated with closed-source projects developed by 
INTIX Company located in Amman, Jordan. The dataset is 
extracted from JIRA bug tracking system used by the 
company. 

The structure of this paper is organized as follow. In 
Section II, we describe the related works conducted by other 
researchers. Then, in Section III, we demonstrate our research 
methodology in detail. After that, in Section IV, we discuss the 
experimental results. Finally, we summarize our approach and 
point out future work in the conclusion section. 

 

Fig. 1. Example of JIRA Bug report. 
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II. RELATED WORKS 

The work described in this paper is concerned mainly with 
bug reports, particularly in the area of bug severity. This 
section presents the recent literature review regarding bug 
severity prediction. 

One of the first studies to predict the severity label of bug 
reports was performed by [15]. A rule-based learning technique 
was utilized to build a new tool called SEVERIS. SEVERIS is 
based on text mining and machine learning techniques applied 
on the unstructured data of the bug report (i.e. summary, 
description). They applied their automated prediction model on 
NASA‟s Project and Issue Tracking System (PITS). The 
authors argued that SEVERIS, with a slight adjustment, can be 
applied to other open-source repositories such as Bugzilla. 

  An extension of [15] work was performed by [11] to 
investigate whether text mining techniques applied in the 
textual information of a bug report is an adequate approach to 
predict the severity of a newly reported bug automatically. 
They used Naïve Bayes technique for their prediction model 
and they applied their model on datasets extracted from three 
popular open-source bug repositories, including Mozilla, 
Eclipse and GNOME. The experimental results showed that 
prediction accuracy was varied between 0.65–0.75 for Mozilla 
and Eclipse dataset. Regarding GNOME dataset, the prediction 
accuracy was varied between 0.70–0.85. 

Later, a follow-up study was conducted by [10]. The 
authors compared four familiar classification techniques 
(Naïve Bayes, Naïve Bayes Multinomial (NBM), K-Nearest 
Neighbor (K-NN) and Support Vector Machine (SVM)) to 
figure out which technique was the most suitable for the 
severity prediction model so that it can classify the newly 
reported bug into severe and non-severe. For evaluation 
purposes, they construct twelve different datasets from Eclipse 
and GNOME open-source projects. According to their 
experimental results, among the four candidate classifiers, 
NBM had the best results in terms of accuracy. 

A comparable study to [15] was conducted by [16]. The 
authors conducted different experiments on four nameless 
datasets of NASA‟s PITS using three methods:  a Regression 
method called Multi-Nomial Multivariate Logistic Regression 
(MMLR), Multi-Layer Perception (MLP) and Decision Tree. 
The prediction models were fed with different top-k terms 
extracted from the training datasets using Information Gain 
(IG) feature selection. The authors concluded that the Decision 
Tree performed better than MMLR and MLP. 

A further study for predicting fine-grained severity level of 
a bug report was conducted by [17]. The authors built a model 
to classify the severity of a new bug reported to the bug 
repository. A dataset of 163 bug reports was built from Eclipse 
and Mozilla projects. Six machine learning approaches were 
adopted, namely, Naïve Bayes, RBF Networks, Functional 
Trees, Random Trees, Random Forests and AdaBoost. In 
accordance with their results, AdaBoost with base classifiers, 
as mentioned above, showed an improvement of up to 4.9% in 
terms of accuracy. 

Other studies, for example [18, 19], examined the impact of 
utilizing other attributes of bug reports, besides the 
unstructured text, to enhance the bug severity prediction. In the 
study conducted by [18], the authors used NBM as a 
classification technique and applied their proposed approach on 
two distinct datasets originating from two open-source 
projects, namely Mozilla and Eclipse. Their empirical study 
revealed that there was an improvement in the prediction 
accuracy and outperformed the work of [11]. Similarly, Yang 
et al. [19] adopted NBM classifier for severity prediction. 
According to their evaluation, the attributes (quality indicators) 
of bug reports from Eclipse dataset (i.e. stack traces, 
attachments) exploited in their study showed an improvement 
in the accuracy of their prediction model. 

In the domain of cross-project severity prediction, Singh et 
al. [20] conducted a study based on the summary description of 
the bug report. Different prediction models were built using 
different classifiers, namely SVM, K-NN and Naïve Bayes. A 
combination of seven datasets from seven Eclipse projects was 
constructed to build 63 training set candidates. The 
experimental results revealed that K-NN achieved better results 
than SVM and Naïve Bayes when using a combination of 
several training datasets rather than a single training dataset. 

Many research works, as described in [21-25] employed 
different feature selection methods to minimize the number of 
informative features set and to enhance the accuracy of the 
classifier. All the works mentioned above paid particular 
attention to the effectiveness of feature selection techniques on 
the accuracy of classifying the severity of bug reports. Bi-
gram, along with feature selection and text mining algorithms 
were proposed by [22] to enhance the accuracy of their 
prediction model. While in work described by [25], the authors 
examined three feature selection methods, namely, Information 
Gain (IG), Chi-Square (CHI) and Correlation Coefficient to 
extract the distinct features that depict the severity of the bug 
reports (severe or non-severe) from the summary field in the 
bug reports. 

On the other hand, an ensemble feature selection technique 
was proposed by [21] through consolidating at most two 
feature selection methods. Various feature selection methods 
were used in their experiments, in particular, Term Frequency 
(TF), Document Frequency (DF), Mutual Information (MI), 
Statistical Dependency (SD), Information Gain (IG), Chi-
Square (CHI) and Correlation Coefficient. In their prediction 
model, the authors employed Naïve Bayes Multinomial as the 
classifier. 

Later, [26] proposed a new approach, an integration of 
topic modelling using LDA and similarity using KL-
divergence to predict the severity of bug reports in cross 
projects. In their work, a total of 20,000 bug reports from 4 
different open source projects (Eclipse, Mozilla, WireShark 
and Xamarin) were assembled to validate their proposed 
approach. The experimental results demonstrated that their 
model achieved better performance, in terms of accuracy than 
other four cutting-edge studies listed in their literature. 
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In more recent studies, emotional-based expressions written 
in the unstructured text fields of the bug reports were leveraged 
by [27, 28] to classify the severity label of bug report (i.e., 
critical, high, trivial and low). In the former approach [27], two 
stages related to emotional similarity technique were 
performed using Smoothed Unigram Model and KL-
Divergence. In the latter approach [28], the authors exploited 
the notion of deep learning algorithm based on Neural Network 
along with emotional analysis. The experimental results of both 
studies above emphasized that employing emotion analysis 
significantly improved the performance of the prediction 
model. 

In the context of bug report severity prediction, most of the 
reported research studies in the literature mainly used open-
source projects because they are publicly accessible. While in 
the research work described in this paper, we are attempting to 
exploit a private bug report dataset related to closed-source 
projects developed by an existing local company located in 
Jordan. 

III.  RESEARCH METHODOLOGY 

The process of predicting the severity label of reported 
bugs is shown in Fig. 2. It comprises of four main phases: 
dataset extraction, dataset pre-processing, feature selection and 
prediction. The following sections will explain each phase in 
detail. 

A. Dataset Extraction 

The bug reports dataset is extracted from the repository of 
JIRA bug tracking system related to closed-source projects 
developed by INTIX Company located in Amman, Jordan. We 
considered bug reports submitted to JIRA between May 2016 
and March 2018. 

The bug reports were classified into five levels: lowest, 
low, medium, high and highest. Although software engineers 
usually follow a specific guideline on how to assign severity of 
reported bugs, however, the categorization process seems to be 
evaluated imprecisely. In this research work, we treat lowest 
and low severity as non-severe, while high and highest severity 
as severe bugs. Furthermore, as proposed by [12], the authors 
recommended not to take the medium severity in the 
classification process. The medium class, as it is investigated, 
is the default option for reporting a bug and it seems that a 
large number of reporters report any confusing bug as a 
medium. 

The datasets mainly consist of three features including bug 
ID, a short description (i.e., one-line summary) and the severity 
level of the bug. The description of each bug is represented as a 
short text (snippet). From the bug reports, the severity and the 
short description of the bug report were mainly used for the 
prediction process. Table I statistically summarizes the 
characteristics of the dataset used in the experiments described 
in this research work. As shown in Table I, too many words are 
repetitive in the dataset where the number of distinct words is 
significantly fewer than the total number of all words exists 
within the dataset (765 out of 9016). The table also shows the 
shortness property of the bug summary (i.e. short text) where 
the average number of words per bug summary was 7.75 words 
and thus this made the prediction process more challenging. 

 

Fig. 2. Methodology for Predicting Bug Severity. 

TABLE. I. STATISTICAL SUMMARY FOR THE BUG REPORTS IN JIRA 

DATASET 

Min number of words per Bug Summary   1 

Max number of words per Bug Summary   44 

Avg. number of words per Bug Summary   7.75 

StD. number of words per Bug Summary   3.73 

Total Number of Bug Reports in the dataset   1164 

Number of Severe Bugs   851 

Number of Non-Severe Bugs   313 

Number of all words in the dataset   9016 

Number of distinct words in the dataset   765 

B. Dataset Pre-Processing 

To build a prediction model, machine learning algorithms 
require text data (i.e., one-line summary) of a bug report to be 
transformed into a feature of vector (Bag-of-Words). 
Therefore, different pre-processing steps must be applied to the 
dataset (text) to be converted into a vector of features where 
the features represent words in a utilized dataset. The typical 
pre-processing phase starts with Tokenization, Stop-words 
Removal and Stemming. These steps are explained as follow: 
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1) Tokenization: This step represents splitting a text data 

into a collection of words where each word corresponds to a 

single term. Removing white spaces, punctuations and 

converting all uppercase characters to lowercase are taken into 

consideration in this step. 

2) Stop-words removals: In the domain of natural language 

processing, conjunctions, adverbs, prepositions and other 

constructive terms are used mainly to build a sentence. These 

terms do not carry out any semantic or statistical information to 

distinguish the text. Terms like “an”, “on”, “there” and many 

others are called stop-words and are not crucial for bug severity 

prediction. Therefore, all stop-words are removed based on a 

pre-defined list of stop-words. 

3) Stemming: Stemming is one of the main steps in the 

domain of text mining and natural language processing. The 

purpose of carrying out this step is to replace all terms that 

have a common stem (root word) and the stem of a word is 

retained as a feature.  For instance, the words “find”, “finds”, 

“found” and “finding” can be replaced with one word or their 

stem which is “find”. 

Finally, all the terms obtained after the three 
aforementioned pre-processing steps are called features or bag-
of-words and are mainly used to build prediction models as 
described later in this section. 

C. Feature Selection 

The size of the feature set that can be generated after 
applying pre-processing steps is still enormous and 
consequently is not suitable for machine learning algorithms. 
Feature selection, in text mining, is a crucial step to select the 
most discriminative features (terms/words) from a list of 
features using appropriate feature selection methods. 

There are many available feature selection methods in the 
literature such as Chi-square, Information Gain (IG), Term 
Frequency, Document Frequency, and Mutual Information. In 
fact, there is no much difference in utilizing different feature 
selection methods as we decide to select sets of features with 
different sizes [29, 30]. For experimental purpose, IG feature 
selection method is applied and features obtained after pre-
processing are ranked and the top „N‟ scoring features are 
selected based on ranking results to build the prediction models 
of different datasets. 

IG feature selection is used to measure the dependency 
between features and the class label [31]. It measures the 
informativeness of a feature gained regarding the class label 
and is defined as follows: 

  (     )   (  )   (     ) 

where    is the feature (term) i and    is the class label j, 

H(   ) the entropy of term   , and  (     ) is the entropy of 
   after observing class label   . The entropy  (  ) is defined 

as  

          ∑   
 

        

Entropy is a common way to measure the degree of 
randomness or impurity of a variable and comes from 
information theory domain. The higher the entropy of a 
variable the more the information it holds about the class. 

Finally, the bug reports are represented as a feature matrix 
where each row represents a bug report consisting of n selected 
features (terms). Each term is weighted using the Term 
Frequency Inverse Document Frequency (TF-IDF) approach. 
Term frequency is calculated by multiplying term frequency 
with inverse document frequency and is given as: 

TF-IDF    
     (

 

  
) 

Where   
  the frequency of word w in document d, N is the 

number of document and Nw are documents containing word w. 
The TF-IDF value indicates that words (terms) which occur 
frequently in a specific document are more significant than 
other terms in the same document. Lastly, the features are 
normalized. 

D. Machine Learning Algorithms 

In this section, different machine learning algorithms for 
predicting the severity level of the bugs are described and 
utilized in this study. These algorithms are mainly concerned to 
deal with unstructured data such as text [32]. In this study, 
machine learning algorithms namely: Bayesian algorithm, 
Support vector machine, decision tree and rule-based 
algorithms are used to classify severity levels of bug reports. 
These algorithms are described in the following subsections: 

1) Bayesian algorithms: Bayesian is a probability-based 

classification algorithm that is based on Bayesian theorem [33]. 

It describes the probability of an independent variable based on 

prior knowledge of the dependent variable(s). In this research 

study, two different variations of the Bayesian algorithm were 

used namely, Naïve Bayes classifier (NB) and Naïve Bayes 

Multinomial (NBM). 

The Naïve Bayes classifier estimates the class conditional 
probability of class label with the assumption that all attributes 
are independent [34]. The NB has been widely used in the 
domain of text classification due to its simplicity and 
effectiveness. On the other hand, NBM is similar to the naïve 
Bayes classifier except that it considers a weight for each 
feature during probability calculations. The weight of each 
feature can be determined by specific distributions or as a 
parametric model. The parameters can be estimated based on 
the training data. For the case of NBM, the distribution of data 
is assumed as a multinomial model [35]. 

2) Support vector machine: The main idea underlying 

support vector machines (SVMs) is as follow: search the best 

maximal margin hyperplane separating two classes of a given 

training data. A margin is defined as the sum of the distances 

of the closest positive and negative correctly classified data 

points (support vectors) from the hyperplane while penalizing 

misclassified data points. In the case of linear classification 

problems, linear SVMs can be used to search for the 
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hyperplane in the original space. On the other hand, for 

nonlinearly separable issues, the data are implicitly mapped to 

a higher dimensional space through a kernel function, where 

non-linear SVMs can be used to find a separating hyperplane. 

For any given classification problem, if no hyperplane can 
separate the two classes, a soft margin approach can be used to 
control the sensitivity of outliers to allow a separating 
hyperplane. It determines a hyperplane that splits the cases as 
clearly as possible with a penalty for misclassified cases, while 
still maximizing the distance to the nearest support vectors. 
SVMs have been widely used in applications such as 
handwriting recognition and bioinformatics and showed 
superior performance [36-38]. Careful design and 
methodological approach must be taken in applying SVM 
algorithms including tuning of parameters. SVMs has also been 
applied in the domain of text mining as it shows satisfactory 
results. The high dimensionality of text data makes SVMs a 
useful algorithm to apply and also avoids the curse of 
dimensionality problem of text data [39]. An implementation 
of SVMs named SMO algorithm [40] has been applied to the 
dataset, which is an open-source implementation of SVMs. 

3) Decision tree: The decision tree (DT) is a machine 

learning predictive approach used for classification and 

regression problems. It creates a prediction model by learning 

decision rules from data on a tree-like model. A DT model has 

a tree structure in which each node represents a test on a given 

variable and each branch represents the outcome of that test. 

Leaf nodes of the tree represent a class label (decision). The 

path from the root to leaf nodes represents a classification rule. 

Different DT based algorithms have been implemented 

including J48, random tree, random forest, Logistic model 

trees, and many others. Generally, decision tree classifiers have 

good accuracy. It is a typical inductive approach to learn 

knowledge from data. 

In this study, three DT algorithms were applied. These 
algorithms include J48 [41], Radom Forest (RF) [42], and 
Logistic Model Trees (LMT) [43]. 

4) Rule-based algorithms: The Rule-Based Algorithm 

extract knowledge from data in the form of rules. Rules usually 

take the form of an if-then expression. The main feature of 

rule-based models is that the produced model is expressed in 

term of a set of rules rather than just one rule or model. In this 

study, an algorithm called (Repeated Incremental Pruning to 

Produce Error Reduction (RIPPER) [44] is applied to the 

dataset. The RIPPER algorithm works through sequentially 

runs over the data in multiple passes. This algorithm repeatedly 

learns one rule at each pass until no data left. The JRip 

implementation of the RIPPER algorithm in WEKA is applied 

to the utilized dataset. 

To conclude, the classification algorithms namely: NB, 
NBM, SVMs, J48, RF, LMT, JRip and KNN are mainly 
utilized to evaluate their performance on the studied dataset. 
The open-source Weka software [45] was used to run the 
experiments with different parameters setting and the best 
parameters setting are selected based on evaluation measures. 

E. Experimental Settings 

The validation approach used in our study to evaluate the 
performance of different classifiers is the k-fold cross-
validation approach. This approach was used to generate a test 
set and avoid the over-fitting problem. The cross-validation 
approach performs independent tests without requiring separate 
test data samples and without reducing the data samples used 
to build prediction models. In the k-fold cross-validation 
process, the original data is classified into k groups, so that 
each group is used once as a validation set and the remaining 
data as a training set. In this study, the 10-fold cross-validation 
was used to evaluate the performance of different classifiers. 
Stratified based sampling was used to generate training and 
testing sets. In each case, a prediction model was trained using 
9 folds of the data and tested on the remaining fold and the 
results were averaged. 

F. Performance Evaluation 

Once a classifier is trained successfully and a prediction 
model is generated, performance evaluation measures must be 
applied on a separate dataset called test set to evaluate the 
performance of the generated model.  In our experiments, the 
performance of the generated prediction models is evaluated 
using various performance measures; these measures include 
accuracy, F-measure and Area Under the Curve (AUC). Each 
measure provides a different perspective of performance 
evaluation and a broader set of performance results to compare. 

The accuracy measures how correctly a classifier predicts 
class labels. It is calculated as the percentage of true positive 
and true negative rates to the number of all instance. On the 
other hand, the F-measure considers both the precision and the 
recall to compute the performance of a classifier and is 
measured as the harmonic mean of precision and recall. In this 
case study, the F1 measure is used, where recall and precision 
are equally weighted: 

F-measure     
                  

(                  )
 

The F-measure reach a value of 1 (perfect precision and 
recall) and the worst value is 0. The higher F-measure value 
indicates the higher quality performance of the classifier. 

Furthermore, an alternative measure to evaluate the 
performance of generated models is the Receiver Operating 
Characteristic (ROC). This approach compares the true 
positive rate with a false positive rate as a drawn curve. The 
ROC measure is usually summarized as a statistical value 
representing the area under the ROC carve known as Area 
Under Curve (AUC). The AUC represents the probability that 
the outcome of the generated model is better than induction 
using a random model, where a random model has an AUC 
value of 0.5 while a perfect model has an AUC of 1. Therefore, 
the higher AUC value is, the better the model achieves. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this research study, eight machine learning algorithms 
were employed on the studied dataset (JIRA bug reports). 
These algorithms are NB, NBM, SVMs, J48, RF, LMT, JRip 
and KNN. As discussed before, IG feature selection was 
applied and features obtained after pre-processing are ranked 
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and the top „N‟ scoring features are selected based on ranking 
results. A set of eight datasets are generated, these datasets 
include the original dataset with the whole feature set and the 
top 25, 50, 75, 100, 125, 150, 200 and 300 terms are generated 
as new datasets to build prediction models. The results then 
analyzed in terms of selected performance measures, which are 
the accuracy, F-measure and AUC measures. These measures 
are used to examine the performance of machine learning 
algorithms empirically and the best models were reported. The 
open-source Weka software [45] was used to run the 
experiments with different parameters setting and the best 
parameters setting are selected based on evaluation measures. 

Table II shows the results of different machine learning 
algorithms concerning the original JIRA dataset with all 
feature set generated after pre-processing. Based on the 
accuracy, it is found that the accuracy of different classifier 
varies in the range of 75.23% and 84.55%. However, the 
accuracy results are somehow biased as the dataset is 
imbalanced and the results are biased toward the larger class. 
The reported performance results of all algorithms based on the 
AUC and F-measure are promising as these measures take into 
consideration the performance results of all classes. As seen in 
Table II, the AUC performance results vary between 0.59-0.88 
and F-measure between 0.85-0.90. These measures are not 
biased and report the performance of the two classes. Based on 
the F-measure performance results, all DT algorithms, namely 
Random Forest, LMT and J48 perform the best followed by 
NBM and JRip and SVM, and the KNN performed the lowest. 

Table III shows the performance of different machine 
learning algorithms on the studied dataset with a varying 
number of selected features based on the IG ranging from 25-
300 features. As shown in Table III, The performance results 
based on all measures show comparable and better results than 
the ones obtained from the generated models on the original 
dataset (with no feature selection). Therefore, the selected 
terms based on feature selection will able to distinguish the bug 
severity based on a smaller feature set. The accuracy reaches 
86.54% when the number of selected features is 75 features, as 
compared to the model generated based on the original dataset 
(with all features) which was 84.55%. In terms of the AUC 
measure, the AUC result reaches 0.91 when the number of 
selected features is 125 features, as compared to the model 
generated based on all features which was 0.88. Furthermore, 
the F-measure results reached 0.91 when the number of 
selected features is 125 features, as compared to the model 
generated based on all features which was 0.9. 

Fig. 3 shows the performance results of all machine 
learning algorithms, in terms of accuracy, on varying generated 
datasets based on the utilized feature selection method. 
According to the results, it is found that the accuracy of most 
algorithms stabilized when the number of selected features is 
75 or more terms except NB classifier. The accuracy of NB 
algorithm has consistent accuracy in all datasets with a varying 
number of features. The performance results of AUC and F-
Measure of various algorithms are shown in Fig. 4 and Fig. 5 
From these figures, the performance of all classifier depends 
on the number of terms considered to build the classifier and 
the performance results provide comparable and better results 
than relying on the whole feature set. The reported results of 

the AUC and F-measure using different machine learning 
algorithms state that the best performance results are when the 
number of selected features is 125 terms. These terms are 
chosen using the information gain measure. It is clear that the 
severity of bug reports can be predicted with a reasonable 
performance of AUC measure as they show a differentiated 
and progressive value of AUC and better than using whole 
feature sets. Similar trends are also observed with the F-
measure shown in Fig. 5 From results reported in Table III and 
Fig. 5, the best F-measure results were obtained using Naïve 
Bayes Multinomial, SVM, and Logistic model trees. These 
algorithms receive 90%-91% performance results where 
Logistic model trees achieve best and stable results. However, 
other algorithms report varied and fewer performances. 

Similar results observed from Table III when the number of 
terms taken into account is over 75 terms. The AUC and F-
measure results are similar and consistent as compared to the 
performance results when the number of selected terms are 
less. The results suggest that the generated models can predict 
the severity of bugs more accurately when the number of 
selected terms in the range of 75 to 125 terms. As Table III 
shows, it can be concluded that models have performed well in 
predicting the bug reports of either severity levels as reported 
by both AUC and f-measures values. 

TABLE. II. PERFORMANCE RESULTS OF DIFFERENT CLASSIFICATION 

ALGORITHMS ON JIRA DATASET WITH ALL FEATURES 

Classifier  Accuracy AUC F-measure 

SVM 77.5 0.59 0.87 

KNN 75.23 0.75 0.85 

DT - J48 80.48 0.76 0.87 

DT - RF 84.55 0.88 0.9 

Rule-Based JRip 81.28 0.72 0.88 

NBM 82.43 0.86 0.88 

Naïve Bayes  80.03 0.84 0.86 

DT:LMT 83.26 0.86 0.89 

 

Fig. 3. Accuracy of different Classification Algorithms. 
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TABLE. III. ACCURACY OF DIFFERENT CLASSIFICATION ALGORITHMS WITH A VARYING NUMBER OF SELECTED FEATURES BASED ON IG 

 
Top 25  Top 50  Top 75 

Accuracy AUC F-measure  Accuracy AUC F-measure  Accuracy AUC F-measure 

SVM 84.44 0.75 0.90  85.44 0.77 0.91  85.94 0.78 0.91 

KNN 82.15 0.83 0.88  82.98 0.84 0.89  82.86 0.85 0.89 

DT - J48 80.61 0.74 0.88  80.61 0.74 0.88  80.61 0.74 0.88 

DT - RF 80.34 0.84 0.87  81.43 0.85 0.87  81.96 0.86 0.88 

rule-based JRip 80.99 0.72 0.88  81.08 0.72 0.88  80.84 0.72 0.88 

NBM 84.89 0.86 0.90  86.31 0.90 0.91  86.54 0.91 0.91 

Naïve Bayes 82.50 0.86 0.88  82.77 0.87 0.88  82.77 0.87 0.88 

DT:LMT 85.09 0.87 0.90  86.05 0.89 0.91  86.20 0.90 0.91 

            

 
Top 100  Top 125  Top 150 

 
Accuracy AUC F-measure  Accuracy AUC F-measure  Accuracy AUC F-measure 

SVM 85.63 0.77 0.91  85.35 0.76 0.91  84.76 0.75 0.90 

KNN 82.76 0.84 0.89  82.33 0.85 0.88  81.79 0.84 0.88 

DT - J48 80.61 0.74 0.88  80.61 0.74 0.88  80.61 0.74 0.88 

DT - RF 82.11 0.86 0.88  82.03 0.87 0.88  82.49 0.87 0.88 

rule-based JRip 80.98 0.72 0.88  80.98 0.72 0.88  81.10 0.72 0.88 

NBM 86.20 0.91 0.91  86.08 0.90 0.91  85.58 0.90 0.91 

Naïve Bayes 82.80 0.87 0.88  82.81 0.87 0.88  82.13 0.86 0.88 

DT:LMT 86.19 0.90 0.91  86.31 0.90 0.91  85.98 0.89 0.91 

            

 
Top 175  Top 200  Top 300 

 
Accuracy AUC F-measure  Accuracy AUC F-measure  Accuracy AUC F- measure 

SVM 84.45 0.74 0.90  84.04 0.73 0.90  83.87 0.72 0.90 

KNN 81.77 0.84 0.88  81.74 0.83 0.88  81.49 0.81 0.88 

DT - J48 80.61 0.74 0.88  80.61 0.74 0.88  81.36 0.78 0.88 

DT - RF 82.36 0.87 0.88  83.18 0.87 0.89  83.25 0.87 0.89 

rule-based JRip 81.02 0.72 0.88  81.11 0.72 0.88  80.83 0.72 0.88 

NBM 85.30 0.90 0.90  85.03 0.90 0.90  84.37 0.88 0.90 

Naïve Bayes 82.38 0.86 0.88  81.95 0.86 0.88  81.94 0.86 0.88 

DT: LMT 85.75 0.89 0.91  85.60 0.89 0.91  84.73 0.88 0.90 
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Fig. 4. The AUC Results of different Classification Algorithms with a 

Varying Number of Selected Terms. 

 

Fig. 5. The F-Measure Results of different Classification Algorithms with a 

Varying Number of Selected Terms. 

Overall, the LMT algorithm reported the best performance 
results based on all performance measures. The maximum 
AUC and F-measure obtained with LMT are 0.90 and 0.91, 
respectively. It is further found that NBM performs similarly to 
LMT in terms of AUC and F-measure. The minimum AUC 
and F-measure values obtained with NBM are 0.88 and 0.91 
respectively, and the maximums are 0.9 and 0.91, respectively. 
The SVM model also has comparable performance results, but 
it is in some ways less than the results reported for the LMT 
and NBM. The maximum AUC and F-measure results obtained 
with SVM are 0.8 and 0.9, respectively. Other algorithms 
report divergent accuracy performance results. The maximum 
AUC and F-measure results obtained with other algorithms are 
0.86 and 0.88, respectively. Therefore, the reported results 
indicate that LMT performs better for bug severity prediction 

under the reported experimental setup. The superior 
performance of the LMT algorithm can be attributed to the fact 
that the number of selected features after applying feature 
selection method is relatively small compared to the original 
feature set. Therefore, discarding unimportant features leads 
LMT algorithm to build classification trees that are 
significantly smaller than the standard classification trees and 
has accurate prediction results. 

Finally, the severity of new bug reports submitted to JIRA 
bug tracking system can be predicted automatically based on 
the reported prediction model. This automatic prediction would 
be beneficial for software engineers and developers of INTIX 
Company to automatically assign the severity of reported bugs 
instead of manual work. As a consequence, severe bugs will be 
solved on time without causing a delay for fixing them. 

V. CONCLUSIONS 

In this research paper, we described machine learning 
approaches for predicting the severity level of software bug 
reports in closed-source projects and leveraged Information 
Gain (IG) feature selection method to enhance the performance 
of the prediction by increasing the prediction accuracy of the 
bug severity level. 

The procedure of the proposed methodology was illustrated 
and evaluated by comparing eight popular machine learning 
algorithms, namely Naive Bayes, Naive Bayes Multinomial, 
Support Vector Machine (SVM), Decision Tree (J48), Random 
Forest, Logistic Model Trees (LMT), Decision Rules (JRip) 
and KNN. The performances of utilized machine learning 
algorithms were evaluated in terms of accuracy, F-measure and 
Area Under the Curve (AUC). Furthermore, one of the 
objectives of this research work was to utilize feature selection 
techniques for the enhancement of selected features that will, in 
turn, allow for more precise discriminative power and produce 
better prediction performance results. 

The proposed methodology was conducted on the existing 
severity levels assigned manually by the developers of INTIX 
Company through the JIRA bug tracking system. The 
experiments were evaluated using performance measures: 
accuracy, F-measure and AUC. The obtained results indicated 
that the Logistic Model Trees (DT: LMT) outperformed other 
classifiers and the overall performance has been enhanced after 
applying feature selection method. The results showed that the 
LMT algorithms reported the best performance results based 
on all performance measures (Accuracy= 86.31, AUC= 0.90, 
F-measure= 0.91). 

In future work, we plan to adopt sentiment analysis and 
opinion mining techniques to enhance the performance of the 
process of predicting the severity level of software bug reports. 

ACKNOWLEDGMENT 

The authors are thankful to INTIX Company for providing 
us with the bug report dataset. 

REFERENCES 

[1] T. Zhang, H. Jiang, X. Luo, and A. T. Chan, "A literature review of 
research in bug resolution: Tasks, challenges and future directions," The 
Computer Journal, vol. 59, pp. 741-773, 2016. 

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

All
data

top
25

top
50

top
75

top
100

top
125

top
150

top
175

top
200

top
300

AUC results 

SVM KNN

DT - J48 DT - Random Forest

rule-based Jrip NaiveBayesMultinomial

Naïve base DT: logistic model trees

0.84

0.86

0.88

0.9

0.92

All
data

top
25

top
50

top
75

top
100

top
125

top
150

top
175

top
200

top
300

F-measure results 

SVM KNN

DT - J48 DT - Random Forest

rule-based Jrip NaiveBayesMultinomial

Naïve base DT: logistic model trees



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

294 | P a g e  

www.ijacsa.thesai.org 

[2] C. Liu, J. Yang, L. Tan, and M. Hafiz, "R2Fix: Automatically generating 
bug fixes from bug reports," in 2013 IEEE Sixth International 
Conference on Software Testing, Verification and Validation, 2013, pp. 
282-291. 

[3] G. Murphy and D. Cubranic, "Automatic bug triage using text 
categorization," in Proceedings of the Sixteenth International 
Conference on Software Engineering & Knowledge Engineering, 2004. 

[4] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. 
Zimmermann, "What makes a good bug report?," in Proceedings of the 
16th ACM SIGSOFT International Symposium on Foundations of 
software engineering, 2008, pp. 308-318. 

[5] Bugzilla. (2019). Bug Tracking System. Available: 
http://www.bugzilla.org/ 

[6] Atlassian. (2019). JIRA. Available: http://www.atlassian.com/ 
software/jira/ 

[7] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc, 
"Is it a bug or an enhancement?: a text-based approach to classify 
change requests," in CASCON, 2008, pp. 304-318. 

[8] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, and H. Shah, "A survey 
on bug prioritization," Artificial Intelligence Review, vol. 47, pp. 145-
180, 2017. 

[9] K. Chaturvedi and V. Singh, "Determining bug severity using machine 
learning techniques," in 2012 CSI Sixth International Conference on 
Software Engineering (CONSEG), 2012, pp. 1-6. 

[10] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, "Comparing 
mining algorithms for predicting the severity of a reported bug," in 2011 
15th European Conference on Software Maintenance and 
Reengineering, 2011, pp. 249-258. 

[11] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, "Predicting the 
severity of a reported bug," in 2010 7th IEEE Working Conference on 
Mining Software Repositories (MSR 2010), 2010, pp. 1-10. 

[12] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and G. Robles, 
"Towards a simplification of the bug report form in eclipse," in 
Proceedings of the 2008 international working conference on Mining 
software repositories, 2008, pp. 145-148. 

[13] Y. Tian, D. Lo, and C. Sun, "Information retrieval based nearest 
neighbor classification for fine-grained bug severity prediction," in 2012 
19th Working Conference on Reverse Engineering, 2012, pp. 215-224. 

[14] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo, "Towards more 
accurate severity prediction and fixer recommendation of software 
bugs," Journal of Systems and Software, vol. 117, pp. 166-184, 2016. 

[15] T. Menzies and A. Marcus, "Automated severity assessment of software 
defect reports," in 2008 IEEE International Conference on Software 
Maintenance, 2008, pp. 346-355. 

[16] R. Jindal, R. Malhotra, and A. Jain, "Prediction of defect severity by 
mining software project reports," International Journal of System 
Assurance Engineering and Management, vol. 8, pp. 334-351, 2017. 

[17] A. F. Otoom, D. Al-Shdaifat, M. Hammad, and E. E. Abdallah, 
"Severity prediction of software bugs," in 2016 7th International 
Conference on Information and Communication Systems (ICICS), 2016, 
pp. 92-95. 

[18] K. Jin, A. Dashbalbar, G. Yang, B. Lee, and J.-W. Lee, "Improving 
predictions about bug severity by utilizing bugs classified as normal," 
Contemp Eng Sci, vol. 9, pp. 933-942, 2016. 

[19] C.-Z. Yang, K.-Y. Chen, W.-C. Kao, and C.-C. Yang, "Improving 
severity prediction on software bug reports using quality indicators," in 
2014 IEEE 5th International Conference on Software Engineering and 
Service Science, 2014, pp. 216-219. 

[20] V. Singh, S. Misra, and M. Sharma, "Bug severity assessment in cross 
project context and identifying training candidates," Journal of 
Information & Knowledge Management, vol. 16, p. 1750005, 2017. 

[21] W. Liu, S. Wang, X. Chen, and H. Jiang, "Predicting the severity of bug 
reports based on feature selection," International Journal of Software 
Engineering and Knowledge Engineering, vol. 28, pp. 537-558, 2018. 

[22] N. K. S. Roy and B. Rossi, "Towards an improvement of bug severity 
classification," in 2014 40th EUROMICRO Conference on Software 
Engineering and Advanced Applications, 2014, pp. 269-276. 

[23] G. Sharma, S. Sharma, and S. Gujral, "A novel way of assessing 
software bug severity using dictionary of critical terms," Procedia 
Computer Science, vol. 70, pp. 632-639, 2015. 

[24] S. Sharmin, F. Aktar, A. A. Ali, M. A. H. Khan, and M. Shoyaib, "Bfsp: 
A feature selection method for bug severity classification," in 2017 
IEEE Region 10 Humanitarian Technology Conference (R10-HTC), 
2017, pp. 750-754. 

[25] C.-Z. Yang, C.-C. Hou, W.-C. Kao, and X. Chen, "An empirical study 
on improving severity prediction of defect reports using feature 
selection," in 2012 19th Asia-Pacific Software Engineering Conference, 
2012, pp. 240-249. 

[26] G. Yang, K. Min, J.-W. Lee, and B. Lee, "Applying Topic Modeling and 
Similarity for Predicting Bug Severity in Cross Projects," KSII 
Transactions on Internet & Information Systems, vol. 13, 2019. 

[27] G. Yang, T. Zhang, and B. Lee, "An emotion similarity based severity 
prediction of software bugs: A case study of open source projects," 
IEICE TRANSACTIONS on Information and Systems, vol. 101, pp. 
2015-2026, 2018. 

[28] W. Y. Ramay, Q. Umer, X. C. Yin, C. Zhu, and I. Illahi, "Deep Neural 
Network-Based Severity Prediction of Bug Reports," IEEE Access, vol. 
7, pp. 46846-46857, 2019. 

[29] T. Liu, S. Liu, Z. Chen, and W.-Y. Ma, "An evaluation on feature 
selection for text clustering," in Proceedings of the 20th international 
conference on machine learning (ICML-03), 2003, pp. 488-495. 

[30] Y. Yang and J. O. Pedersen, "A comparative study on feature selection 
in text categorization," in Icml, 1997, p. 35. 

[31] M. F. Caropreso, S. Matwin, and F. Sebastiani, "A learner-independent 
evaluation of the usefulness of statistical phrases for automated text 
categorization," Text databases and document management: Theory and 
practice, vol. 5478, pp. 78-102, 2001. 

[32] S. M. Weiss, N. Indurkhya, T. Zhang, and F. Damerau, Text mining: 
predictive methods for analyzing unstructured information: Springer 
Science & Business Media, 2010. 

[33] P. S. Laplace, "Memoir on the probability of the causes of events," 
Statistical Science, vol. 1, pp. 364-378, 1986. 

[34] T. M. Mitchell, "Machine Learning," ed: Mcgraw-hill, 1997. 

[35] A. McCallum and K. Nigam, "A comparison of event models for naive 
bayes text classification," in AAAI-98 workshop on learning for text 
categorization, 1998, pp. 41-48. 

[36] V. Christlein, D. Bernecker, F. Hönig, A. Maier, and E. Angelopoulou, 
"Writer identification using GMM supervectors and exemplar-SVMs," 
Pattern Recognition, vol. 63, pp. 258-267, 2017. 

[37] S. Cogill and L. Wang, "Support vector machine model of 
developmental brain gene expression data for prioritization of Autism 
risk gene candidates," Bioinformatics, vol. 32, pp. 3611-3618, 2016. 

[38] F. Simistira, V. Katsouros, and G. Carayannis, "Recognition of online 
handwritten mathematical formulas using probabilistic SVMs and 
stochastic context free grammars," Pattern Recognition Letters, vol. 53, 
pp. 85-92, 2015. 

[39] D. N. Sotiropoulos, D. E. Pournarakis, and G. M. Giaglis, "SVM-based 
sentiment classification: a comparative study against state-of-the-art 
classifiers," International Journal of Computational Intelligence Studies, 
vol. 6, pp. 52-67, 2017. 

[40] J. Platt, "Fast training of support vector machines using sequential 
minimal optimization, in, B. Scholkopf, C. Burges, A. Smola,(eds.): 
Advances in Kernel Methods-Support Vector Learning," ed: MIT Press, 
1998. 

[41] J. R. Quinlan, C4. 5: programs for machine learning: Elsevier, 2014. 

[42] L. Breiman, "Random forests," Machine learning, vol.45,pp. 5-32, 2001. 

[43] N. Landwehr, M. Hall, and E. Frank, "Logistic model trees," Machine 
learning, vol. 59, pp. 161-205, 2005. 

[44] W. W. Cohen, "Fast effective rule induction," in Machine Learning 
Proceedings 1995, ed: Elsevier, 1995, pp. 115-123. 

[45] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical 
machine learning tools and techniques: Morgan Kaufmann, 2016.  


