
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

285 | P a g e

www.ijacsa.thesai.org

Machine Learning Approaches for Predicting the

Severity Level of Software Bug Reports in Closed

Source Projects

Aladdin Baarah1, Ahmad Aloqaily2, Zaher Salah3, Mannam Zamzeer4, Mohammad Sallam5

Department of Software Engineering, Hashemite University, Zarqa, Jordan1, 5

Department of Computer Science and its Applications, Hashemite University, Zarqa, Jordan2

Department of Computer Information Systems, Hashemite University, Zarqa, Jordan3

Department of Information Technology, the University of Jordan, Amman, Jordan4

Abstract—In Software Development Life Cycle, fixing defect

bugs is one of the essential activities of the software maintenance

phase. Bug severity indicates how major or minor the bug

impacts on the execution of the system and how rapidly the

developer should fix it. Triaging a vast amount of new bugs

submitted to the software bug repositories is a cumbersome and

time-consuming process. Manual triage might lead to a mistake

in assigning the appropriate severity level for each bug. As a

consequence, a delay for fixing severe software bugs will take

place. However, the whole process of assigning the severity level

for bug reports should be automated. In this paper, we aim to

build prediction models that will be utilized to determine the

class of the severity (severe or non-severe) of the reported bug.

To validate our approach, we have constructed a dataset from

historical bug reports stored in JIRA bug tracking system. These

bug reports are related to different closed-source projects

developed by INTIX Company located in Amman, Jordan. We

compare eight popular machine learning algorithms, namely

Naive Bayes, Naive Bayes Multinomial, Support Vector Machine,

Decision Tree (J48), Random Forest, Logistic Model Trees,

Decision Rules (JRip) and K-Nearest Neighbor in terms of

accuracy, F-measure and Area Under the Curve (AUC).

According to the experimental results, a Decision Tree algorithm

called Logistic Model Trees achieved better performance

compared to other machine learning algorithms in terms of

Accuracy, AUC and F-measure with values of 86.31, 0.90 and

0.91, respectively.

Keywords—Software engineering; software maintenance; bug

tracking system; bug severity; data mining; machine learning;

severity prediction; closed-source projects

I. INTRODUCTION

Over the past years, the process of fixing bugs in the
software maintenance phase has become a challenging task
because the number of reported software bugs in large software
systems (e.g., open-source projects) is growing massively [1].
For instance, the number of reported bugs submitted daily to
Mozilla open-source system are 135 on average [2]. Managing
a high volume of new bugs submitted daily by different
reporters in these large open systems is a difficult task.
Furthermore, this increases the amount of work done by the so-
called bug triager, who assesses and analyzes these bugs within
the bounds of time and resources to assign an appropriate

severity level and suitable developer(s) who will fix those
defected bugs [3].

Bug report systems are important software artifacts. They
are leveraged for various tasks during software maintenance,
such as assigning bugs to appropriate developers, assessing the
severity and priority of bugs and detecting duplicate bugs. The
quality of bug reports relies, to a large extent, on the
information written in these reports [4]. Thus, if the data in bug
reports are incomplete, unclear or inaccurate, the tasks as
mentioned above will lead to unpredictable results.

Bug tracking systems such as Bugzilla [5] and JIRA [6]
are utilized by open-source and closed-source projects during
the software maintenance phase to collect, maintain, manage,
and track issues related generally to bug reports (i.e. corrective
maintenance) [7]. At present, developers, quality assurance
testers, users and other team members are promoted to report
and submit bugs they experience to bug repositories in a
situation when the project behaves incorrectly and does not
conform to the software requirements [8].

Bug severity “is the degree of impact that a defect has on
the development or operation of a component or a system” [9].
Generally, bug reports are categorized according to their
severity. High severity reports exemplify major (i.e. critical or
fatal) errors and have a high impact on the functionality of the
system, as well, they are given more top priority and should be
resolved rapidly. While low severity reports exemplify trivial
errors and minor problems that do not affect the execution of
the system [10].

Initially, when a new bug is created, the reporter (e.g.,
developer) is required to fill in the fields of the bug report form
such as a one-line summary for a specific project. As well, the
reporter is required to estimate the severity level field (e.g.,
high, medium and low) of the observed bug according to their
competence and knowledge. In practice, if the reporter is
incapable of assessing the severity of the bug, they will assign
a default value for the severity field and thus makes the
triaging process more difficult [11]. One potential explanation
for assigning a default value for the severity is that the
reporters are unable to distinguish between different severity
levels, or they have lack of knowledge and experience in
assigning the value of the severity level [12]. Another potential

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

286 | P a g e

www.ijacsa.thesai.org

explanation is that the reporters do not take into consideration
the severity estimation at all when they submit a report and
leave the default value unchanged [10].

Even though there are rules on how to set the severity label
of the encountered bugs, specifying proper severity level is
mostly based on the expertise of who reports the bug. The
developer has to determine the severity of these software bugs
manually to prioritize which bug report needs more attention
than others in terms of fixing. In the case of assigning an
inaccurate value for the severity, this will result in
postponement in fixing severe bugs, and this will expand the
time to resolve these type of bugs [13]. However, a further
validation step is required after the bug has been submitted
where the bug triager has to confirm the validity of the severity
value, whether it is adequately assigned or not. This process is
called “severity identification” [14]. It is a tiresome and time-
consuming process and it increases the volume of work carried
out by the triager especially when there is a massive number of
bugs submitted daily to the bug tracking systems.

Fig. 1 shows an example of the JIRA bug report used by
INTIX Company. This bug report is reported by “Mohammad
Yasser” and assigned to the developer “Mustafa Alqudah”. The
one-line summary “Incorrect unit price in order details if a

product has multi-selection attribute” is shown in the top left of
the figure and the severity level assigned for this bug is high.

To overcome the mentioned problems, there is a necessity
to automate the whole process of assigning the severity level of
newly reported bugs to replace the manual job. One reason for
that is to decrease the amount of work done by the triager.
Another reason is to improve the accuracy of severity
identification.

In this paper, we compare different machine learning
algorithms applied on the textual description of the bug reports
(i.e. one-line summary field). Unlike most of the research
works reported in the literature, we applied the proposed
methodology to a private dataset related to bug reports. These
bugs are associated with closed-source projects developed by
INTIX Company located in Amman, Jordan. The dataset is
extracted from JIRA bug tracking system used by the
company.

The structure of this paper is organized as follow. In
Section II, we describe the related works conducted by other
researchers. Then, in Section III, we demonstrate our research
methodology in detail. After that, in Section IV, we discuss the
experimental results. Finally, we summarize our approach and
point out future work in the conclusion section.

Fig. 1. Example of JIRA Bug report.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

287 | P a g e

www.ijacsa.thesai.org

II. RELATED WORKS

The work described in this paper is concerned mainly with
bug reports, particularly in the area of bug severity. This
section presents the recent literature review regarding bug
severity prediction.

One of the first studies to predict the severity label of bug
reports was performed by [15]. A rule-based learning technique
was utilized to build a new tool called SEVERIS. SEVERIS is
based on text mining and machine learning techniques applied
on the unstructured data of the bug report (i.e. summary,
description). They applied their automated prediction model on
NASA‟s Project and Issue Tracking System (PITS). The
authors argued that SEVERIS, with a slight adjustment, can be
applied to other open-source repositories such as Bugzilla.

 An extension of [15] work was performed by [11] to
investigate whether text mining techniques applied in the
textual information of a bug report is an adequate approach to
predict the severity of a newly reported bug automatically.
They used Naïve Bayes technique for their prediction model
and they applied their model on datasets extracted from three
popular open-source bug repositories, including Mozilla,
Eclipse and GNOME. The experimental results showed that
prediction accuracy was varied between 0.65–0.75 for Mozilla
and Eclipse dataset. Regarding GNOME dataset, the prediction
accuracy was varied between 0.70–0.85.

Later, a follow-up study was conducted by [10]. The
authors compared four familiar classification techniques
(Naïve Bayes, Naïve Bayes Multinomial (NBM), K-Nearest
Neighbor (K-NN) and Support Vector Machine (SVM)) to
figure out which technique was the most suitable for the
severity prediction model so that it can classify the newly
reported bug into severe and non-severe. For evaluation
purposes, they construct twelve different datasets from Eclipse
and GNOME open-source projects. According to their
experimental results, among the four candidate classifiers,
NBM had the best results in terms of accuracy.

A comparable study to [15] was conducted by [16]. The
authors conducted different experiments on four nameless
datasets of NASA‟s PITS using three methods: a Regression
method called Multi-Nomial Multivariate Logistic Regression
(MMLR), Multi-Layer Perception (MLP) and Decision Tree.
The prediction models were fed with different top-k terms
extracted from the training datasets using Information Gain
(IG) feature selection. The authors concluded that the Decision
Tree performed better than MMLR and MLP.

A further study for predicting fine-grained severity level of
a bug report was conducted by [17]. The authors built a model
to classify the severity of a new bug reported to the bug
repository. A dataset of 163 bug reports was built from Eclipse
and Mozilla projects. Six machine learning approaches were
adopted, namely, Naïve Bayes, RBF Networks, Functional
Trees, Random Trees, Random Forests and AdaBoost. In
accordance with their results, AdaBoost with base classifiers,
as mentioned above, showed an improvement of up to 4.9% in
terms of accuracy.

Other studies, for example [18, 19], examined the impact of
utilizing other attributes of bug reports, besides the
unstructured text, to enhance the bug severity prediction. In the
study conducted by [18], the authors used NBM as a
classification technique and applied their proposed approach on
two distinct datasets originating from two open-source
projects, namely Mozilla and Eclipse. Their empirical study
revealed that there was an improvement in the prediction
accuracy and outperformed the work of [11]. Similarly, Yang
et al. [19] adopted NBM classifier for severity prediction.
According to their evaluation, the attributes (quality indicators)
of bug reports from Eclipse dataset (i.e. stack traces,
attachments) exploited in their study showed an improvement
in the accuracy of their prediction model.

In the domain of cross-project severity prediction, Singh et
al. [20] conducted a study based on the summary description of
the bug report. Different prediction models were built using
different classifiers, namely SVM, K-NN and Naïve Bayes. A
combination of seven datasets from seven Eclipse projects was
constructed to build 63 training set candidates. The
experimental results revealed that K-NN achieved better results
than SVM and Naïve Bayes when using a combination of
several training datasets rather than a single training dataset.

Many research works, as described in [21-25] employed
different feature selection methods to minimize the number of
informative features set and to enhance the accuracy of the
classifier. All the works mentioned above paid particular
attention to the effectiveness of feature selection techniques on
the accuracy of classifying the severity of bug reports. Bi-
gram, along with feature selection and text mining algorithms
were proposed by [22] to enhance the accuracy of their
prediction model. While in work described by [25], the authors
examined three feature selection methods, namely, Information
Gain (IG), Chi-Square (CHI) and Correlation Coefficient to
extract the distinct features that depict the severity of the bug
reports (severe or non-severe) from the summary field in the
bug reports.

On the other hand, an ensemble feature selection technique
was proposed by [21] through consolidating at most two
feature selection methods. Various feature selection methods
were used in their experiments, in particular, Term Frequency
(TF), Document Frequency (DF), Mutual Information (MI),
Statistical Dependency (SD), Information Gain (IG), Chi-
Square (CHI) and Correlation Coefficient. In their prediction
model, the authors employed Naïve Bayes Multinomial as the
classifier.

Later, [26] proposed a new approach, an integration of
topic modelling using LDA and similarity using KL-
divergence to predict the severity of bug reports in cross
projects. In their work, a total of 20,000 bug reports from 4
different open source projects (Eclipse, Mozilla, WireShark
and Xamarin) were assembled to validate their proposed
approach. The experimental results demonstrated that their
model achieved better performance, in terms of accuracy than
other four cutting-edge studies listed in their literature.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

288 | P a g e

www.ijacsa.thesai.org

In more recent studies, emotional-based expressions written
in the unstructured text fields of the bug reports were leveraged
by [27, 28] to classify the severity label of bug report (i.e.,
critical, high, trivial and low). In the former approach [27], two
stages related to emotional similarity technique were
performed using Smoothed Unigram Model and KL-
Divergence. In the latter approach [28], the authors exploited
the notion of deep learning algorithm based on Neural Network
along with emotional analysis. The experimental results of both
studies above emphasized that employing emotion analysis
significantly improved the performance of the prediction
model.

In the context of bug report severity prediction, most of the
reported research studies in the literature mainly used open-
source projects because they are publicly accessible. While in
the research work described in this paper, we are attempting to
exploit a private bug report dataset related to closed-source
projects developed by an existing local company located in
Jordan.

III. RESEARCH METHODOLOGY

The process of predicting the severity label of reported
bugs is shown in Fig. 2. It comprises of four main phases:
dataset extraction, dataset pre-processing, feature selection and
prediction. The following sections will explain each phase in
detail.

A. Dataset Extraction

The bug reports dataset is extracted from the repository of
JIRA bug tracking system related to closed-source projects
developed by INTIX Company located in Amman, Jordan. We
considered bug reports submitted to JIRA between May 2016
and March 2018.

The bug reports were classified into five levels: lowest,
low, medium, high and highest. Although software engineers
usually follow a specific guideline on how to assign severity of
reported bugs, however, the categorization process seems to be
evaluated imprecisely. In this research work, we treat lowest
and low severity as non-severe, while high and highest severity
as severe bugs. Furthermore, as proposed by [12], the authors
recommended not to take the medium severity in the
classification process. The medium class, as it is investigated,
is the default option for reporting a bug and it seems that a
large number of reporters report any confusing bug as a
medium.

The datasets mainly consist of three features including bug
ID, a short description (i.e., one-line summary) and the severity
level of the bug. The description of each bug is represented as a
short text (snippet). From the bug reports, the severity and the
short description of the bug report were mainly used for the
prediction process. Table I statistically summarizes the
characteristics of the dataset used in the experiments described
in this research work. As shown in Table I, too many words are
repetitive in the dataset where the number of distinct words is
significantly fewer than the total number of all words exists
within the dataset (765 out of 9016). The table also shows the
shortness property of the bug summary (i.e. short text) where
the average number of words per bug summary was 7.75 words
and thus this made the prediction process more challenging.

Fig. 2. Methodology for Predicting Bug Severity.

TABLE. I. STATISTICAL SUMMARY FOR THE BUG REPORTS IN JIRA

DATASET

Min number of words per Bug Summary 1

Max number of words per Bug Summary 44

Avg. number of words per Bug Summary 7.75

StD. number of words per Bug Summary 3.73

Total Number of Bug Reports in the dataset 1164

Number of Severe Bugs 851

Number of Non-Severe Bugs 313

Number of all words in the dataset 9016

Number of distinct words in the dataset 765

B. Dataset Pre-Processing

To build a prediction model, machine learning algorithms
require text data (i.e., one-line summary) of a bug report to be
transformed into a feature of vector (Bag-of-Words).
Therefore, different pre-processing steps must be applied to the
dataset (text) to be converted into a vector of features where
the features represent words in a utilized dataset. The typical
pre-processing phase starts with Tokenization, Stop-words
Removal and Stemming. These steps are explained as follow:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

289 | P a g e

www.ijacsa.thesai.org

1) Tokenization: This step represents splitting a text data

into a collection of words where each word corresponds to a

single term. Removing white spaces, punctuations and

converting all uppercase characters to lowercase are taken into

consideration in this step.

2) Stop-words removals: In the domain of natural language

processing, conjunctions, adverbs, prepositions and other

constructive terms are used mainly to build a sentence. These

terms do not carry out any semantic or statistical information to

distinguish the text. Terms like “an”, “on”, “there” and many

others are called stop-words and are not crucial for bug severity

prediction. Therefore, all stop-words are removed based on a

pre-defined list of stop-words.

3) Stemming: Stemming is one of the main steps in the

domain of text mining and natural language processing. The

purpose of carrying out this step is to replace all terms that

have a common stem (root word) and the stem of a word is

retained as a feature. For instance, the words “find”, “finds”,

“found” and “finding” can be replaced with one word or their

stem which is “find”.

Finally, all the terms obtained after the three
aforementioned pre-processing steps are called features or bag-
of-words and are mainly used to build prediction models as
described later in this section.

C. Feature Selection

The size of the feature set that can be generated after
applying pre-processing steps is still enormous and
consequently is not suitable for machine learning algorithms.
Feature selection, in text mining, is a crucial step to select the
most discriminative features (terms/words) from a list of
features using appropriate feature selection methods.

There are many available feature selection methods in the
literature such as Chi-square, Information Gain (IG), Term
Frequency, Document Frequency, and Mutual Information. In
fact, there is no much difference in utilizing different feature
selection methods as we decide to select sets of features with
different sizes [29, 30]. For experimental purpose, IG feature
selection method is applied and features obtained after pre-
processing are ranked and the top „N‟ scoring features are
selected based on ranking results to build the prediction models
of different datasets.

IG feature selection is used to measure the dependency
between features and the class label [31]. It measures the
informativeness of a feature gained regarding the class label
and is defined as follows:

 () () ()

where is the feature (term) i and is the class label j,

H() the entropy of term , and () is the entropy of
 after observing class label . The entropy () is defined

as

 ∑

Entropy is a common way to measure the degree of
randomness or impurity of a variable and comes from
information theory domain. The higher the entropy of a
variable the more the information it holds about the class.

Finally, the bug reports are represented as a feature matrix
where each row represents a bug report consisting of n selected
features (terms). Each term is weighted using the Term
Frequency Inverse Document Frequency (TF-IDF) approach.
Term frequency is calculated by multiplying term frequency
with inverse document frequency and is given as:

TF-IDF
 (

)

Where
 the frequency of word w in document d, N is the

number of document and Nw are documents containing word w.
The TF-IDF value indicates that words (terms) which occur
frequently in a specific document are more significant than
other terms in the same document. Lastly, the features are
normalized.

D. Machine Learning Algorithms

In this section, different machine learning algorithms for
predicting the severity level of the bugs are described and
utilized in this study. These algorithms are mainly concerned to
deal with unstructured data such as text [32]. In this study,
machine learning algorithms namely: Bayesian algorithm,
Support vector machine, decision tree and rule-based
algorithms are used to classify severity levels of bug reports.
These algorithms are described in the following subsections:

1) Bayesian algorithms: Bayesian is a probability-based

classification algorithm that is based on Bayesian theorem [33].

It describes the probability of an independent variable based on

prior knowledge of the dependent variable(s). In this research

study, two different variations of the Bayesian algorithm were

used namely, Naïve Bayes classifier (NB) and Naïve Bayes

Multinomial (NBM).

The Naïve Bayes classifier estimates the class conditional
probability of class label with the assumption that all attributes
are independent [34]. The NB has been widely used in the
domain of text classification due to its simplicity and
effectiveness. On the other hand, NBM is similar to the naïve
Bayes classifier except that it considers a weight for each
feature during probability calculations. The weight of each
feature can be determined by specific distributions or as a
parametric model. The parameters can be estimated based on
the training data. For the case of NBM, the distribution of data
is assumed as a multinomial model [35].

2) Support vector machine: The main idea underlying

support vector machines (SVMs) is as follow: search the best

maximal margin hyperplane separating two classes of a given

training data. A margin is defined as the sum of the distances

of the closest positive and negative correctly classified data

points (support vectors) from the hyperplane while penalizing

misclassified data points. In the case of linear classification

problems, linear SVMs can be used to search for the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

290 | P a g e

www.ijacsa.thesai.org

hyperplane in the original space. On the other hand, for

nonlinearly separable issues, the data are implicitly mapped to

a higher dimensional space through a kernel function, where

non-linear SVMs can be used to find a separating hyperplane.

For any given classification problem, if no hyperplane can
separate the two classes, a soft margin approach can be used to
control the sensitivity of outliers to allow a separating
hyperplane. It determines a hyperplane that splits the cases as
clearly as possible with a penalty for misclassified cases, while
still maximizing the distance to the nearest support vectors.
SVMs have been widely used in applications such as
handwriting recognition and bioinformatics and showed
superior performance [36-38]. Careful design and
methodological approach must be taken in applying SVM
algorithms including tuning of parameters. SVMs has also been
applied in the domain of text mining as it shows satisfactory
results. The high dimensionality of text data makes SVMs a
useful algorithm to apply and also avoids the curse of
dimensionality problem of text data [39]. An implementation
of SVMs named SMO algorithm [40] has been applied to the
dataset, which is an open-source implementation of SVMs.

3) Decision tree: The decision tree (DT) is a machine

learning predictive approach used for classification and

regression problems. It creates a prediction model by learning

decision rules from data on a tree-like model. A DT model has

a tree structure in which each node represents a test on a given

variable and each branch represents the outcome of that test.

Leaf nodes of the tree represent a class label (decision). The

path from the root to leaf nodes represents a classification rule.

Different DT based algorithms have been implemented

including J48, random tree, random forest, Logistic model

trees, and many others. Generally, decision tree classifiers have

good accuracy. It is a typical inductive approach to learn

knowledge from data.

In this study, three DT algorithms were applied. These
algorithms include J48 [41], Radom Forest (RF) [42], and
Logistic Model Trees (LMT) [43].

4) Rule-based algorithms: The Rule-Based Algorithm

extract knowledge from data in the form of rules. Rules usually

take the form of an if-then expression. The main feature of

rule-based models is that the produced model is expressed in

term of a set of rules rather than just one rule or model. In this

study, an algorithm called (Repeated Incremental Pruning to

Produce Error Reduction (RIPPER) [44] is applied to the

dataset. The RIPPER algorithm works through sequentially

runs over the data in multiple passes. This algorithm repeatedly

learns one rule at each pass until no data left. The JRip

implementation of the RIPPER algorithm in WEKA is applied

to the utilized dataset.

To conclude, the classification algorithms namely: NB,
NBM, SVMs, J48, RF, LMT, JRip and KNN are mainly
utilized to evaluate their performance on the studied dataset.
The open-source Weka software [45] was used to run the
experiments with different parameters setting and the best
parameters setting are selected based on evaluation measures.

E. Experimental Settings

The validation approach used in our study to evaluate the
performance of different classifiers is the k-fold cross-
validation approach. This approach was used to generate a test
set and avoid the over-fitting problem. The cross-validation
approach performs independent tests without requiring separate
test data samples and without reducing the data samples used
to build prediction models. In the k-fold cross-validation
process, the original data is classified into k groups, so that
each group is used once as a validation set and the remaining
data as a training set. In this study, the 10-fold cross-validation
was used to evaluate the performance of different classifiers.
Stratified based sampling was used to generate training and
testing sets. In each case, a prediction model was trained using
9 folds of the data and tested on the remaining fold and the
results were averaged.

F. Performance Evaluation

Once a classifier is trained successfully and a prediction
model is generated, performance evaluation measures must be
applied on a separate dataset called test set to evaluate the
performance of the generated model. In our experiments, the
performance of the generated prediction models is evaluated
using various performance measures; these measures include
accuracy, F-measure and Area Under the Curve (AUC). Each
measure provides a different perspective of performance
evaluation and a broader set of performance results to compare.

The accuracy measures how correctly a classifier predicts
class labels. It is calculated as the percentage of true positive
and true negative rates to the number of all instance. On the
other hand, the F-measure considers both the precision and the
recall to compute the performance of a classifier and is
measured as the harmonic mean of precision and recall. In this
case study, the F1 measure is used, where recall and precision
are equally weighted:

F-measure

()

The F-measure reach a value of 1 (perfect precision and
recall) and the worst value is 0. The higher F-measure value
indicates the higher quality performance of the classifier.

Furthermore, an alternative measure to evaluate the
performance of generated models is the Receiver Operating
Characteristic (ROC). This approach compares the true
positive rate with a false positive rate as a drawn curve. The
ROC measure is usually summarized as a statistical value
representing the area under the ROC carve known as Area
Under Curve (AUC). The AUC represents the probability that
the outcome of the generated model is better than induction
using a random model, where a random model has an AUC
value of 0.5 while a perfect model has an AUC of 1. Therefore,
the higher AUC value is, the better the model achieves.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this research study, eight machine learning algorithms
were employed on the studied dataset (JIRA bug reports).
These algorithms are NB, NBM, SVMs, J48, RF, LMT, JRip
and KNN. As discussed before, IG feature selection was
applied and features obtained after pre-processing are ranked

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

291 | P a g e

www.ijacsa.thesai.org

and the top „N‟ scoring features are selected based on ranking
results. A set of eight datasets are generated, these datasets
include the original dataset with the whole feature set and the
top 25, 50, 75, 100, 125, 150, 200 and 300 terms are generated
as new datasets to build prediction models. The results then
analyzed in terms of selected performance measures, which are
the accuracy, F-measure and AUC measures. These measures
are used to examine the performance of machine learning
algorithms empirically and the best models were reported. The
open-source Weka software [45] was used to run the
experiments with different parameters setting and the best
parameters setting are selected based on evaluation measures.

Table II shows the results of different machine learning
algorithms concerning the original JIRA dataset with all
feature set generated after pre-processing. Based on the
accuracy, it is found that the accuracy of different classifier
varies in the range of 75.23% and 84.55%. However, the
accuracy results are somehow biased as the dataset is
imbalanced and the results are biased toward the larger class.
The reported performance results of all algorithms based on the
AUC and F-measure are promising as these measures take into
consideration the performance results of all classes. As seen in
Table II, the AUC performance results vary between 0.59-0.88
and F-measure between 0.85-0.90. These measures are not
biased and report the performance of the two classes. Based on
the F-measure performance results, all DT algorithms, namely
Random Forest, LMT and J48 perform the best followed by
NBM and JRip and SVM, and the KNN performed the lowest.

Table III shows the performance of different machine
learning algorithms on the studied dataset with a varying
number of selected features based on the IG ranging from 25-
300 features. As shown in Table III, The performance results
based on all measures show comparable and better results than
the ones obtained from the generated models on the original
dataset (with no feature selection). Therefore, the selected
terms based on feature selection will able to distinguish the bug
severity based on a smaller feature set. The accuracy reaches
86.54% when the number of selected features is 75 features, as
compared to the model generated based on the original dataset
(with all features) which was 84.55%. In terms of the AUC
measure, the AUC result reaches 0.91 when the number of
selected features is 125 features, as compared to the model
generated based on all features which was 0.88. Furthermore,
the F-measure results reached 0.91 when the number of
selected features is 125 features, as compared to the model
generated based on all features which was 0.9.

Fig. 3 shows the performance results of all machine
learning algorithms, in terms of accuracy, on varying generated
datasets based on the utilized feature selection method.
According to the results, it is found that the accuracy of most
algorithms stabilized when the number of selected features is
75 or more terms except NB classifier. The accuracy of NB
algorithm has consistent accuracy in all datasets with a varying
number of features. The performance results of AUC and F-
Measure of various algorithms are shown in Fig. 4 and Fig. 5
From these figures, the performance of all classifier depends
on the number of terms considered to build the classifier and
the performance results provide comparable and better results
than relying on the whole feature set. The reported results of

the AUC and F-measure using different machine learning
algorithms state that the best performance results are when the
number of selected features is 125 terms. These terms are
chosen using the information gain measure. It is clear that the
severity of bug reports can be predicted with a reasonable
performance of AUC measure as they show a differentiated
and progressive value of AUC and better than using whole
feature sets. Similar trends are also observed with the F-
measure shown in Fig. 5 From results reported in Table III and
Fig. 5, the best F-measure results were obtained using Naïve
Bayes Multinomial, SVM, and Logistic model trees. These
algorithms receive 90%-91% performance results where
Logistic model trees achieve best and stable results. However,
other algorithms report varied and fewer performances.

Similar results observed from Table III when the number of
terms taken into account is over 75 terms. The AUC and F-
measure results are similar and consistent as compared to the
performance results when the number of selected terms are
less. The results suggest that the generated models can predict
the severity of bugs more accurately when the number of
selected terms in the range of 75 to 125 terms. As Table III
shows, it can be concluded that models have performed well in
predicting the bug reports of either severity levels as reported
by both AUC and f-measures values.

TABLE. II. PERFORMANCE RESULTS OF DIFFERENT CLASSIFICATION

ALGORITHMS ON JIRA DATASET WITH ALL FEATURES

Classifier Accuracy AUC F-measure

SVM 77.5 0.59 0.87

KNN 75.23 0.75 0.85

DT - J48 80.48 0.76 0.87

DT - RF 84.55 0.88 0.9

Rule-Based JRip 81.28 0.72 0.88

NBM 82.43 0.86 0.88

Naïve Bayes 80.03 0.84 0.86

DT:LMT 83.26 0.86 0.89

Fig. 3. Accuracy of different Classification Algorithms.

72

74

76

78

80

82

84

86

88

90

All
data

top
25

top
50

top
75

top
100

top
125

top
150

top
175

top
200

top
300

Accuracy

SVM KNN

DT - J48 DT - Random Forest

rule-based Jrip NaiveBayesMultinomial

Naïve base DT: logistic model trees

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

292 | P a g e

www.ijacsa.thesai.org

TABLE. III. ACCURACY OF DIFFERENT CLASSIFICATION ALGORITHMS WITH A VARYING NUMBER OF SELECTED FEATURES BASED ON IG

Top 25 Top 50 Top 75

Accuracy AUC F-measure Accuracy AUC F-measure Accuracy AUC F-measure

SVM 84.44 0.75 0.90 85.44 0.77 0.91 85.94 0.78 0.91

KNN 82.15 0.83 0.88 82.98 0.84 0.89 82.86 0.85 0.89

DT - J48 80.61 0.74 0.88 80.61 0.74 0.88 80.61 0.74 0.88

DT - RF 80.34 0.84 0.87 81.43 0.85 0.87 81.96 0.86 0.88

rule-based JRip 80.99 0.72 0.88 81.08 0.72 0.88 80.84 0.72 0.88

NBM 84.89 0.86 0.90 86.31 0.90 0.91 86.54 0.91 0.91

Naïve Bayes 82.50 0.86 0.88 82.77 0.87 0.88 82.77 0.87 0.88

DT:LMT 85.09 0.87 0.90 86.05 0.89 0.91 86.20 0.90 0.91

Top 100 Top 125 Top 150

Accuracy AUC F-measure Accuracy AUC F-measure Accuracy AUC F-measure

SVM 85.63 0.77 0.91 85.35 0.76 0.91 84.76 0.75 0.90

KNN 82.76 0.84 0.89 82.33 0.85 0.88 81.79 0.84 0.88

DT - J48 80.61 0.74 0.88 80.61 0.74 0.88 80.61 0.74 0.88

DT - RF 82.11 0.86 0.88 82.03 0.87 0.88 82.49 0.87 0.88

rule-based JRip 80.98 0.72 0.88 80.98 0.72 0.88 81.10 0.72 0.88

NBM 86.20 0.91 0.91 86.08 0.90 0.91 85.58 0.90 0.91

Naïve Bayes 82.80 0.87 0.88 82.81 0.87 0.88 82.13 0.86 0.88

DT:LMT 86.19 0.90 0.91 86.31 0.90 0.91 85.98 0.89 0.91

Top 175 Top 200 Top 300

Accuracy AUC F-measure Accuracy AUC F-measure Accuracy AUC F- measure

SVM 84.45 0.74 0.90 84.04 0.73 0.90 83.87 0.72 0.90

KNN 81.77 0.84 0.88 81.74 0.83 0.88 81.49 0.81 0.88

DT - J48 80.61 0.74 0.88 80.61 0.74 0.88 81.36 0.78 0.88

DT - RF 82.36 0.87 0.88 83.18 0.87 0.89 83.25 0.87 0.89

rule-based JRip 81.02 0.72 0.88 81.11 0.72 0.88 80.83 0.72 0.88

NBM 85.30 0.90 0.90 85.03 0.90 0.90 84.37 0.88 0.90

Naïve Bayes 82.38 0.86 0.88 81.95 0.86 0.88 81.94 0.86 0.88

DT: LMT 85.75 0.89 0.91 85.60 0.89 0.91 84.73 0.88 0.90

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

293 | P a g e

www.ijacsa.thesai.org

Fig. 4. The AUC Results of different Classification Algorithms with a

Varying Number of Selected Terms.

Fig. 5. The F-Measure Results of different Classification Algorithms with a

Varying Number of Selected Terms.

Overall, the LMT algorithm reported the best performance
results based on all performance measures. The maximum
AUC and F-measure obtained with LMT are 0.90 and 0.91,
respectively. It is further found that NBM performs similarly to
LMT in terms of AUC and F-measure. The minimum AUC
and F-measure values obtained with NBM are 0.88 and 0.91
respectively, and the maximums are 0.9 and 0.91, respectively.
The SVM model also has comparable performance results, but
it is in some ways less than the results reported for the LMT
and NBM. The maximum AUC and F-measure results obtained
with SVM are 0.8 and 0.9, respectively. Other algorithms
report divergent accuracy performance results. The maximum
AUC and F-measure results obtained with other algorithms are
0.86 and 0.88, respectively. Therefore, the reported results
indicate that LMT performs better for bug severity prediction

under the reported experimental setup. The superior
performance of the LMT algorithm can be attributed to the fact
that the number of selected features after applying feature
selection method is relatively small compared to the original
feature set. Therefore, discarding unimportant features leads
LMT algorithm to build classification trees that are
significantly smaller than the standard classification trees and
has accurate prediction results.

Finally, the severity of new bug reports submitted to JIRA
bug tracking system can be predicted automatically based on
the reported prediction model. This automatic prediction would
be beneficial for software engineers and developers of INTIX
Company to automatically assign the severity of reported bugs
instead of manual work. As a consequence, severe bugs will be
solved on time without causing a delay for fixing them.

V. CONCLUSIONS

In this research paper, we described machine learning
approaches for predicting the severity level of software bug
reports in closed-source projects and leveraged Information
Gain (IG) feature selection method to enhance the performance
of the prediction by increasing the prediction accuracy of the
bug severity level.

The procedure of the proposed methodology was illustrated
and evaluated by comparing eight popular machine learning
algorithms, namely Naive Bayes, Naive Bayes Multinomial,
Support Vector Machine (SVM), Decision Tree (J48), Random
Forest, Logistic Model Trees (LMT), Decision Rules (JRip)
and KNN. The performances of utilized machine learning
algorithms were evaluated in terms of accuracy, F-measure and
Area Under the Curve (AUC). Furthermore, one of the
objectives of this research work was to utilize feature selection
techniques for the enhancement of selected features that will, in
turn, allow for more precise discriminative power and produce
better prediction performance results.

The proposed methodology was conducted on the existing
severity levels assigned manually by the developers of INTIX
Company through the JIRA bug tracking system. The
experiments were evaluated using performance measures:
accuracy, F-measure and AUC. The obtained results indicated
that the Logistic Model Trees (DT: LMT) outperformed other
classifiers and the overall performance has been enhanced after
applying feature selection method. The results showed that the
LMT algorithms reported the best performance results based
on all performance measures (Accuracy= 86.31, AUC= 0.90,
F-measure= 0.91).

In future work, we plan to adopt sentiment analysis and
opinion mining techniques to enhance the performance of the
process of predicting the severity level of software bug reports.

ACKNOWLEDGMENT

The authors are thankful to INTIX Company for providing
us with the bug report dataset.

REFERENCES

[1] T. Zhang, H. Jiang, X. Luo, and A. T. Chan, "A literature review of
research in bug resolution: Tasks, challenges and future directions," The
Computer Journal, vol. 59, pp. 741-773, 2016.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

All
data

top
25

top
50

top
75

top
100

top
125

top
150

top
175

top
200

top
300

AUC results

SVM KNN

DT - J48 DT - Random Forest

rule-based Jrip NaiveBayesMultinomial

Naïve base DT: logistic model trees

0.84

0.86

0.88

0.9

0.92

All
data

top
25

top
50

top
75

top
100

top
125

top
150

top
175

top
200

top
300

F-measure results

SVM KNN

DT - J48 DT - Random Forest

rule-based Jrip NaiveBayesMultinomial

Naïve base DT: logistic model trees

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

294 | P a g e

www.ijacsa.thesai.org

[2] C. Liu, J. Yang, L. Tan, and M. Hafiz, "R2Fix: Automatically generating
bug fixes from bug reports," in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, 2013, pp.
282-291.

[3] G. Murphy and D. Cubranic, "Automatic bug triage using text
categorization," in Proceedings of the Sixteenth International
Conference on Software Engineering & Knowledge Engineering, 2004.

[4] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T.
Zimmermann, "What makes a good bug report?," in Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of
software engineering, 2008, pp. 308-318.

[5] Bugzilla. (2019). Bug Tracking System. Available:
http://www.bugzilla.org/

[6] Atlassian. (2019). JIRA. Available: http://www.atlassian.com/
software/jira/

[7] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
"Is it a bug or an enhancement?: a text-based approach to classify
change requests," in CASCON, 2008, pp. 304-318.

[8] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, and H. Shah, "A survey
on bug prioritization," Artificial Intelligence Review, vol. 47, pp. 145-
180, 2017.

[9] K. Chaturvedi and V. Singh, "Determining bug severity using machine
learning techniques," in 2012 CSI Sixth International Conference on
Software Engineering (CONSEG), 2012, pp. 1-6.

[10] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, "Comparing
mining algorithms for predicting the severity of a reported bug," in 2011
15th European Conference on Software Maintenance and
Reengineering, 2011, pp. 249-258.

[11] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, "Predicting the
severity of a reported bug," in 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010), 2010, pp. 1-10.

[12] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and G. Robles,
"Towards a simplification of the bug report form in eclipse," in
Proceedings of the 2008 international working conference on Mining
software repositories, 2008, pp. 145-148.

[13] Y. Tian, D. Lo, and C. Sun, "Information retrieval based nearest
neighbor classification for fine-grained bug severity prediction," in 2012
19th Working Conference on Reverse Engineering, 2012, pp. 215-224.

[14] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo, "Towards more
accurate severity prediction and fixer recommendation of software
bugs," Journal of Systems and Software, vol. 117, pp. 166-184, 2016.

[15] T. Menzies and A. Marcus, "Automated severity assessment of software
defect reports," in 2008 IEEE International Conference on Software
Maintenance, 2008, pp. 346-355.

[16] R. Jindal, R. Malhotra, and A. Jain, "Prediction of defect severity by
mining software project reports," International Journal of System
Assurance Engineering and Management, vol. 8, pp. 334-351, 2017.

[17] A. F. Otoom, D. Al-Shdaifat, M. Hammad, and E. E. Abdallah,
"Severity prediction of software bugs," in 2016 7th International
Conference on Information and Communication Systems (ICICS), 2016,
pp. 92-95.

[18] K. Jin, A. Dashbalbar, G. Yang, B. Lee, and J.-W. Lee, "Improving
predictions about bug severity by utilizing bugs classified as normal,"
Contemp Eng Sci, vol. 9, pp. 933-942, 2016.

[19] C.-Z. Yang, K.-Y. Chen, W.-C. Kao, and C.-C. Yang, "Improving
severity prediction on software bug reports using quality indicators," in
2014 IEEE 5th International Conference on Software Engineering and
Service Science, 2014, pp. 216-219.

[20] V. Singh, S. Misra, and M. Sharma, "Bug severity assessment in cross
project context and identifying training candidates," Journal of
Information & Knowledge Management, vol. 16, p. 1750005, 2017.

[21] W. Liu, S. Wang, X. Chen, and H. Jiang, "Predicting the severity of bug
reports based on feature selection," International Journal of Software
Engineering and Knowledge Engineering, vol. 28, pp. 537-558, 2018.

[22] N. K. S. Roy and B. Rossi, "Towards an improvement of bug severity
classification," in 2014 40th EUROMICRO Conference on Software
Engineering and Advanced Applications, 2014, pp. 269-276.

[23] G. Sharma, S. Sharma, and S. Gujral, "A novel way of assessing
software bug severity using dictionary of critical terms," Procedia
Computer Science, vol. 70, pp. 632-639, 2015.

[24] S. Sharmin, F. Aktar, A. A. Ali, M. A. H. Khan, and M. Shoyaib, "Bfsp:
A feature selection method for bug severity classification," in 2017
IEEE Region 10 Humanitarian Technology Conference (R10-HTC),
2017, pp. 750-754.

[25] C.-Z. Yang, C.-C. Hou, W.-C. Kao, and X. Chen, "An empirical study
on improving severity prediction of defect reports using feature
selection," in 2012 19th Asia-Pacific Software Engineering Conference,
2012, pp. 240-249.

[26] G. Yang, K. Min, J.-W. Lee, and B. Lee, "Applying Topic Modeling and
Similarity for Predicting Bug Severity in Cross Projects," KSII
Transactions on Internet & Information Systems, vol. 13, 2019.

[27] G. Yang, T. Zhang, and B. Lee, "An emotion similarity based severity
prediction of software bugs: A case study of open source projects,"
IEICE TRANSACTIONS on Information and Systems, vol. 101, pp.
2015-2026, 2018.

[28] W. Y. Ramay, Q. Umer, X. C. Yin, C. Zhu, and I. Illahi, "Deep Neural
Network-Based Severity Prediction of Bug Reports," IEEE Access, vol.
7, pp. 46846-46857, 2019.

[29] T. Liu, S. Liu, Z. Chen, and W.-Y. Ma, "An evaluation on feature
selection for text clustering," in Proceedings of the 20th international
conference on machine learning (ICML-03), 2003, pp. 488-495.

[30] Y. Yang and J. O. Pedersen, "A comparative study on feature selection
in text categorization," in Icml, 1997, p. 35.

[31] M. F. Caropreso, S. Matwin, and F. Sebastiani, "A learner-independent
evaluation of the usefulness of statistical phrases for automated text
categorization," Text databases and document management: Theory and
practice, vol. 5478, pp. 78-102, 2001.

[32] S. M. Weiss, N. Indurkhya, T. Zhang, and F. Damerau, Text mining:
predictive methods for analyzing unstructured information: Springer
Science & Business Media, 2010.

[33] P. S. Laplace, "Memoir on the probability of the causes of events,"
Statistical Science, vol. 1, pp. 364-378, 1986.

[34] T. M. Mitchell, "Machine Learning," ed: Mcgraw-hill, 1997.

[35] A. McCallum and K. Nigam, "A comparison of event models for naive
bayes text classification," in AAAI-98 workshop on learning for text
categorization, 1998, pp. 41-48.

[36] V. Christlein, D. Bernecker, F. Hönig, A. Maier, and E. Angelopoulou,
"Writer identification using GMM supervectors and exemplar-SVMs,"
Pattern Recognition, vol. 63, pp. 258-267, 2017.

[37] S. Cogill and L. Wang, "Support vector machine model of
developmental brain gene expression data for prioritization of Autism
risk gene candidates," Bioinformatics, vol. 32, pp. 3611-3618, 2016.

[38] F. Simistira, V. Katsouros, and G. Carayannis, "Recognition of online
handwritten mathematical formulas using probabilistic SVMs and
stochastic context free grammars," Pattern Recognition Letters, vol. 53,
pp. 85-92, 2015.

[39] D. N. Sotiropoulos, D. E. Pournarakis, and G. M. Giaglis, "SVM-based
sentiment classification: a comparative study against state-of-the-art
classifiers," International Journal of Computational Intelligence Studies,
vol. 6, pp. 52-67, 2017.

[40] J. Platt, "Fast training of support vector machines using sequential
minimal optimization, in, B. Scholkopf, C. Burges, A. Smola,(eds.):
Advances in Kernel Methods-Support Vector Learning," ed: MIT Press,
1998.

[41] J. R. Quinlan, C4. 5: programs for machine learning: Elsevier, 2014.

[42] L. Breiman, "Random forests," Machine learning, vol.45,pp. 5-32, 2001.

[43] N. Landwehr, M. Hall, and E. Frank, "Logistic model trees," Machine
learning, vol. 59, pp. 161-205, 2005.

[44] W. W. Cohen, "Fast effective rule induction," in Machine Learning
Proceedings 1995, ed: Elsevier, 1995, pp. 115-123.

[45] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques: Morgan Kaufmann, 2016.

