
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

314 | P a g e

www.ijacsa.thesai.org

Mapping of Independent Tasks in the Cloud

Computing Environment

Biswajit Nayak1, Sanjay Kumar Padhi2

Computer Sc. & Engineering

Biju Patnaik Technical University

Rourkela, Odisha, India

Abstract—Cloud computing is a technology that provides

many resources and facility to share data. Due to the concept of

open environment in the cloud computing the request or data

increases quickly. So this problem can be solved by proper

utilization of tasks along with available resources. Task

scheduling algorithm plays an immense role in the cloud

computing environment in minimizing the time required for

completion of the task assigned to the resource available. There

are several algorithms introduced to solve the problem of

scheduling task of several kinds but all the developed algorithms

are task dependent algorithms. The major criteria of the task

scheduling algorithm are to optimize resource utilization in the

diverse computing environment, so as to minimize makespan and

execution time so that the accountability of healthcare industry

that uses cloud computing can be enhanced. The proposed

algorithm is designed to deal with variable length tasks by taking

the advantages of the different heuristic algorithm and ensures

optimum task scheduling with various available resources to

enhance the quality of the healthcare system.

Keywords—Scheduling; mixed model; cloud computing;

makespan; healthcare

I. INTRODUCTION

Cloud computing environment differs from traditional
computing environment on the basis of the target of
scheduling. In the case of traditional computing, the
transferred data is small but in the case of cloud computing,
the transferred data is very large. Scheduling of resources
ensures better service without any interrupt. This technique
not only manages of task load but also fulfil the requirement
of allocation of task dynamically with availability, flexibility,
minimal cost and scalability features. The load balance
technique ensures the availability of resource on demand,
Proper utilization of resources under different conditions,
reduced cost of resource use, Manipulation of energy at
different load conditions [1][2].

Scheduling is a mechanism to maximize the throughput,
required utilization of resource and also system performance
through the allocation of task or job to the resource available.
Due to increase in demand for technology with minimal cost
and quick access time, some task scheduling prototype
required. The processes start as the user submit tasks to the
scheduler.

The scheduler schedules the task according to the
availability of resources. As Fig. 1 shows in the job allocation
process the scheduler allocates the job based on the cloud

information repository. The datacenter computes the job
within the stipulated time period. The task or job may be
considered as data insertion, processing or accessing inserted
data, software or it may be storage functions [3][4][5].

Fig. 1. Job Allocation Process.

II. SCHEDULING PARAMETERS

There are certain cloud-computing performance metrics
that are responsible for effective load balancing [6] [7][8]:

Throughput (TP): It is calculated to determine the
performance of the system by calculating the number of tasks
executed in one-unit time. It is measured by comparing with
makespan. Increase in makespan reduces the performance and
also decrease in makespan means optimum throughput.

Thrashing (TH): Thrashing takes place due to memory and
other limited or exhausted resources. This occurs due to
improper schedule of tasks, so good algorithm is required to
maintain available resources.

Reliability (R): A system must be reliable to gain the faith
of the user. If a task is transferred to any other virtual machine
due to failure in task execution, then it can be treated as
reliability of system. In other terms, a system is reliable if the
system will work efficiently even if system fails to execute
some of the task dedicated to.

Accuracy (A): This parameter ensures whether the result
of the execution of the task meeting to the required result or
not. If it will match the result, then it is accurate otherwise not.

Predictability (PR): The system should have the capability
to predict the task allocation, execution and time required to
complete considering available resources. It is also termed as a
degree of prediction. It enhances the makespan of system.

Makespan (MS): It is defined as the time required
completing all the tasks. In other words, it can be defined as
the maximum time required by the system running over the
data centre. Makespan is directly proportional to load balance;

Resource ID

User Submit

Job
Resource Information Scheduler

Allocate Job

Input Data

Cloud Information

Repository

Resources

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

315 | P a g e

www.ijacsa.thesai.org

means, if the makespan is less the load balancing, is good.
One of the major characteristics of good task scheduling
algorithm is diminishing makespan.

Scalability(S): It is a concept a system that ensures the
execution of tasks under different conditional environment
where the number of tasks may increase or decreases
unexpectedly or periodically.

Fault Tolerance (FT): It is a method that increases the
performance of a system by providing uninterrupted services
even if one or more elements of the system fail to work
properly. It is also responsible for resolving elements of
logical errors.

Associated Overhead (AO): Associated overhead is
directly proportional to load balancing. If the associated
overhead is more that means the load balance is not proper. If
the associated overhead is less that means the load of the
system is proper.

Migration time (MT): It is a time required when a task is
shifted from one resource to another or from one resource to
different virtual machine or migration of service from one
virtual machine to another virtual machine. The larger number
of migration of the virtual machine leads to poor performance
of system because it degrades the makespan.

Response time (RT): Time required acknowledging task
for execution is known as response time. Lesser the response
time leads to the greater performance of the system.

Energy Consumption (EC): It one of the major metrics in
the cloud computing environment like makespan. Energy is
calculated on the basis of energy consumed by all the devices
connected to the system. The devices may be- output devices,
device connectors, and application servers, etc.

Resource Utilization (RU): It is a concept defines the
degree of use of resources in the system. If the load balancing
is maximum that means resource utilization is maximized.
Load balancing is directly proportional to resource utilization.

A good technique requires a good scheduler. Let’s
consider there are n numbers inputs for which N numbers of
VMs are available. The set of tasks is (T1, T2, T3, T4... Tn).
The heterogeneous environment in cloud computing uses
expected time to compute matrix for load balancing. So the
value of the matrix needs to be determined.

 ⁄

Where: – Lenth of the ith task (MI)

 – The processing speed of the jth virtual machine (MIPS).

The most used performance parameter is the makespan in
cloud computing. The different virtual machine takes different
time for execution in the cloud computing environment. Good
load balancing means minimal makespan.

The execution time of jth is based on the

decision variable ,

where

 {

The execution time of virtual machine literally depends
upon the decision variable .

 ∑

Makespan can be defined as the maximum time consumed
by any virtual machine. So the makespan can be calculated as:

III. BASIC TASK SCHEDULING ALGORITHMS

Completion time is the basic criteria for MinMin
algorithm. It uses two different time quantum-like Execution
Time and completion time. Initially, it calculates the
completion time, on the basis of minimum completion it finds
the task and assigns to the corresponding resource. Then the
task is removed and the completion time is updated. There is
no longer waiting of processor for smaller tasks but it signifies
the starvation for larger tasks and failed to perform well when
small tasks are more as compare to large tasks. The Min-Min
heuristics ensures the completion of task execution with
minimum time period as compared to the other task and
allocated to the suitable machine. According to the process the
small tasks are assigned first then large tasks hence the
makespan increase as the completion-time increases [9] [10].

Completion time is the basic criteria of the MaxMin
algorithm. It uses two different time quantum-like Execution
Time and completion time. Initially, it calculates the
completion time, on the basis of minimum completion it finds
the tasks and assigns to the corresponding resource on the
basis of maximum completion time. There is no longer waiting of
processor for larger tasks but it signifies the starvation for smaller
tasks and failed to perform when the large task is more than a
small task. So it eliminates the problem resides in MINMIN
algorithm. Like the above algorithms, some other algorithms
provide same result or poor with large search space. Some of the
algorithms also tried to improve the makespan and throughput
performance [11] [12] [13].

IV. PROPOSED ALGORITHM

The proposed scheduling algorithm tried to eradicate the
problem persists in the basic algorithm developed. Even if the
complexity of First-Come-First-Serve algorithm is very less, it
performed less because it used arrival time to calculate time
required to complete the task. Similarly, the Round Robin
algorithm used arrival time along with the time quantum to
reduce the time required to complete the task but still did not
perform well. Apart from the basic algorithms some heuristics
are used to enhance the performance. Some load balancing
algorithm used to maximize the performance but due to the
simultaneous use of resources or machines the performed poor
makespan. Few more algorithms like Minimum Completion
Time, Min-Min, Max-Min, suffrage algorithm etc. are used to
solve the problem but still lacking to provide the optimum
solution [14] [15] [16].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

316 | P a g e

www.ijacsa.thesai.org

The proposed model is a Mixed Model to solve the
starvation problem present in the model discusses above.

Step 1:

 1. Start

 2. Compute the completion time matrix of resources

and tasks.

 For all task Ti

 For all resources Rj

 CTij= ETij + rj

 End For

 End For

Step 2:

 3. Find the number of smallest number task “S” and

largest number tasks “L”

 4. If S>L

 Go to Step 4

 Else

 Go to Step 3

Step 3:

5. For each task in the matrix, find the task ti

 with a minimum completion time

 and the resource on which it is

 calculated.

Assign ti to resource Rj that has

minimum completion time.

Remove task ti from the matrix

Update resource Rj ready time (rj)

Update completion time of all un-

 mapped tasks in the matrix.

Repeat all the steps of step3 until all the

 tasks in the matrix have been

 mapped.

 End For

6. Go to Step 5

Step 4:

7. For each task in the matrix, find the task ti

 with a minimum completion time

 and the resource on which it is

 calculated.

Assign ti to resource Rj that has

 maximum completion time from

selected minimum completion

time.

Remove task ti from the matrix

Update resource Rj ready time (rj)

Update completion time of all un-

 mapped tasks in the matrix.

Repeat all the steps of step4 until all the

 tasks in the matrix have been

 mapped.

 End For

8. Go to Step 5

 Step 5:

9. Display Result

 10. Stop.

V. PERFORMANCE ANALYSIS

The proposed algorithm calculates the completion time of
each task in a different machine and based on the expected
completion time assign the tasks to the appropriate available
resources. Let’s consider four tasks (T1, T2, T3, T4) with
execution time and two available resources (Table I). The
table below clearly shows that the table consists of a large
number of smaller tasks and a smaller number of large tasks.

In Fig. 2(a) all tasks in are executed according to their
minimum completion gives a makespan of 35 whereas the
Fig. 2(b) executes or sort all the tasks according to their
maximum completion time and give a makespan of 30.

TABLE. I. RESOURCES FOR ALLOCATION

Resource
R1 R2

Task

T1 2 4

T2 3 6

T3 4 10

T4 30 70

(a)

(b)

Fig. 2. (a) Output using STEP-3; (b) Output using STEP-4 NB: - X-axis

showing the resources or machine (R1, R2) and Y-axis showing completion

time (T1, T2, T3, T4).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

317 | P a g e

www.ijacsa.thesai.org

Let’s consider some inputs just opposite to the previous
inputs and analyze the output to ensure that the algorithm

performs better in all condition. Table II clearly shows that
the table consists of a large number of large tasks and a
smaller number of small tasks.

In Fig. 3, all tasks are executed according to their
minimum completion gives a makespan of 121 whereas Fig.4
executes all the tasks according to their maximum completion
time and give a makespan of 142. The example used consists
of a large number of large tasks as compared to a number of
small tasks. So it makes sure the execution of Step 3 of the
algorithm and gives better makespan. Fig. 3 clearly shows the
difference between the output of execution for Step 3 and Step
4. The makespan of Step3 is less as compare to the makespan
of Step 4.

TABLE. II. RESOURCES FOR ALLOCATION

Resource
R1 R2

Task

T1 81 23

T2 112 32

T3 121 39

T4 61 17

On the basis of the above analysis for the better visibility
Fig. 4(a) and Fig. 4(b) shows the output by comparing the
time required for the execution of tasks at different conditions.

(a) (b)

Fig. 3. (a) Output using STEP-3; (b) Output using STEP-4 NB: - X-Axis Showing the Resources or Machine (R1, R2) and Y-Axis Showing Completion Time

(T1, T2, T3, T4).

(a) Execution Time Required at different Conditions NB: - X-Axis Showing the different Task Assigned and Y-Axis Showing Completion Time Required by

different Tasks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

318 | P a g e

www.ijacsa.thesai.org

Fig. 4. Execution Time Required at different Conditions NB: - X-Axis Showing the different Task Assigned and Y-Axis Showing Completion Time Required by

different Tasks.

VI. CONCLUSION

To realize the good performance of computing of
scheduling of tasks in a cloud computing environment, a new
algorithm is proposed. Different algorithms are tested for their
suitability, feasibility, adaptability in the context of cloud
scenario So that it can facilitate cloud-providers to provide a
better quality of services. The proposed algorithm works on
the problem exist when the number of small tasks is more in
number or when the large tasks more in number. It performs in
two phases. When the numbers of small tasks are more than
the number of large size tasks then the algorithm will execute
the large task first to increase efficiency to manage maximum
completion time. In the reverse condition when the numbers of
large size tasks are more than the number of small size tasks
then the small tasks need to be executed first to increase the
computing efficiency and to avoid starvation. In future the
algorithm can be added with some other characteristics to
enhance accountability.

REFERENCES

[1] Tabak, E. K., Cambazoglu, B. B., & Aykanat, C. (2014). Improving the
Performance of IndependentTask Assignment Heuristics MinMin,
MaxMin and Sufferage. IEEE Transactions on Parallel and Distributed
Systems, 25(5), 1244-1256. DOI:10.1109/tpds.2013.107.

[2] Nayak, B., Padhi, S. K., Pattnaik, P. K. (2017). Understanding the Mass
Storage and Bringing Accountability. National Conference on Recent
Trends in Soft Computing & It ´s Applications, pp. 28-35. ISSN: 2319 –
6734.

[3] Nayak, B., Padhi, S. K., & Pattnaik, P. K. (2018). Impact of Cloud
Accountability on Clinical Architecture and Acceptance of Health Care
System. 6th International Conference on Frontiers of Intelligent
Computing: Theory and Applications (FICTA). V.701, pp. 149-157.
DOI 10.1007/978-981-10-7563-6_16.

[4] Suri, P. K. and Rani, R. (2017). Design of Task Scheduling Model for
Cloud Applications in Multi-Cloud Environment. International
Conference on Information, Communication and Computing
Technology (ICICCT, Springer), 2017; 750:11–24.

[5] Mathew, T., Sekaran, K. C., & Jose, J. (2014). Study and analysis of
various task scheduling algorithms in the cloud computing
environment. 2014 International Conference on Advances in
Computing, Communications and Informatics (ICACCI).
DOI:10.1109/icacci.2014.6968517.

[6] Brinkerhoff, D. W. (2004). Accountability and health systems: Toward
conceptual clarity and policy relevance. Health Policy and
Planning, 19(6), 371-379. DOI:10.1093/heapol/czh052.

[7] Singh, P., & Kaur, N. (2016). A Review: Cloud Computing using
Various Task Scheduling Algorithms. International Journal of Computer
Applications, 142(7), 30-32. DOI:10.5120/ijca2016909931.

[8] Banga, P., & Rana, S. (2017). Heuristic-based Independent Task
Scheduling Techniques in Cloud Computing: A Review. International
Journal of Computer Applications,166(1), 27-32.
DOI:10.5120/ijca2017913901.

[9] Singh, S., & Kalra, M. (2014). Scheduling of Independent Tasks in
Cloud Computing Using Modified Genetic Algorithm. 2014
International Conference on Computational Intelligence and
Communication Networks. DOI:10.1109/cicn.2014.128.

[10] Reda, N. M. (2015). An Improved Sufferage Meta-Task Scheduling
Algorithm in Grid Computing Systems. International Journal of
Advanced Research, 2015; 3(10): 123 -129.

[11] Kumari, E., & Monika, A. (2015). Review On Task Scheduling
Algorithms In Cloud Computing. International Journal of Science,
Environment and Technology, 2015; 4(2): 433 – 439.

[12] Jain, N. S.,(2016). Task Scheduling In Cloud Computing using Genetic
Algorithm. International Journal of Computer Science Engineering and
Information Technology Research (IJCSEITR), 2016; 6(4): 9-22.

[13] Le, D., Bhateja, V., & Nguyen, G. N. (2017). A parallel max-min ant
system algorithm for dynamic resource allocation to support QoS
requirements. 2017 4th IEEE Uttar Pradesh Section International
Conference on Electrical, Computer and Electronics (UPCON).
DOI:10.1109/upcon.2017.8251134.

[14] Nayak, B., Padhi, S. K., & Pattnaik, P. K. (2018). Static Task
Scheduling Heuristic Approach in Cloud Computing Environment. 5th
Springer International Conference on Information System Design and
Intelligent Applications. Vol. 862, pp.473-480. DOI: 10.1007/978-981-
13-3329-3_44.

[15] Rajput, S. S., & Kushwah, V. S. (2016). A Genetic Based Improved
Load Balanced Min-Min Task Scheduling Algorithm for Load
Balancing in Cloud Computing. 2016 8th International Conference on
Computational Intelligence and Communication Networks (CICN).
DOI:10.1109/cicn.2016.139.

[16] Bao, L. N., Le, D., Nguyen, G. N., Bhateja, V., & Satapathy, S. C.
(2017). Optimizing feature selection in video-based recognition using
Max-Min Ant System for the online video contextual advertisement
user-oriented system. Journal of Computational Science,21, 361-370.
DOI:10.1016/j.jocs.2016.10.016.

