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Abstract—Weed control is a challenging problem that may 

face crops productivity. Weeds are perceived as an important 

problem because they conduce to reduce crop yields due to the 

expanding competition for nutrients, water, and sunlight besides 

they serve as hosts for diseases and pests. Thus, it is crucial to 

identify weeds in early growth in order to avoid their side effects 

on crops growth. Previous conventional machine learning 

technologies exploited for discriminating crops and weeding 

species faced challenges of effectiveness and reliability of weed 

detection at preliminary stages of growth. This work proposes 

the application of deep learning technique for plant seedling 

classification. A new Convolutional Neural Networks (CNN) 

architecture is designed to classify plant seedlings at their early 

growth stages. The presented technique is appraised using plant 

seedlings dataset. Average accuracy, precision, recall, and F1-

score are utilized as evaluation metrics. The results reveal the 

capability of the proposed technique in discriminating among 12 

species (3 crops and 9 weeds). The system achieved 94.38% 

average classification accuracy. The proposed system is 

compared with existing plant seedling systems. The results 

demonstrate that the proposed method outperforms the existing 

methods. 

Keywords—Deep learning; convolutional neural network; plant 
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I. INTRODUCTION 

Plants remain an important and essential source of food and 
oxygen for nearly all living organisms on earth. Agriculture is 
prevailing in some continents like Africa, therefore appropriate 
automation of the farming procedure would assist in 
optimizing the crop yield and ensuring the perpetual 
productivity and sustainability. In accordance with [1], there is 
a sturdy bond between raised productivity and economic 
growth. Thus, the application of smart farming techniques in 
the agricultural sector can empower the development of the 
economy in many countries. Seedlings quality assessing 
proved to be a powerful means of prophesying the growth 
performance [2] and, hence, optimizing the plant production. 
Seedling classification is the first step to fulfill the seedling 
quality evaluation. 

Furthermore, the invasion of weeds on farmlands leads to 
decline in the crop yield. Generally, weeds have no valuable 
beneficial, regarding nutrition, food or medication. However, 
they grow very quickly as well as they intrusively compete 
with original crops for space and nutrients [3]. Weeds 
identification is not an easy process due to the hazy boundaries 
of the crops, together with the diverse sandy and rocky 

backgrounds. Thus, there is a need to develop an efficient 
technique to accurately and certainly detect weeds from 
beneficial plants. 

In order to improve agronomic production and crop quality, 
farmers should follow precision agriculture. Precision 
agriculture is a farm management approach that utilizes 
information technology and artificial intelligence to guarantee 
profit maximization, crop yield optimization, and environment 
preservation. One of the fundamental challenges that face 
precision agriculture is weed control. Weed control must be 
achieved earlier as possible after crop germination before 
weeds begin to compete with crops for nutrition and cause 
adverse effects. Thus, optimal weed treatment is recommended 
in the seedling stage. Nevertheless, in this phase, the 
discrimination between crops and weeds has some limitations; 
a) inadequate image resolution for distinguishing between 
exposed soil, crop seedlings and weeds, b) resemblance of 
spectra and appearances between weeds and useful crops in the 
early stages, and c) overlapping of the soil background 
reflectance with the detection process. 

The application of machine learning techniques for 
automatic plant seedling classification has become a significant 
and promising field of research towards improving agriculture 
outcomes. Deep learning is a specific type of machine learning 
that has gained substantial interest in various disciplines. The 
Convolutional Neural Network (CNN) is a deep neural 
network architecture that is generally used to analyze visual 
images. Latterly, CNNs have achieved a significant 
breakthrough in computer vision fields. Additionally, the 
CNNs proved to have high ability to obtain the efficient 
features needed for image classification process [4]-[6]. 

Recently, CNNs have been broadly implemented in the 
agriculture domain for plant species identification [7]-[8], weed 
detection [9], and plant disease recognition [10]. 

In traditional image classification algorithms, handcrafted 
features are firstly extracted, then a feature selection process is 
achieved, and finally, a suitable classifier is chosen. However, 
CNN is proficient in learning various features from images, it 
covers global and local features, and it uses these features for 
efficient classification. CNN showed superior performance 
compared to other image processing techniques. Therefore, in 
this article, the enforcement of the CNN approach for plant 
seedling classification is investigated. The proposed system 
proceeds in four phases; preprocessing, constructing the 
network model architecture, training the network model and 
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defining its parameters, and finally testing the designed 
network model. Despite the complexity of the acquired 
seedlings scenes due to illumination variations, resemblances 
between weeds and crops at premature stages of growth, and 
soil texture intricacies, the CNN succeeded to achieve high 
classification performance. Hence, this work aims specifically 
to develop a framework for crop-weed discrimination system 
that applies the CNN to classify 12 crops and weeds plant 
species and compare the proposed seedling classification 
system with other state-of-the-art techniques. 

This article is structured as follows: Section 2 presents the 
related work. Section 3 details the CNN architecture devoted to 
developing the proposed deep plant seedling classification 
system. Section 4 describes and discusses the experimental 
results. Finally, Section 5 debates the conclusion and future 
work. 

II. RELATED WORK 

Seedlings classification is a discipline that has got a 
substantial prominence in precision agriculture, since it permits 
for distant observation to the fields, providing a foundation for 
more efficacious weed control. Fine-grained weed control 
considerably depends on the accuracy of the classification 
process, so as the crops would not be damaged when treating 
the weeds. Accordingly, misclassification will possess a direct 
impact on crop yield. 

In literature, classification of crop and weed species may be 
developed through two strategies.  The first strategy is based 
on segmenting images into green and soil regions and extracts 
features from green patches and finally uses classification 
techniques to obtain the specified classes. The second strategy, 
on the other hand, relies on implementing deep learning 
techniques for plant seedling classification. 

The work of [11] presented a method for classifying plant 
seedlings. This method aimed to improve the classification 
performance by consolidating the classification of the whole 
plants and the individual leaves. Thus, leaves are first separated 
from the plants then features are extracted from both the whole 
plants and the segmented leaves. The classification process is 
performed for the leaves and plants, and finally, Bayes belief 
integration is used to fuse the classification results. 
Bakhshipour and Jafari [12] applied two significant pattern 
recognition approaches; artificial neural networks (ANN) and 
support vector machine (SVM), to separate the weeds from the 
sugar beet plants using shape features. The shape features 
comprise Fourier descriptors and moment invariant features. 
Four species of prevalent weeds in the sugar beet fields were 
examined. The results indicate that SVM slightly outperforms 
the ANN. In [13] the authors developed a system vision 
technique relied on video processing as well as a hybrid ANN 
and ant colony algorithm classifier for assorting potato plant 
and three weed species. Texture features, obtained from the 
gray level co-occurrence matrix (GLCM) and the histogram, 
moment invariants, color features, and shape features are 
extracted. Then, the Gamma test is used to select the significant 
features. 

Furthermore, spectral reflectance measurements are used 
for discriminating between crops and weeds [14] and [15]. In 

[14] an SVM along with spectral reflectance measurements are 
combined for developing a corn/silverbeet (as crop-weed) 
differentiation system. The intensities of the reflectance of 
laser beams off soil and vegetation at three wavelengths are 
gathered by a weed sensor. These reflectance measurements 
are used to compute the Normalized Difference Vegetation 
Indices (NDVIs).  Two experiments are performed; in the first 
one, the obtained NDVI values are fed to an SVM to achieve 
the classification process, while in the second one, the raw 
reflected intensities are provided to the SVM for crop-weed 
discrimination. Strothmann et al. [15] proposed a crop-weed 
discrimination system based on in-field-labeling. A multi-
wavelength laser line profile (MWLP) approach is used to scan 
plants and obtain spectral reflection intensities, scattering 
information at several wavelengths and 3D data. The spectral 
features are applied for separating soil and biomass, while the 
3D surface features are exploited for discriminating crops and 
weeds. 

The study of [16] investigates the classification of maize, 
weeds, and soil by training CNN to make a pixel-wise 
classification. The generated CNN is based on a modified 
architecture of the VGG16 at which the output layer is a 
convolutional layer instead of a fully connected layer. 
Eventually, semantic segmented images are obtained. Zhang et 
al. [9] proposed a system for identifying broad-leaf weeds in 
the pasture. Traditional machine learning techniques and deep 
learning approaches are investigated and compared. The results 
reveal that deep learning technique using CNN achieved high 
accuracy and robustness in detecting weeds in real-world 
pasture environments. The work [17] submitted an approach to 
classify the species of weeds and crops by employing CNN 
technique. The developed CNN is based on a hybrid network 
of AlexNet and VGGNET. The normalization notion is 
stimulated from AlexNet; while the filters' depth is selected 
based on VGGNET. Furthermore, incremental learning to learn 
new plant species is applied in this work. 

III. PROPOSED CNN ARCHITECTURE 

In this work, CNN is adopted for plant seedling 
classification to automatically discriminate between weed 
species and crops at early growth stages. The proposed CNN 
consists of an input layer, hidden layers, and an output layer. 
The original seedling images are all equally resized to 128x128 
pixels (this has been specified empirically such that to get 
satisfactory performance with acceptable processing speed) 
and fed to the input layer. The hidden layers consist of 5 stages 
of learning layers, as illustrated in Fig. 1. The utilized filters 
are all of kernel size 3x3 with a number of filters 32, 64, 128, 
256 and 1024 for each convolutional layer within each stage, 
respectively. 

The entire convolutional layers are associated with 
Rectified Linear Units (ReLU) layers, which apply the function 
f(x) = max (0, x) to the whole values of the input image. Thus, 
the negative input elements are set to 0. This decreases the 
training time and provides nonlinear rectifications, which 
escalates the nonlinear characteristics of the model and the 
whole network without impacting the receptive values of the 
convolutional layer [18]. 
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Fig. 1. The Proposed Deep CNN Architecture for Seedling Classification.

Each convolutional layer is followed by a pooling layer and 
a batch normalization layer. The pooling layer is utilized for 
reducing the output size of the layer before it, and hence, 
decreasing the computation complexity in the subsequent 
layers. A max-pooling procedure with a pool size of 2x2 is 
applied. 

In deep CNN, small variations may augment as they pass 
through layers, which lead to change the distribution within 
each layer. This is called Internal Covariate Shift problem. 
Therefore, batch normalization is utilized to normalize each 
hidden layer inputs to stabilize their distribution and hence 
solve the Internal Covariate Shift problem. Furthermore, the 
batch normalization layer helps to faster the learning procedure 
[19]. 

Generally, the convolutional layers are used for feature 
extraction and the fully connected layers are used for 
classification tasks. Thus, the lower part of the CNN includes 
convolutional layers while the higher part comprises some 
fully connected layers. The fully connected layers have a large 
number of parameters which needs a high computational power 
and produces overfitting. On the other hand, the global average 
layer procedure computes the mean of each feature map and 
delivers it to the next layer. Hence, it does not need any 
parameter which minimizes overfitting [18]. Our proposed 
CNN architecture employs the global average pooling layer 
before the fully connected layers in order to reduce the utilized 
parameters and avoid overfitting. 

In the output layer, the global average pooling layer is used 
to directly feed the obtained feature maps into the feature 

vectors. Finally, a fully connected layer, which comprises n 
(signifying the number of classes) nodes, along with softmax is 
realized to compute the probability of each predicted class. 

The size of the output of each layer is declared in Fig. 1; 
after the normalization process, no change occurs in the output 
size. 

IV. EXPERIMENTAL RESULTS 

A. Dataset 

The utilized dataset, delivered by the signal processing 
group of the Aarhus University, in collaboration by Southern 
Denmark University, comprises 5539 images of roughly 960 
unique plants categorized into 12 species (3 crops and 9 weeds) 
captured at early growth stages. It includes annotated RGB 
images with an approximate physical resolution of 10 pixels 
per mm. 

Particularly, this dataset is adopted for researches that 
investigate plant species identification at their early 
germination stage. Thus, farmers (or robots for automatic 
weeding control) may be able to handle weeding before the 
weeds commence to compete with crops for nutrition. 
Additionally, the image segmentation process at this early 
stage is easier since the leaves have less overlapping in this 
stage [20]. The exploited dataset is detailed in Table I. 

B. Evaluation Metrics 

The proposed system performance is evaluated using the 
average accuracy, average precision, average recall, and 
average F1-score as follows. 
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TABLE. I. PLANT SEEDLINGS DATASET DETAILS 

Class Species 
Training 
set images 

 Test set 
images 

Total 
images 

1 
Black grass (Alopecurus 
myosuroides) 

263 46 309 

2 
Charlock (Sinapis 
arvensis) 

390 62 452 

3 
Cleavers (Galium 
aparine) 

287 48 335 

4 
Chickweed (Stellaria 
media) 

611 102 713 

5 
Common wheat 
(Tricicum aestivum) 

221 32 253 

6 
Fat hen (Chenopodium 
0album) 

475 63 538 

7 
Loose silky-bent (Apera 
spica-venti) 

648 114 762 

8 Maize (Zea mays) 221 36 257 

9 
Scentless mayweed 
(Tripleurospermum 
perforatum) 

516 91 607 

10 
Shepherd's purse 
(Capsella bursa-
pastoris) 

231 43 274 

11 
Small-flowered 
Cranesbill (Geranium 
pusillum) 

490 86 576 

12 
Sugar beet (Beta 
vugaris) 

385 78 463 

Total  4738 801 5539 
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C. System Evaluation 

This section presents the evaluation strategy conducted 
through this work. The evaluation procedure is performed in 
two phases: training and testing. Thus, the seedling dataset is 
split into two separate sets; training and testing sets. In the 
training phase, 10-fold cross-validation is performed by 
randomly choosing 10% of the training set to represent the 
validation set, and this process is repeated for 10 successive 
rounds. In the training phase, the training images are used to fit 
the proposed CNN model and tune its hyperparameters while 
the validation images provide an unbiased appraisal of the 

model fitted on the training images during tuning its 
hyperparameters. On the other hand, in the test phase, the test 
images are utilized to afford an unbiased assessment of the 
final model that is fitted on the training dataset. 

 Extensive experimentations are achieved to evaluate the 
proposed method by comparing it with existing methods. These 
experiments are conducted by considering a different number 
of species. The first experiment involves 7 species (cleavers, 
chickweed, wheat, maize, scentless mayweed, Shepherd’s 
purse and, sugar beet), the training set comprises 2472 images 
and the test set includes 430 images. The second experiment 
encompasses 8 species (charlock, cleavers, chickweed, fat hen, 
maize, scentless mayweed, Shepherd’s purse, and sugar beet), 
the training phase contains (3116) images, whereas the testing 
phase holds (523) images. 

The third experiment comprises 10 species (black grass, 
charlock, cleavers, chickweed, fat hen, loose silky-bent, maize, 
scentless mayweed, Shepherd’s purse, and sugar beet), the 
training phase contains (4027) images, whereas the testing 
phase holds (683) images. 

Finally, in the fourth experiment 12 species are considered 
and are divided into (4738) train images and (801) test images. 

The proposed CNN is randomly initialized, and then it is 
trained for performing the classification process and indicated a 
convolutional model. The weights of the CNN are updated 
utilizing the training set. The final weights are selected using 
the validation set. For each iteration, the training and validation 
errors are computed, and the weights that achieve the minimum 
validation error are chosen. 

Intel (R) Core (TM) i7-4702MQ CPU @ 2.20GHZ   (8 GB 
RAM) processor is utilized for implementation. Python (Keras 
library) installed in Anaconda on the operating system 
Windows 10 is employed as a software tool for application. 

D. Results 

Table II presents the average validation performance of the 
proposed seedling classification for 7, 8, 10 and 12 species.  It 
can be noticed from Table II that the validation accuracy 
reaches approximately 99% for all tested number of species, 
the validation recall, precision, and F1-score are roughly 98 % 
for 7 and 8 species while the validation recall reaches 
approximately 92% and 93% for the 10 and 12 species, 
respectively. In addition, the validation precision attains nearly 
94% and 95% for 10 and 12 species, respectively, whereas the 
F1-score is about 93% for both 10 and 12 species. 

On the other hand, Table III illustrates the average test 
performance.  The results reveal that the average test accuracy, 
recall, precision, and F1-scale are approximately 99% for 7 
species. For 8 species, the average test accuracy and recall are 
nearly 98% while the precision and F1-score are almost 99%. 
Furthermore, when using 10 species, the average test accuracy, 
recall, precision and F1-scale reach roughly 95%, 93%, 97 and 
94, respectively. Finally, as testing the 12 species, the average 
test accuracy and F1-score has attained approximately 94%, 
while the average test recall and precision captured nearly 93% 
and 95%, respectively. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

323 | P a g e  

www.ijacsa.thesai.org 

TABLE. II. THE AVERAGE VALIDATION PERFORMANCE OF THE PROPOSED 

SYSTEM FOR 7, 8, 10 AND 12 SPECIES 

Number of 
plant species 

Accuracy 
(%) 

Recall 
(%) 

Precision 
(%) 

F1-score 
(%) 

Loss 

7 species 98.63 97.9 98.2 97.79 0.0701 

8 species 98.91 97.56 97.68 97.58 0.051 

10 species 98.76 92.24 94.02 92.73 0.0489 

12 species 99.01 92.64 94.86 92.93 0.0565 

TABLE. III. THE AVERAGE TESTING PERFORMANCE OF THE PROPOSED 

SYSTEM FOR 7, 8, 10 AND 12 SPECIES 

Number of 
plant species 

Accuracy 
(%) 

Recall (%) 
Precision 
(%) 

F1-score 
(%) 

7 species 98.61 98.63 98.92 98.77 

8 species 98.28 98.38 98.59 98.47 

10 species 94.88 93.22 96.47 94 

12 species 94.38 93.1 94.83 93.57 

Moreover, the confusion matrices of the proposed seedling 
classification method for  7, 8, 10, 12 species are displayed in 
Table IV, Table V, Table VI, and Table VII, respectively. 

TABLE. IV. THE CONFUSION MATRIX FOR 7 SPECIES (1. CLEAVERS, 2. 
CHICKWEED, 3. WHEAT, 4. MAIZE, 5. SCENTLESS MAYWEED, 6. SHEPHERD’S 

PURSE AND 7. SUGAR BEET) 

  Predicted classes 

  

1 2 3 4 5 6 7 

T
ru

e 
cl

a
ss

es
 

1 48 0 0 0 0 0 0 

2 0 100 0 0 2 0 0 

3 1 0 31 0 0 0 0 

4 0 0 0 36 0 0 0 

5 0 1 0 0 89 0 1 

6 0 0 0 0 1 42 0 

7 0 0 0 0 0 0 78 

TABLE. V. THE CONFUSION MATRIX FOR THE 8 SPECIES (1. CHARLOCK, 
2. CLEAVERS, 3. CHICKWEED, 4. FAT HEN, 5. MAIZE, 6. SCENTLESS 

MAYWEED, 7. SHEPHERD’S PURSE AND 8. SUGAR BEET) 

  Predicted classes 

 

 1 2 3 4 5 6 7 8 

T
ru

e 
cl

a
ss

es
 

1 60 1 0 0 0 0 1 0 

2 0 48 0 0 0 0 0 0 

3 0 0 101 0 0 1 0 0 

4 0 0 2 61 0 0 0 0 

5 0 0 0 0 36 0 0 0 

6 0 0 3 0 0 88 0 0 

7 0 0 0 0 0 1 42 0 

8 0 0 0 0 0 0 0 78 

TABLE. VI. THE CONFUSION MATRIX FOR THE 10 SPECIES (1. BLACK 

GRASS, 2. CHARLOCK, 3. CLEAVERS, 4. CHICKWEED, 5. FAT HEN, 6. LOOSE 

SILKY-BENT, 7. MAIZE, 8. SCENTLESS MAYWEED, 9. SHEPHERD’S PURSE AND 

10. SUGAR BEET) 

  Predicted classes 

 
 1 2 3 4 5 6 7 8 9 10 

T
ru

e 
cl

a
ss

es
 

1 21 0 0 0 0 25 0 0 0 0 

2 0 62 0 0 0 0 0 0 0 0 

3 0 0 47 0 0 0 0 0 0 1 

4 0 0 0 100 0 0 0 2 0 0 

5 0 0 0 2 61 0 0 0 0 0 

6 2 0 0 0 0 112 0 0 0 0 

7 0 0 0 0 0 0 36 0 0 0 

8 0 0 0 2 0 0 0 89 0 0 

9 0 0 0 0 0 0 0 1 42 0 

10 0 0 0 0 0 0 0 0 0 78 

TABLE. VII. THE CONFUSION MATRIX FOR THE 12 SPECIES (1. BLACK GRASS, 2. CHARLOCK, 3. CLEAVERS, 4. CHICKWEED, 5. WHEAT, 6. FAT HEN, 7. LOOSE 

SILKY-BENT, 8. MAIZE, 9. SCENTLESS MAYWEED, 10. SHEPHERD’S PURSE, 11. SMALL-FLOWERED CRANESBILL AND 12. SUGAR BEET) 

  Predicted classes 

 

 1 2 3 4 5 6 7 8 9 10 11 12 

T
r
u

e
 c

la
ss

es
 

1 20 0 0 0 1 0 25 0 0 0 0 0 

2 0 60 0 0 0 0 0 0 0 0 2 0 

3 0 0 48 0 0 0 0 0 0 0 0 0 

4 0 0 0 100 0 0 0 0 2 0 0 0 

5 1 0 0 0 31 0 0 0 0 0 0 0 

6 0 0 0 2 1 60 0 0 0 0 0 0 

7 6 0 0 0 0 0 108 0 0 0 0 0 

8 0 0 0 0 0 0 0 36 0 0 0 0 

9 0 0 0 3 0 0 0 0 88 0 0 0 

10 0 0 0 1 0 0 0 0 1 41 0 0 

11 0 0 0 0 0 0 0 0 0 0 86 0 

12 0 0 0 0 0 0 0 0 0 0 0 78 
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E. Discussion 

In this section, an inclusive debate for the realized 
outcomes and comparison with state-of-art are exhibited. 

As considering 7 species (3 crops and 4 weeds) and 8 
species (2 crops and 6 weeds) experiments, the evaluation 
results depict that the proposed technique has effectively and 
efficiently classified the experimented species. The suggested 
system achieved about 99% average accuracy, recall, precision, 
and F1-score of for 7species, and approximately 98% average 
accuracy and recall, as well as nearly 99% average precision 
and F1-score for 8 species. 

On the other hand, for the 10 (2 crops and 8 weeds) and 12 
(3 crops and 9 weeds) species, the performance evaluation is 
relatively less than that for 7 and 8 species. Despite the 
performance reduction, the classification evaluation still high 
and the empirical results manifest the potency and capability of 
the proposed system in discriminating among the various 
species. The submitted method, for 10 species, obtained 
average accuracy, recall, precision and F1-score of about 95%, 
93%, 97%, and 94%, respectively. Additionally, for 12 species, 
the system attained approximately 94%, 93%, 95% and 94% 
average accuracy, recall, precision, and F1-score, respectively. 
It is apparent from Table VI and Table VII that Black grass and 
Loose silky-bent majorly affect the results due to their high 
similarity and insignificant differences at early-stage growth, 
and they are hard to be distinguished even by human eyes. As 
for other classes, the proposed model proved to be reliable and 
effective. 

To scrutinize the performance of the proposed technique, a 
comparison is performed with some state-of-the-art. The 
proposed method is compared with the existing methods [21], 
[11] and [17]. 

The average accuracy of the existing seedling approaches 
and the proposed work are quoted in Table VIII. It may be 
observed that the proposed deep seedling classification system 
outperforms significantly [21] and [11]. Furthermore, it can be 
noticed that, in [11], the average accuracy for Cleavers and Fat 
hen classes are 81.4% and 81.6%, respectively, which are 
relatively weak. Yet, the proposed technique has developed it 
to 100% and 96.83%, respectively. Moreover, both works [11] 
and [21] skipped pretty similar species like black grass and 
loose silk bent. However, the submitted seedling classification 
approach achieves an average test accuracy of 94.38% for the 
whole 12 species. 

TABLE. VIII. COMPARISON OF THE PROPOSED METHOD AND EXISTING 

METHODS 

Method Number of species Accuracy 

[21] 7 95.8 

[17] 7 98.21 

Proposed method 7 98.61 

[11] 8 96.7 

[17] 8 98.23 

Proposed method 8 98.28 

[17] 12 93.64 

Proposed method 12 94.38 

Over and above, the proposed system performance slightly 
exceeds that of [17] for 7 and 8 species, and significantly 
outperforms it for 12 species. Furthermore, it involves 6 
convolutional layers and 3 fully-connected layers, whereas our 
proposed CNN comprises 5 convolutional layers and one fully 
connected layer. Adding more layers extends the number of 
hyperparameters, ergo the complexity of the system. Thus, the 
submitted CNN architecture is much simpler and provide 
superior performance. 

V. CONCLUSION 

In this article, a CNN architecture is developed to 
discriminate between plant images of crop species and weed 
species at several early growth stages. The proposed CNN has 
achieved an enhancement in performance owing to the 
combination of the presence of the normalization layer, the 
global average pooling layer and the choice of the depth of the 
filters. The results revealed that the elaborated CNN has an 
encouraging performance towards building a weed control 
system which is a step to precision agriculture.  The proposed 
CNN model achieved average accuracy, recall, precision, and 
F1-score of 94.38, 93.1, 94.83, and 93.57, respectively, for 
discriminating 12 plant seedling (3 crops and 9 weeds). 
Furthermore, its architecture is simpler than other existing 
CNN models utilized for plant seedling classification. 
Additionally, its performance is much better than other existing 
methods. 

In the proposed scheme, images that comprise single plant 
species are classified, thus, for classifying images with many 
plant species, the segmentation stage may be added to the 
system. 

In addition, the proposed technique may be expanded to 
incorporate new plant species. Besides, the proposed technique 
may be implemented as a part of an IoT system for weed 
control, which can help to directly apply herbicides on the 
weeds without harming crops. 
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