
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

34 | P a g e

www.ijacsa.thesai.org

An Ontological Model for Generating Complete,

Form-based, Business Web Applications

Daniel Strmečki1, Ivan Magdalenić2

Faculty or Organization and Informatics, University of Zagreb, Varaždin, Croatia

Abstract—This paper presents an ontological model for

specifying and automatically generating complete business Web

applications. First, a modular and expandable ontological model

for specifying form-based, business Web applications is

developed and presented. Next, the technology used for

transforming the ontological specification to Java executable

code is explained. Finally, the results of applying the proposed

model for specifying and generating an order management

application are presented. Results showed that the application of

an ontological model in a generative programming approach

increases the level of abstraction. This approach is especially

suitable for development of software families, where similar

features are reused in multiple products/applications.

Keywords—Ontology; model; generative; automatic;

programming; development

I. INTRODUCTION

Software reuse is an important area of software engineering
discipline, as it can increase software productivity and quality.
However, factors like deadlines, budget, technology,
architecture and the level of knowledge and experience also
need to be taken into account. Raising the abstraction level is
the most commonly used approach to increase software reuse.
By encapsulating knowledge about lower level operations,
developers and engineers can think in terms of higher level
concepts, thus saving effort and time [1], [2].

Automatic programming is a software engineering
discipline that automates the lower level process. Its main goal
is to enable developers to operate on higher abstraction levels
by making machines do parts of the programming work. Even
after more than 60 years since its appearance, there are still no
universal solutions for software development automation.
However, it must be acknowledged that the discipline has
dramatically influenced on improvement of software
developers’ productivity. A high level of automation in
software development can nowadays be achieved in some
domains, but the dream of enabling general-purpose, full
development automation still remains unrealized [3].

Generative programming is a sub discipline of automatic
programming that uses generators to facilitate the process of
application development. A generator is piece of software that
takes a higher-lever specification of another piece of software
and produces its implementation [4]. A domain model is used
to provide mapping between the problem space and solution
space. Problem space in generative programming refers to a set
of software features to be implemented, while solution space
implies the implementation abstractions contained in the

specification. A generator maps the two spaces by using a
specification to yield the corresponding implementation [5].

Ontologies were initially applied in software development
only to store data and their semantic meaning, but nowadays
they are used in all phases of software development lifecycle.
Even a new discipline Ontology-Driven Software Engineering
arose, where ontologies are used to perform a majority of
operations in software development [6]. Several authors found
ontologies suitable and helpful in performing tasks like
description of specification documents, formal representation
of requirements, semantic description of services/components,
domain model generation, test cases generation and executable
code generation [7]–[16]. In this paper we present and apply an
ontological model for generating business Web applications.
We applied ontologies for both modeling and specifying a
complete, form-based application. The ontological
specification is then used as an input to code generators, which
can produce fully functional Web applications.

This paper is organized as follows. Section 2 describes the
related work. It describes and discusses models and
frameworks used for the same purpose as the one presented
here. Section 3 introduces a modular ontological model for
modelling and generating business Web applications. Section 4
describes how the ontological model and its specification are
used for generating complete, form-based, applications.
Section 5 provides an example application of the developed
ontological model. An order management business Web
application is ontologically specified and generated. Section 6
presents our conclusions.

II. RELATED WORK

In their approach named Ontology Driven Architecture for
Software Engineering authors Bossche et al. proposed the
usage of ontologies for forming a knowledge continuum
between business and IT. First, the business representatives
work closely with domain modelling experts to build a formal
business model. This enables the business to formalize their
specification and forces them to make requirements explicit.
Next, once the ontology is formed, a transformation from
ontology to source code is done automatically. For this
purpose, authors used a platform based on a strongly typed
logic programming language Mercury and a set of tools and
libraries called Hedwig [17]. They pointed out a number of
advantages brought by the use of ontologies in automated
programming, but it remains unclear what ontologies were
used and how were they mapped to source code generators.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

35 | P a g e

www.ijacsa.thesai.org

Authors Tang et al. developed a Web Information System
auto-construction Environment, which is also a platform for
automatic source code generation based on ontologies. Their
platform uses a predefined ontology to specify user
requirements and provides graphical tools for ontology
construction and drawing user interfaces. It is based on three
tools: builder, mapper and generator. The builder tool helps
users construct the domain and behavior ontologies. The
mapper tool provides methods to automatically transform
behavior operations to backend database access code. The
generator tool, as the name suggests, generates the source code
from ontologies [18]. Since the platform generates program
code automatically from predefined ontologies, it is not
possible to add new ontological or user interface elements
without extending the platform itself.

Semantic Web Builder is an agile development platform for
Web application development, proposed by authors Solis et al.
In their platform requirements are modeled using ontologies
and the infrastructure is then automatically generated. The
source code is however generated in two layers. A base layer is
automatically generated and should never be modified. For
implementation of specific functionality, an extended layer is
also provided [19]. This presents the main disadvantage of
their approach, as custom code needs to be developed manually
for every specific functionality.

In this paper we will present an approach for generating
complete Web applications from ontologies. We will explain
how the ontological model fits into a source code generation
platform, built in Java using only publicly available tools and
frameworks. We will provide public access to the ontological
model and the source code of the generators we have
developed. This will make it possible for anyone to extend the
model and generators, with their custom tweaks or new
functionality. The goal of the proposed platform is to be able to
model and generate any new or specific features trough
ontologies, so there is no custom code and all features can be
easily reused in future work. We rely on ontologies for

modeling complete systems, generate fully functional
applications and avoid repetitive operations, including any
code or specification copy-pasting. The presented approach is
limited to working with form-based Web application and
relational databases.

III. ONTOLOGICAL MODEL

Given that we wanted to achieve a high level of reusability
and expandability of the initially created ontological model, we
decided to take a modular approach in the model creation. We
defined five initial ontologies, where each is focused on one
subdomain: 1) Requirements ontology, 2) Repository ontology,
3) Web forms ontology, 4) Web components ontology and
5) User interface ontology. Requirements ontology contains
classes and attributes defining the project, client and
requirements, including epics, user stories and acceptance
criteria. Repository ontology contains classes and attributes
defining a relational database, its tables and columns. In the
initial version, only relational databases are supported, but
other classes supporting different types of repositories could be
developed in the future. Web forms ontology defines all forms
available to the user through the application, as well as how
forms are grouped together and displayed in the main menu.
Web components ontology contains definitions of components
and listeners. Components are further divided into input fields,
action buttons, pagination tables, etc. The input fields are
divided into the standard input field types we use on modern
Web forms, such as text input fields, numeric input fields,
select fields, combo fields, date input fields, etc. User interface
ontology contains classes that define layout attributes and
positioning of the components on the screen. Fig. 1 shows the
connections between the mentioned ontologies and how they
fit into a complete ontological model for specifying form-based
Web applications. The hierarchy of the complete ontological
model is shown in Fig. 2. The complete model consists of
2300+ axioms, 30+ classes and 80+ types of properties, from
which 37% are object properties and the rest are data
properties.

Fig. 1. Ontological Model Components.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

36 | P a g e

www.ijacsa.thesai.org

Fig. 2. Complete Ontological Model.

IV. CODE GENERATION

The language of choice for development of code generators
is Java, simply because it is a very popular object-oriented
language, in which the author is working professionally for
several years. Java also has a very good support for working
with code templates, Web components and ontologies. Apache
Jena is the framework we used for fetching the ontological
model structure and querying the ontology in order to retrieve
specification. We also used Apache Velocity framework for
templating Java and HTML/CSS code. Velocity allows
developers to use a simple template language with access to
reference objects defined in the Java code. Next, we used
Vaadin Web framework which allowed us to use a large
number of free, out-of-the-box Web components. Vaadin uses
a component-based approach for rapid development of user
interfaces for Java Web applications. This is very convenient,
because we want to focus on development of code generators,
not user interface components. Finally, we used Hibernate
framework as our object-relational mapping framework of
choice. Hibernate enables us to define database entities as Java
classes and is able to generate the database schema
automatically.

The purpose of the ontological model and specification is to
provide an input for code generation. As presented in Fig. 3, a
code generator first fetches the ontological model vocabulary
and then the specific application specification that needs to be
generated. The ontological model vocabulary is represented in
the generators source code by a single Java class for each
ontology. These classes are automatically generated using a
tool called Schemagen, provided with Apache Jena framework.
We use these generated classes to retrieve data from the
ontological model. Application specification data is retrieved
from ontology by running SPARQL queries from generators
Java code. Code generators map the specification of forms,
components and database entities to appropriate Velocity code
templates. This process results in generated files/classes of the
final application. Once all the files are generated, the
generation process results in a complete, fully functional Java
Web application/project. The application code can be compiled
and installed on an appropriate Java web server like Jetty or
Tomcat. Besides the Web server, it is also necessary to provide
a connection from the server to a relational database. We used
MySQL database in our example application and Hibernate
helped us to automatically create the database schema. Once
the infrastructure is set up and the application is successfully
installed, users can access the generated application forms
through their Web browser.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

37 | P a g e

www.ijacsa.thesai.org

Fig. 3. Using an Ontological Model to Generate Executable Code.

V. APPLICATION

As an example application we ontologically specified and
generated an order management application. This sample
application contains a total of 18 Web forms including forms
for managing addresses, articles, contacts, states, references,
Incoterms, legal persons, private persons, orders and tax
schemas. It is important to note that these are not only simple
CRUD forms and that some of them contain complex relations.
For example, it is possible to add items to existing orders and
connect them to multiple referenced documents. When adding
new items the total tax and payable amount get updated
automatically. The generated forms contain almost 7.000 lines
of Java code. The complete generated project resulted in 52
generated files, 10.000+ lines of code, 5500+ statements, 600+
methods and 70+ classes. Let’s now analyses the ontological
specification, based on the presented model, which was used to
generate the application. In order to analyze only the
specification part of the ontology, we exported the ontology in
RDF/XML format and extracted only named individuals. From
the resulting file we removed all blank lines and comments, so
that each line represents either a named individual or a
property. The ontological specification contains less than 2000
lines, 260+ instances and 1100+ attributes. The results show
that we were able to generate more than 5 times more
executable code than we specified using the ontological model.
This means that we have successfully raised the development
abstraction level. Also, if we were to develop a new
application, with a similar set of features, we would be able to
reuse the complete ontological model and even parts of the
specification. Development efforts would be required only to
support new features, which are not already present in the
model.

The ontological model, source code of the code generators
and the example application are available on this link:
http://gpml.foi.hr/DanielStrmecki/.

VI. CONCLUSION

In this paper we presented an ontological model for
specifying and automatically generating complete, business
Web applications. In our approach we wanted to avoid the mix
of generated and custom code, so all new features should be
built in the existing model and full application generated on a
single click. This approach enables possible future reuse of all
developed features. In addition, we provided free, public access
to the model and source code of the generators. The
ontologically-enabled, generative programming approach
presented here is especially suitable for developing software
product families, with a significant set of common features.
Since development and maintenance of the ontological model
and code generators requires additional resource investments,
this approach becomes feasible only if a significant amount of
features are reused on multiple products/projects. As
connections in the ontological specification are defined via
object properties, even the same specifications can be reused
between products. For example, a database entity for handling
addresses, specified for one product, can be connected to
another project instance simply by adding a new object
property. In this way, we are able to reuse the model, code
generators and the specification with minimal modeling effort.
Development efforts are only need when introducing new
features to the model or when debugging any of the currently
available ones. Our approach reduces the number of repetitive
programing tasks, enables development of software product
families on high abstraction level and with high level of
reusability.

DISCLAIMER

This paper publishes, in English, parts of the PhD thesis
Framework for Business Web Application Families
Development Using an Ontological Model and Source Code
Generators by Daniel Strmečki, mentored by Ivan Magdalenić.
The original work is published in Croatian, in accordance with

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 8, 2019

38 | P a g e

www.ijacsa.thesai.org

the PhD study program on Faculty of organization and
informatics, University in Zagreb, Croatia. To download the
original work in Croatian, please visit the Croatian Digital
Dissertations Repository1.

REFERENCES

[1] X. Nianfang, Y. Xiaohui, and L. Xinke, “Software Components
Description Based on Ontology,” in 2010 Second International
Conference on Computer Modeling and Simulation, 2010, vol. 4, pp.
423–426.

[2] E. Visser, “WebDSL: A Case Study in Domain-Specific Language
Engineering,” Gener. Transform. Tech. Softw. Eng. II, vol. 5235, pp.
291–373, 2008.

[3] D. Strmečki, I. Magdalenić, and D. Radosević, “A Systematic Literature
Review on the Application of Ontologies in Automatic Programming,”
Int. J. Softw. Eng. Knowl. Eng., vol. 28, no. 5, pp. 559–591, May 2018.

[4] K. Czarnecki and U. W. Eisenecker, Generative programming: methods,
tools, and applications. ACM Press/Addison-Wesley Publishing Co.,
2000.

[5] I. Magdalenić, D. Radošević, and T. Orehovački, “Autogenerator:
Generation and execution of programming code on demand,” Expert
Syst. Appl., vol. 40, no. 8, pp. 2845–2857, 2013.

[6] A. J. Wiebe and C. W. Chan, “Ontology driven software engineering,”
in 2012 25th IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE), 2012, pp. 1–4.

[7] H. Happel and S. Seedorf, “Applications of Ontologies in Software
Engineering,” 2nd Int. Work. Semant. Web Enabled Softw. Eng.
(SWESE 2006), pp. 1–14, 2006.

[8] C. Calero, F. Ruiz, and M. Piattini, Ontologies for Software Engineering
and Software Technology. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006.

[9] F. Bartolo Espiritu, A. Sanchez Lopez, and L. J. Calva Rosales,
“Towards an improvement of software development process based on
software architecture, model driven architecture and ontologies,” Int.
Conf. Electron. Commun. Comput., pp. 118–126, 2014.

1 https://dr.nsk.hr/en/islandora/object/foi%3A3579

[10] D. Gašević, N. Kaviani, and M. Milanović, “Ontologies and Software
Engineering,” in Handbook on Ontologies, no. January 2016, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 593–615.

[11] E. K. Karatas, B. Iyidir, and A. Birturk, “Ontology-Based Software
Requirements Reuse: Case Study in Fire Control Software Product Line
Domain,” in 2014 IEEE International Conference on Data Mining
Workshop, 2014, pp. 832–839.

[12] A. S. Andreou and E. Papatheocharous, “Automatic Matching of
Software Component Requirements using Semi-formal Specifications
and a CBSE Ontology,” Eval. Nov. Approaches to Softw. Eng., 2015.

[13] S. Il Kim and H. S. Kim, “Ontology-based open API composition
method for automatic mash-up service generation,” in 2016 International
Conference on Information Networking (ICOIN), 2016, pp. 351–356.

[14] H. A. Duran-Limon, C. A. Garcia-Rios, F. E. Castillo-Barrera, and R.
Capilla, “An Ontology-Based Product Architecture Derivation
Approach,” IEEE Trans. Softw. Eng., vol. 41, no. 12, pp. 1153–1168,
Dec. 2015.

[15] R. Sinha, C. Pang, G. S. Martinez, J. Kuronen, and V. Vyatkin,
“Requirements-Aided Automatic Test Case Generation for Industrial
Cyber-physical Systems,” Eng. Complex Comput. Syst. (ICECCS),
2015 20th Int. Conf., pp. 198–201, 2015.

[16] D. Toti and M. Rinelli, “Semi-automatic Generation of an Object-
Oriented API Framework over Semantic Repositories,” in 2015
International Conference on Intelligent Networking and Collaborative
Systems, 2015, pp. 446–449.

[17] M. Vanden Bossche, P. Ross, I. MacLarty, B. Van Nuffelen, and N.
Pelov, “Ontology driven software engineering for real life applications,”
Third Int’l Work. Semant. Web Enabled Softw. Eng, pp. 1–5, 2007.

[18] L. Tang et al., “WISE: A Prototype for Ontology Driven Development
of Web Information Systems,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 3841 LNCS, no. 60473072, 2006, pp.
1163–1167.

[19] J. Solis, H. Pacheco, K. Najera, and H. Estrada, “A MDE Framework for
semi-automatic development of web applications,” Model. 2013 - Proc.
1st Int. Conf. Model. Eng. Softw. Dev., pp. 241–246, 2013.

https://dr.nsk.hr/en/islandora/object/foi%3A3579

