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Abstract—Worldwide, plant diseases adversely influence both 

the quality and quantity of crop production. Thus, the early 

detection of such diseases proves efficient in enhancing the crop 

quality and reducing the production loss. However, the detection 

of plant diseases either via the farmers' naked eyes or their 

traditional tools or even within laboratories is still an error prone 

and time consuming process. The current paper presents a Deep 

Learning (DL) model with a view to developing an efficient 

detector of olive diseases. The proposed model is distinguishable 

from others in a number of novelties. It utilizes an efficient 

parameterized transfer learning model, a smart data 

augmentation with balanced number of images in every category, 

and it functions in more complex environments with enlarged 

and enhanced dataset. In contrast to the lately developed state-of-

art methods, the results show that our proposed method achieves 

higher measurements in terms of accuracy, precision, recall, and 

F1-Measure. 
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I. INTRODUCTION 

Nowadays and with the advancement of technology such 
as digital cameras and other new portable devices in image 
processing, a growing interest has emerged to construct 
methods that enhance crop production on both quantitative 
and qualitative bases. A large number of plant diseases 
contribute to the reduction of the crop production. These 
diseases mainly influence the state and color of plant leaves, 
roots, buddings, flowers and fruits. Due to the similar patterns 
of diseases, it has been proven difficult to point out these 
minimal differences, rendering their visibility a major 
challenge. Likewise, inexperienced farmers find it difficult to 
detect plant diseases with their naked eye. If they were 
successful, they may not be aware of the appropriate 
treatment. Thus, the early diagnosis and treatment of these 
diseases can minimize the losses in the whole crop. To this 
end, new trends of research have considered the validity of 
automated methods in detecting plant diseases. The most 

common techniques for disease detection are machine learning 
coupled with image processing. These techniques monitor, 
measure and analyze various images exhibiting common plant 
diseases. As shown in "Fig. 1", they involve steps that should 
be taken into consideration for the early identification and 
diagnosis of plant diseases. 

 

Fig. 1. Basic Steps of Plant Disease Identification and Classification. 

Image acquisition aims to obtain and collect images that 
help in system training. Thus, it is a crucial step given that the 
accuracy of the system heavily relies on the samples of image 
for the training purposes [1].  Current studies use either self-
collected image datasets or benchmark datasets such as IPM 
Images, PlantVillageImages, and APS Image database. (2) As 
for Image Pre-processing, it seeks to improve the accuracy of 
disease typology. It includes noise removal, image 
enhancement techniques, Image quantization, spatial filtering, 
background removal, resizing and cropping operations. 
(3) Image Segmentation approach is the third step that can be 
generally split into two categories: (i) edge detection or 
(ii) pixel classification. Histogram thresholding, edge 
detection, Region of Interest (ROI), Otsu's, K-means and 
Fuzzy c-means are examples for segmentation methods. 
(4) Feature extraction: in order to identify leaf diseases, we 
should appeal to appropriate features as a distinguishing 
descriptor of disease typology. Concerning feature extraction 
step, it is among the most helpful steps in disease detection 
and classification as it plays a key role in distinguishing one 
disease from another. An inappropriate or excessive use of 
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features may cause the classification to be over fitting and 
require long search time. Thus, it is highly recommended to 
resort to an effective descriptor of the various diseases. The 
image features can be subsumed under three categories: color, 
texture, and shape. (5) Dimension Reduction: As a prior step, 
it is better to pre-process the training data by reducing the 
dimension of the feature vector so as to maximize the speed 
and efficiently of the search. Correlation feature selection 
(CFS) is a central problem to identify the appropriate features 
for developing a classification model for a particular task via a 
correlation based method. A good feature subset can enhance 
the model interpretability, save training time and improve the 
generalizations by minimizing overfitting. The core 
assumption is that a good feature set is closely correlated with 
the class and uncorrelated with other classes. (6) Disease 
Identification & classification: a number of automatic 
methods/models for the detection and classification of plant 
diseases have been put forward in the recent decades to 
overcome the limitation of human based visual detection. 
These methods are based on different machine learning 
algorithms such as neural network [2], Fuzzy logic, K- nearest 
neighbor, support vector machine [3], AdaBoost [4], rule base 
[5], and deep learning [6]. 

In this paper, we propose an enhanced Convolutional 
Neural Networks (CNNs) named AlexNet for olive disease 
detection and classification. Its main contribution is the 
improvement of the accuracy of olive diseases diagnosis. 
According to FAO, Olive trees are among the most cultivated 
plants on the globe and the number of olive trees planted in 
2014 is estimated at about 10.2 million hectares. However, 
olive trees are currently under the threat of a variety of 
diseases that affect its growth and quality such as canker, 
Anthracnose, Peacock spot, etc. compared to state-of-art 
methods, with the aid of an efficient parameterized transfer 
learning model and a smart data augmentation technique, the 
results show a predomination although our proposed model 
functions in more complex environments. The organization of 
the paper proceeds as follow. Section II provides the relevant 
literature. An overview of the system framework is presented 
in Section III. The proposed technique will be laid out in 
Section IV. In Section V, we will provide a detailed 
description of the experimentation processes. The results will 
be discussed in Section VI. Concluding remarks and future 
work will be given in Section VII. 

II. RELATED WORK 

In response to the costly losses in agricultural production 
caused by insects and plant diseases, new technological 
methods have been designed. Computer science is among the 
disciplines that address these concerns and provide solutions 
to them. Machine learning, for an instance, plays a key role in 
detecting such pests and epidemics. In the past decades, a 
considerable volume of studies with different machine 
learning algorithm have been executed for Plant disease 
detection under different environmental conditions, in 
different countries, and for different plants such as tomato [7], 
potato [8], rice [9], cassava [10],  mango [11],  apple [12, 13] , 
general plants [14, 15], and Olive [16, 17], etc. Jagan Mohan 
et al.[4] presented a system that firstly used SIFT to extract 
featured from the paddy plant; secondly the AdaBoost 

classifier was used for disease detection with identification 
rate 83.33%. After identification, the diseases are recognized 
with the use of SVM classifier with a recognition rate 91.10% 
for SVM and 93.33% for K-NN. A system that employ fuzzy 
logic to detect scab disease in apple is presented in [18]. In 
this study Blob analysis method was used to for feature 
extraction and the system get accuracy 91.66% for disease 
classification. Different deep learning architectures were used 
in [7] for identifying tomato stresses. The author concluded 
that Faster RCNN with VGG-16 performed better than other 
architectures used in the experiments. Monzurul Islam, et al. 
[8], developed a system to classify the potato diseases . The 
system firstly mask out the background as well as the green 
region of the leaves to extract the region that contains disease 
symptoms. After that two feature extraction methods are used: 
color and texture, then multiclass SVM classifier is employed 
for image classification. The accuracy of the system is 95%.  
In [9], AlexNet deep learning is used to classify rice plant 
image to three classes, (a) it is infested with golden apple 
snails; (b) it is afflicted with diseases; and (c) it is normal and 
healthy; the system provided 91.23% accuracy. Ramcharan, et 
al. [10] trained a Tensor flow model of CNN to detect and 
identify foliar symptoms of diseases in cassava. Thereafter, 
the trained model was employed in a mobile app. The CNN 
detection model achieves 94 ± 5.7%. Singh, et al. [11] 
presented a multilayer convolutional neural network (MCNN)  
based approach for identifying Anthracnose fungal disease  
affect Mango leaves, the system get average accuracy of 
97.13%. Detection of anthracnose lesion in apple fruit using 
adapted DenseNet model was presented in [12], and it 
achieved an overall accuracy of 95.57% for disease 
identification. Apple leaf diseases using deep-CNNs is 
proposed in [13], in this system; GoogLeNet Inception 
structure and Rainbow concatenation (VGG-INCEP model.) 
are employed to detect five  apple leaf diseases (Alternaria 
leaf spot, Brown spot, Mosaic, Grey spot, and Rust) The 
classifier achieved a recognition accuracy of 97.14%.  
AlexNet and GoogLeNet are used in [14] for classification of 
54,306 images from PlantVillage to healthy and infected plant 
leaves. Their model achieved an accuracy of 99.35%. 
However, their proposal has dramatically collapsed when 
tested on images taken under different condition. Sladojevic, 
et al. [15] developed a model using CaffeNet for recognizing 
14 different types of plant diseases from healthy leaves in 
Peach, Apple, and Grapevine. They achieved an average of 
96.3% accuracy in their experimental analysis. Al-Tarawneh, 
Mokhled [14] worked on olive leaves spot diseases and 
proposed a novel technique which is a combination of auto-
cropping segmentation and fuzzy c-means clustering. The 
segmentation part is done by Automatic polygon cropping 
ROI, while Fuzzy C-means clustering classifier was used to 
classify the diseases by comparing c- means clustering with k-
means clustering with performance parameters like speed and 
accuracy. The results show that Fuzzy c-means clustering was 
found superior than the K-means clustering. A DL model for 
identification of olive ‘quick decline’ syndrome called 
‘abstraction-level fusion’ was proposed in [17]. The rate of 
detection was over 98%, despite the presence of disease in 
olive fruits. Yet, this system identifies the diseases on the 
olive leaves only. 
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III. SYSTEM FRAMEWORK 

The present paper aims for a smart system capable of 
processing olive leaf images with the support of machine 
learning algorithms and detecting different symptoms of olive 
diseases. A novel deep learning framework based on AlexNet 
model was provided to organize the learning process using the 
transfer learning approach. The proposed model, discussed in 
more details in the next section, discovers low-level features 
plant images and in turn detects the disease. The system 
overview is described as follows: (1) for this study, the data is 
taken from plant-village dataset. Subsequently, it is enhanced 
with the olive data collected for Aljouf laboratory.  (2)  Leaf 
images are pre-processed via a small window median filter. 
The filtering process removes noise, and then the images are 
resized to 256 pixels × 256 pixels. (3) Furthermore, the images 
are processed with the proposed AlexNet Model.  
(4) Diagnosis and feedback. "Fig. 2" shows the working steps 
of the system overview. 

 

Fig. 2. System Overview. 

AlexNet model starts from data collection until up to 
disease detection process. Occasionally, one of the key steps 
seeks to efficiently prepare the collected data in a manner fit 
for the model and assist it in obtaining accurate results. Data 
preparation includes data augmentation, equalizing the 
number of images in each class, simple filtering and de-
noising. Afterwards, the dataset is divided into training set 
(80%) and testing set (20%). Optimizing the DL network 
parameters is accomplished through the training process.  The 
more learned, the more accurate the model becomes in 
mapping input into its desired output. The trained DL model is 
then tested against the remaining 20% unseen images. As a 
final step, after carrying out a number of experiments and 
monitoring the output results, the DL network is said to be 
converged and deployed. 

IV. PROPOSED MODEL 

A. AlexNet Description 

Initially, at low-level, a convolutional neural network 
(CNN) is fed by image’s pixel representation defined in 
PlantVillage dataset. Layers are interconnected together in a 

Multi-Layer (ML) architecture. The network is in charge of 
converting the input visual stimulus into non-local signals. 
Gradually, the abstraction-level of the signal becomes more 
complex due to passing through succeeding layers. Low-
complex features like edges, corners, intensity values, and 
texture are captured by initial layers while more complex 
features are formed in a step-by-step format at the higher 
layers of abstraction. Deep learning (DL) is based on ML 
techniques where current succeeding layer depends on the 
output reached from the previous layer. In other words, every 
two subsequent layers are connected together by neurons. 
These neurons are nonlinearly transformed layer features. 
Parameters like weights and biases should be carefully 
assigned as it determines the accuracy of classification. DL 
networks are bi-directional neural networks. In the forward 
direction, image’s pixel representation is passed to the input 
layer which in turn transforms it to next layer. The 
transformation continues through hidden layers until the 
output layer. At the output layer, also the decision layer, a 
decision is made and the residual error is calculated between 
desired output and the output actually obtained. In the 
backward direction, the error is fed and backed in order to 
correct the parameters reversely from output layer to input 
layer. The model keeps moving forward and backward until 
achieving satisfied results.  Typically, a learning algorithm 
called back-propagation is utilized for such problems. 
Stochastic gradient descent (SGD) and its variants, such as 
mini batch gradient descent [19], ADAM [20], and ADMM 
[21], have been used to train DNNs. The AlexNet architecture 
[22] follows the same design pattern as the LeNet-5 [23] 
architecture. It is a set of stacked convolution layers followed 
by one or more fully connected layers as shown in "Fig. 3". 
Optionally, the convolution layers may have normalization 
and pooling layers. Thereafter, Rectified Linear Unit (ReLu) 
non-linear activation function is usually used for all the 
network layers. 

 

Fig. 3. Classic Structure of AlexNet Deep Neural Network [24]. 

 

Fig. 4. Structure of the Convolutional Neural Network Employed in this Work. 
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As demonstrated in "Fig. 4", our adapted version AlexNet 
consists of 5 convolution layers (conv1—5), followed by 3 
fully connected layers (fc6, fc7, and fc8), and a softMax layer 
comes at the end.  The first two convolution layers (conv1 and 
conv2) are each followed by both cross channel normalization 
layer (5 channels per element) and 3x3 max pooling layer. 
Meanwhile, the final convolution layer (conv5) is followed by 
only one pooling layer. The final fully connected layer (fc8) 
has 52 outputs which equal the total number of classes in our 
enhanced dataset. Dependently, normalization of fc8 output is 
exponentially done at the softMax layer. ReLu proceeds for 7 
layers of AlexNet from Conv1 through FC7. To reduce the 
overfitting, both fc6 and fc7 have a dropout ratio of 0.5 
overfitting occurs when the model learns massive details about 
the training data.  An overfitting overcome method known as 
'sgdm' is used. In addition, novel regularization techniques 
such as dropout [25] have emerged to reduce overfitting. To 
build a robust and unbiased model that discovers true 
parameters, a huge amount of input data with a high 
changeability must be guaranteed. However, it is an arduous 
task to obtain a dataset that could cover such changeability in 
most common realistic applications. To address this issue, as 
we have not a sufficient large olive dataset, we have to 
augment the dataset. Data augmentation is accomplished to 
aid the proposed DL model reaching higher results compared 
to other methods. Unlike [15], at our Model’s training stage, 
classes suffering a small number of images are geometrically 
modified with a random transformation such as changing the 
intensity of RGB channels, flipping, translations or rotations. 
Moreover, each class has the same number of training images 
with equal percentage of disease classes. 

B. Artificial Data Augmentation 

Some DL models may not be sustainable to natural 
disorders such as illumination, perspective, and position 
variability in test images. Ideally, good DL models should 
overcome both underfitting and overfitting problems. Yet, it is 
an overambitious goal to achieve in practice. It requires 
successive trials to reach such a goal. The issue of overfitting 
occurs when the model learns massive details about the 
training data.  An overfitting overcome method known as 
'sgdm' is used. In addition, novel regularization techniques 
such as dropout [25] have emerged to reduce overfitting. To 
build a robust and unbiased model that discovers true 
parameters, a huge amount of input data with a high 
changeability must be guaranteed. However, it is an arduous 
task to obtain a dataset that could cover such changeability in 
most common realistic applications. To address this issue, as 
we have not a sufficient large olive dataset, we have to 
augment the dataset. Data augmentation is accomplished to 
aid the proposed DL model reaching higher results compared 
to other methods. Unlike [15], at our Model’s training stage, 
classes suffering a small number of images are geometrically 
modified with a random transformation such as changing the 
intensity of RGB channels, flipping, translations or rotations. 
Moreover, each class has the same number of training images 
with equal percentage of disease classes. 

V. EXPERIMENTATION DETAILS 

A. Dataset Description 

Original PlantVillage dataset has 54,306 images of plant 
leaves distributed over different 38 classes of 14 crop species 
and 26 diseases. During the implementation of our 
experiments, the model is deployed over PlantVillage dataset 
without any interventions. Nonetheless, due to the absence of 
olive diseases in it, it was inevitable to enhance the dataset to 
be further considered. Extra 14 classes of different olive’s 
images are added to PlantVillage dataset and hence 52 classes 
are formed. Olive Plants within groups were selected from the 
same olive tree age (25–30 years). To evaluate the presence of 
a specific disease like Anth, Aspid, Cankers, Frost, Gloe, Hail, 
etc. in olive trees, sampling is executed according to 
symptoms in January 2018. "Fig. 5" shows a sample of olive 
leaf diseases. 

B. Performance Metrics 

To evaluate the proposed model, equations (1)-(4) are 
employed. All of the following metrics are exposed as 
percentages. 

           
     

            
            (1) 

         
  

     
               (2) 

            
  

     
             (3) 

       
                  

                 
              (4) 

C. Implementation Details and Parameters 

Due to a controlled collection of PlantVillage dataset, it is 
expected to obtain highly accurate results. Therefore, we are 
motivated to further assess the model’s performance on an 
enhanced version of PlantVillage dataset which contains olive 
images. Such images are scarce (verified 14 class of 120 
images). In order to record the olive results, the network is re-
trained on the new updated version of the dataset. To train the 
model, parameters summarized in "Table I" are utilized. With 
the purpose of verification, we perform 10 trials with random 
sets of 80% for training data and 20% for testing data. 

TABLE. I. ALEXNET PARAMETERS 

Factor Value 

'WeightLearnRateFactor' 20 

'BiasLearnRateFactor' 20 

'InitialLearnRate' 1e-4 

'MiniBatchSize' 10 

'MaxEpochs' 6 

Weight decay  0.0005 

Gamma(ϒ) 0.1 

Batch size 100 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

490 | P a g e 

www.ijacsa.thesai.org 

 

 A B C D E F 

1 

 

 

  
 

 

2 

 

 

 

 

 

 

3 

 

 

 
 

 

 

4 

  

  

 

 

5 

 

   

  

Fig. 5. Sample of Olive Leaf Diseases used in the Experiment. (A) Anthracnose, (B) Canker, (C) Lepra Fruit Rot, (D) Peacock Spot, (E) Parlatoria Oleae, (F) 

Aspidiotus Nerii. 

VI. RESULTS AND DISCUSSION 

Using the proposed DL model network architecture, plant 
leaves are trained and classified to detect both crop species 
and disease identity in two main experiments. As mentioned 
above, one works at the original PlantVillage dataset while the 
other works at the enhanced dataset using the images acquired 
from JOUF lab. All experiments are configured to run for a 
total of 6 epochs each, and they consistently converge after a 
few steps down in the learning rate. As this paper plans to 
identify 14 olive diseases, we prefer to document only the 
results of the final experiment which takes olive Pkant into 
account. In order to validate the results of the proposed model, 
the renewed dataset is divided into 80% training and 20% 
testing sets. "Table II" shows the True Positive (TP), False 
Positive (TP), True Negative (TN), and False Negative (FN) 
respectively for olive diseases. 

Detailed metrics (precision, recall, F1 Measure, sensitivity, 
and specificity) for each olive disease are depicted in 
"Table III". The minimum values obtained are highlighted in a 
red underlined font. ‘Peac’ has the lowest precision value; 
‘Frost’ has both recall and F1 vlaue, while ‘Gloe’ has the 
lowest sensitivity. All specificity measure for all diseases is 
100%. 

TABLE. II. TP, FP, TN, AND FN FOR OLIVE DISEASES 

Syndrome TP FP TN FN 

Anth 72 0 2215 0 

Aspid 144 2 2138 4 

Cankers 143 5 2138 0 

Frost 1 0 2283 1 

Gloe 419 0 1867 0 

Hail 7 1 2279 5 

Lepra 129 2 2156 0 

Macr 59 2 2226 0 

Marciume 36 0 2246 0 

Parl 6 1 2280 1 

Peac 37 4 2245 3 

Phyt 104 0 2183 1 

Pseud 71 1 2211 3 

Tuber 1 0 2286 0 
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TABLE. III. OLIVE DISEASES THAT ARE CONSIDERED BY THIS STUDY 

Syndrome Precision Recall 
F1 

Measure 
Sensitivity Specificity 

Anth 100 100 100 100 100 

Aspid 100 98.63 99.31 100 100 

Cankers 97.95 99.31 98.62 98 100 

Frost 100 50 66.67 99 100 

Gloe 100 100 100 25 100 

Hail 100 100 100 100 100 

Lepra 100 100 100 100 100 

Macr 100 100 100 100 100 

Marciume 100 100 100 100 100 

Parl 100 100 100 88 100 

Peac 90.24 97.37 93.67 100 100 

Phyt 100 100 100 97 100 

Pseud 100 100 100 100 100 

Tuber 100 98.63 99.31 100 100 

"Fig. 6" alongside "Table IV" summarizes the remarked 
results in contrast to a number of the state-of-art methods. The 
proposed method achieves an overall accuracy about 99.11% 
which is the highest mark. Besides, it has 99.49%, 99.11%, 
and 99.29% in terms of precision, recall, and F1 measure 
respectively. These metrics are the highest as opposed to other 
methods. It has been noticed that our proposed model 
outperforms all other methods in terms of overall accuracy, 
precision, recall, and F1 measure. This singularity in 
measurements is a result of efficient artificial augmentation, 
balanced number of class images, optimal parameters 
assignment, smart network configuration, and usefulness of 
transfer learning.  The problems arising in most traditional 
attempts [25-28] to detect plant diseases follow from hand-
engineered features, image enhancement techniques, and 

labor-intensive methodologies. These traditional attempts are 
lean to either a small number images in a class or a limited 
variety of classes of crops. Unlike [17], the proposed model 
AlexNet model is trained over an enhanced version of 
PlantVillage dataset.  Thus, it is more general for multiple 
disease identification for apple, tomato, and olive leaf 
diseases. Moreover, it relies on augmentation and achieved an 
overall accuracy of 99.11% for disease identification. 

To conclude, it has been observed that the performance of 
DL models in image classification has made a remarkable 
progress in the past few years [29-31]. Previous traditional 
approaches such as SIFT [32], HoG [33], SURF [34], etc., and 
the likes were based on hand-engineered features extraction 
methods. These approaches heavily depend on predefined 
features. They also lack the transfer learning. In other words, 
they fail once the problem at hand is renewed or major 
changes are introduced to the dataset. 

 

Fig. 6. The Proposed Method Compared to State-of-Art Methods. 

TABLE. IV. PROPOSED METHOD COMPARED TO STATE-OF-ART METHODS 

The proposed method Accuracy (%) Precision (%) Recall (%) F1-Measure (%) 

Background Suppressing Gabor Energy Filtering 

[26] with RBF-SVM [27]. 
63.11 ± 11.91 72.44 ± 14.30 65.28 ± 21.74 65.52 ± 15.15 

SIFT Features[28] and RBF-SVM [27]. 84.91 ± 17.44 85.19 ± 20.07 77.87 ± 43.61 84.65 ± 18.13 

Uniform Local Binary Patterns [35] and RBF-SVM 

[27]. 
88.55 ± 16.71 92.12 ± 17.68 92.24 ± 6.16 90.95 ± 11.97 

X-Fideo (LeNet deep learning algorithm) [17]. 98.60 ± 1.47 98.82 ± 2.63 97.18 ± 2.71 96.89 ± 3.45 

AlexNet deep learning algorithm [15]. 
97.38 ± 1.89 

 
97.42 ± 1.33 97.37 ± 1.45 

97.36 ± 2.45 

 

The proposed method  99.11 ± 0.75 99.49 ± 0.83 99.11 ± 1.29 99.29 ± 1.63 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

492 | P a g e 

www.ijacsa.thesai.org 

VII. CONCLUSION AND FUTURE WORK 

Early detection of plant diseases has been taken as a 
positive move to maintain and enhance crop quality and 
reduce production loss to the minimum. As a result, DL 
approaches gain wide acceptance worldwide due to their 
accuracy and efficiency in plant disease detection field.  The 
remarked results compared to a number of state-of-the-art 
methods are promising. Our proposed method achieves an 
overall accuracy of 99.11% which is the highest mark. 
Besides, it has 99.49%, 99.11%, and 99.29% in terms of 
precision, recall, and F1 measure respectively. It outperforms 
all other methods when it comes to overall accuracy, 
precision, recall, and F1 measure. More interestingly, although 
the model training consumes ample time, the classification 
during testing runs quickly in a few seconds even on a CPU. 
Therefore, the model could be easily implemented on a 
smartphone. In the future, a smartphone-assisted crop disease 
diagnosis will be targeted, and the proposed model will be 
available at Mobil apps. 
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