
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

522 | P a g e  

www.ijacsa.thesai.org 

Implementation of a Beowulf Cluster and Analysis of 

its Performance in Applications with Parallel 

Programming 

Enrique Lee Huamaní1, Patricia Condori2, Avid Roman-Gonzalez3 

Image Processing Research Laboratory (INTI-Lab) 

Universidad de Ciencias y Humanidades 

Lima, Perú 

 

 
Abstract—In the Image Processing Research Laboratory 

(INTI-Lab) of the Universidad de Ciencias y Humanidades, the 

permission to use the embedded systems laboratory was 

obtained. INTI-Lab researchers will use this laboratory to do 

different research related to the processing of large scale videos, 

climate predictions, climate change research, physical 

simulations, among others. This type of projects, demand a high 

complexity in their processes, carried out in ordinary computers 

that result in an unfavorable time for the researcher. For this 

reason, one opted for the implementation of a high-performance 

cluster architecture that is a set of computers interconnected to a 

local network. This set of computers tries to give a unique 

behavior to solve complex problems using parallel computing 

techniques. The intention is to reduce the time directly 

proportional to the number of machines, giving a similarity of 

having a low-cost supercomputer. Different performance tests 

were performed scaling from 1 to 28 computers to measure time 

reduction. The results will show if it is feasible to use the 

architecture in future projects that demand processes of high 

scientific complexity. 

Keywords—High-performance cluster; distributed 

programming; computational parallelism; Beowulf cluster; high-

efficiency computing 

I. INTRODUCTION 

With the growth of technological advances related to the 
world of computing, new techniques are emerging that take full 
advantage of computers that are interconnected by the same 
local network. The idea is to meet specific needs in less time 
than an ordinary computer. Performing processes of high 
availability, efficiency, and performance has become critical to 
providing better services, optimizing time resulting from 
complex problems and having continuous availability. 

In this work is carried out the implementation of a high-
performance cluster type Beowulf, which is the set of low-cost 
computers interconnected by a network to solve problems of 
high scientific complexity in less time [1]. This work was done 
due to the proposal of new projects where the time of the result 
takes hours or days depending on the complexity of the 
algorithm. Thanks to this work, one is able to reduce the time 
in providing results using distributed programming. 

The work was done in the embedded systems laboratory of 
the University of Sciences and Humanities for scientific 
purposes that would benefit the INTI-Lab to perform 

simulations of high scientific complexity. These types of 
architectures are commercially considered supercomputers 
because they are designed to increase computing power by 
allowing parallel processing of tasks and high-speed 
communication [2]. Twenty-eight computers will be used, of 
which a performance test will be performed using a specialized 
algorithm. The idea is to measure their scalability and 
determine the exact number of computers to be used due to 
bottlenecks that can occur in the communications network. 

The computers used in the architecture will continue being 
of first use for the university student. For that reason, there is a 
calendar for its scientific use without causing inconveniences at 
the time of using the laboratory. Reusing the hardware 
resources for the implementation of this work is not a new 
idea. One has the Polytechnic University of Altamira [3] that 
uses the five computers of the optimization laboratory and 
networks to solve complex problems with a specialized 
package to measure its scalability. Recycled computers should 
not be wasted, and a focus can be given to their use in a cluster 
architecture. As is the case of the National Engineering 
University [4], which uses recycled computers to obtain a 
maximum computational benefit. All these architectures that 
were mentioned are called Beowulf clusters. They are so-called 
because of the low or regular computing resource [5]. They 
will use four elements of hardware that are the RAM, the 
central processing unit (CPU), and its network card. 

In this work, the maximum potential of the computers of 
the laboratory of embedded systems will be used, being the 
completion of this work a supercomputer with low computer 
resources. 

II. METHODOLOGY 

The cluster architecture will be implemented in Laboratory 
302-B that will use the 29 computers interconnected to a 
switch. A computer will be in charge of distributing the 
problem to the 28 remaining computers that will solve a 
problem applying techniques of computational parallelism. The 
characteristics of hardware are of low cost; for that reason, the 
name of cluster Beowulf is chosen that will be detailed with 
precision in another section of this work. As can be seen in 
Fig. 1, in the lower-left is specified in the operating system, 
and the tool one is using for the realization of parallelism 
between the nodes because they are computers also used for 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

523 | P a g e  

www.ijacsa.thesai.org 

the academic field all will be connected directly to the public 
network. Concerning the issue of security from the orchestrator 
computer will generate a unique security key thanks to the 
Secure Shell protocol, which will be copied to each laboratory 
computer to prevent an external agent cannot access not having 
access permissions. 

A. Cluster Arquitecture 

The cluster architecture can be of three types: high 
performance cluster (HPC), high availability cluster (HA) and 
high efficiency cluster (HP) [6] in this work an HPC 
architecture was implemented that uses powerful tools and 
processes of computing to generate data in advanced academic 
research [7], this type of architecture was chosen to take 
maximum advantage of computing resources in order to obtain 
successful results in less time, the more project proposals there 
are the need to use other types of architecture making the 
future laboratory of the institution a hybrid cluster, the 
characteristics of the HPC of the laboratory are as follows. 

1) Master node: It is the computer in charge of 

distributing the problem applying parallel programming to 

distribute it to the slave nodes in order to give a result in less 

time, in it, one can see the ecosystem of the architecture 

installing some monitoring packages. 

2) Slave node: These computers have two functions, one 

of them is to take a portion of the general problem that is 

distributed by the master node and return the final result when 

it finishes processing, they do not need to have a graphical 

user interface because it basically needs to be connected to the 

network to extract the number of cores for the process. 

3) Communication network: It is the means that will help 

the communication between the slave nodes and the master. 

The better the communication by the network equipment, the 

lower the network traffic, making the performance of the 

processes more favorable. 

4) Secure shell protocol: In this work, one uses the Secure 

Shell (SSH) thanks to this protocol the master node can 

interact securely with the slave node, for information security 

reasons a unique key was generated from the master node and 

copies were made to the slave nodes to have a secure cluster 

architecture. 

5) Paralleling tools: To make computers work in parallel 

requires specialized tools, in this case, was used Open Mpi 

which is an implementation of open-source message step 

interface1, this tool will help the realization of computational 

parallelism techniques, in the taxonomy of Flynn extracted 

from [8] shows two types of parallelism. 

a) MISD: Applies the technique of multiple instructions 

to data where its functional units perform different operations 

on the same data. 

b) MIMD: Applies multiple instruction techniques, 

multiple data used to achieve parallelism, the machines that 

use these techniques have several processors that operate 

asynchronously and independently. 

                                                           
1 The Open MPI Project, “A High Performance Message Passing Library” 

2019. [Online]. Available: https://www.open-mpi.org/ 

 

Fig. 1. Design of the Beowulf Cluster Architecture. 

B. Architectural Status Monitoring 

One of the most common cases in the use of a Beowulf 
cluster is the disconnection that can occur in some of the 
computers, to access to each one of it to make sure that it has 
communication can be a tedious work even more in the case of 
29 computers, for this problem an algorithm was developed in 
the programming language Python that shows a report of the 
nodes with their state of connectivity in Fig. 2 the pseudo code 
is shown. 

As a result, we have the following report, as shown in 
Fig. 3 that shows 28 slave nodes and one master node, all 
activated in a network. 

https://www.open-mpi.org/


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

524 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 2. Pseudo Code Node State of the Beowulf Cluster. 

 

Fig. 3. Beowulf Cluster Status Result. 

C. Cluster Beowulf 

The implementation of the work is of Beowulf type that is 
denominated with this prefix for the use of components of 
hardware of low cost that behave as if they were an only 
computer [9] the computers of the laboratory of embedded 
systems are used, space where the students of the university 
carry out their academic activities, therefore, the laboratory has 
a particular schedule for the accomplishment of investigations, 

in this architecture was used a number of 28 slave computers 
and a master computer using a number of 196 cores that will 
process the problem applying parallel techniques 
computational parallelism distributing the problem to each of 
its cores for obtaining results in less time, Fig. 4 shows the 
computers used in the performance testing process. 

All equipment has the same hardware characteristics, as 
shown in Table I. 

D. Performance Testing 

In this work, performance tests were performed to measure 
scalability with an intensive calculation algorithm for the sum 
of prime numbers used in the C++ programming language. 

1) Parallel algorithm for calculating prime numbers: For 

the performance tests, an algorithm used in previous work 

with virtual machines was selected [10] that applies 

parallelism techniques thanks to Open Mpi that performs 

intensive iterations to each of the numbers to validate if it is a 

prime number. In this work, an intensive calculation is carried 

out by testing 2, 4, and 8 million iterations, Fig. 5 shows the 

pseudocode. 

 

Fig. 4. Comparison of the Performance Test. 

TABLE. I. HARDWARE CHARACTERISTICS OF THE BEOWULF CLUSTER 

COMPUTERS 

 Description 

Modell HP EliteDesk 800 G1 SFF 

HDD  1 TB 

RAM 8 GB 

Processor Intel® CoreTM i7-4790 CPU 

Total Cores 7 

Type of Operating System 64-bit 

Operative System  Ubuntu 18.04 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

525 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 5. Pseudo Code of the Cousin Calculation Algorithm. 

III. RESULT 

In this section, performance tests are shown using the 
algorithm of the calculation of prime numbers using distributed 
programming. Scalability measurements are made using from 
one to 28 slave nodes of the Beowulf cluster. 

For the execution of the algorithm, we will use a line of 
code from the console of the master node that is: mpirun –np # 
-hostfile ../.mpi_hostfile ./primos, where the symbol # 
represents the number of cores and .mpi_host file the number 
of slave nodes and ./primos the execution of the compiled 
algorithm. The more slave nodes used, the more kernels must 
be included from the Linux console to deliver the results in less 
time. 

In Table II, the first tests are performed with 2 million 
iterations using from one to 28 slave nodes. In Fig. 6, the same 
result is shown in the form of a statistical graph, taking into 
consideration the number of slave nodes versus the time of the 
result. 

In Table III, the tests are performed with 4 million 
iterations using from one to 28 slave nodes. In Fig. 7, the same 
result is shown in the form of a statistical graph, taking into 
consideration the number of slave nodes versus the time of the 
result. 

In Table IV, the tests are performed with 8 million 
iterations using from one to 28 slave nodes. In Fig. 8, the same 
result is shown in the form of a statistical graph, taking into 
consideration the number of slave nodes versus the time of the 
result. 

Finally, Fig. 9 shows a statistical graph of the number of 
slave nodes versus the result time, taking as reference the three 
performance tests used in the previous tables. 

TABLE. II. INTENSIVE CALCULATION WITH 2 MILLION ITERATIONS 

Number of slave nodes Time of result Core 

Slave node 1 92.0369 7 

Slave node 2 97.8105 14 

Slave node 3 46.722 21 

Slave node 4 46.1112 28 

Slave node 5 25.8577 35 

Slave node 6 46.1088 42 

Slave node 7 13.8339 49 

Slave node 8 23.1545 56 

Slave node 9 15.4168 63 

Slave node 10 23.2592 70 

Slave node 11 9.33184 77 

Slave node 12 23.1032 84 

Slave node 13 8.07527 91 

Slave node 14 13.2397 98 

Slave node 15 11.6152 105 

Slave node 16 12.1778 112 

Slave node 17 6.44756 119 

Slave node 18 15.3812 126 

Slave node 19 5.85358 133 

Slave node 20 11.5912 140 

Slave node 21 10.04327 147 

Slave node 22 11.2397 154 

Slave node 23 8.14788 161 

Slave node 24 4.75896 168 

Slave node 25 6.44756 175 

Slave node 26 4.48963 182 

Slave node 27 3.85358 189 

Slave node 28 2.5912 196 

 

Fig. 6. Statistical Diagram of the Calculation of 2 Million Iterations. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

526 | P a g e  

www.ijacsa.thesai.org 

TABLE. III. INTENSIVE CALCULATION WITH 4 MILLION ITERATIONS 

Number of slave nodes Time of result Core 

Slave node 1 351.2 7 

Slave node 2 351.09 14 

Slave node 3 180.775 21 

Slave node 4 178.562 28 

Slave node 5 91.6705 35 

Slave node 6 176.087 42 

Slave node 7 53.1501 49 

Slave node 8 88.187 56 

Slave node 9 58.6974 63 

Slave node 10 88.4901 70 

Slave node 11 35.5622 77 

Slave node 12 88.2121 84 

Slave node 13 31.1266 91 

Slave node 14 50.4507 98 

Slave node 15 44.3467 105 

Slave node 16 44.1493 112 

Slave node 17 24.7582 119 

Slave node 18 61.3337 126 

Slave node 19 22.0287 133 

Slave node 20 44.1297 140 

Slave node 21 31.1266 147 

Slave node 22 22.4177 154 

Slave node 23 25.3467 161 

Slave node 24 27.4675 168 

Slave node 25 19.7582 175 

Slave node 26 15.3337 182 

Slave node 27 17.6287 189 

Slave node 28 13.56297 196 

 

Fig. 7. Statistical Diagram of the Calculation of 4 Million Iterations. 

TABLE. IV. INTENSIVE CALCULATION WITH 8 MILLION ITERATIONS 

Number of slave nodes Time of result Core 

Slave node 1 351.2 7 

Slave node 2 351.09 14 

Slave node 3 180.775 21 

Slave node 4 178.562 28 

Slave node 5 91.6705 35 

Slave node 6 176.087 42 

Slave node 7 53.1501 49 

Slave node 8 88.187 56 

Slave node 9 58.6974 63 

Slave node 10 88.4901 70 

Slave node 11 35.5622 77 

Slave node 12 88.2121 84 

Slave node 13 31.1266 91 

Slave node 14 50.4507 98 

Slave node 15 44.3467 105 

Slave node 16 44.1493 112 

Slave node 17 24.7582 119 

Slave node 18 61.3337 126 

Slave node 19 22.0287 133 

Slave node 20 44.1297 140 

Slave node 21 31.1266 147 

Slave node 22 22.4177 154 

Slave node 23 25.3467 161 

Slave node 24 27.4675 168 

Slave node 25 19.7582 175 

Slave node 26 15.3337 182 

Slave node 27 17.6287 189 

Slave node 28 13.56297 196 

 

Fig. 8. Statistical Diagram of the Calculation of 8 Million Iterations. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 8, 2019 

527 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 9. Comparison of the Performance Test. 

IV. DISCUSSION AND CONCLUSIONS 

The work serves as a starting point for the realization of 
algorithms of high scientific complexity. It has scheduled a 
schedule of continuous improvement where the activities will 
be carried out depending on the need that arises in the direction 
of research of the Universidad de Ciencias y Humanidades. 
Improvements will include high availability to obtain large 
volumes of information using Big Data techniques as it does in 
[11]. This work has similarity concerning the measurement of 
scalability to use more nodes that demonstrate the efficiencies 
of these HPC architectures with Big Data Hadoop. Concerning 
the results section, one sees a reduction in time when more odd 
nodes are used. This situation is due to its cores that carry out 
the work in parallel. This work can be improved using a higher 
number of cores without having to resort to using a new slave 
node, as one has the case of [12]. This work of the Universidad 
Nacional de Ingeniería that takes full advantage of the GPU 
that each computer has demonstrated that the performance is 
five times higher compared to using CPU. 

In future works, related to the increase of the Beowulf 
cluster potential, it will be proposed to include graphics cards. 
These graphic cards will make this architecture more powerful 
using PyCuda. 

This work demonstrates that the use of a Beowulf cluster 
architecture using embedded systems laboratory computers 
reduces time without the need to acquire specialized 
equipment. As shown in the results section of Fig. 9, the more 
complex the problem, the more efficient the slave nodes will 
be, concluding that the implementation of this architecture 
meets the proposed objectives. 

REFERENCES 

[1] Jiménez and A. Medina, “Cluster de Alto Rendimiento,” Fac. Ing.- 
UMSA Clust., vol. 1, no. 1, 2014. 

[2] J. A. Fiestas-Iquira, “El papel de la supercomputación en la 
investigación: astrofísica de núcleos galácticos y agujeros negros,” 
Interfases, vol. 0, no. 008, p. 49, 2015. 

[3] M. Vargas-Martínez, S. Gómez-carpizo, J. Sandoval-Sánchez, and G. 
Castillo-Valdez, “Revista de Sistemas Computacionales y TIC’ s 
Construcción de clusters de computadoras de bajo costo utilizando 
software libre Revista de Sistemas Computacionales y TIC ’ s,” Rev. 
Sist. Comput. y TIC’s, vol. 2, no. 4, pp. 19–25, 2016. 

[4] J. Fiestas and C. M. Cruz, “Construcción e Implementación de un 
Clúster con máquinas PCs recicladas.,” Rev. la Fac. Ciencias la UNI, 
vol. 14, no. 1, 2014. 

[5] R. Samir and R. Caro, “Implementación De Un Clúster Experimental 
Bajo,” p. 12, 2014. 

[6] D. Armando et al., “Computación De Alto Desempeño Para Cálculos De 
Química Mecano-Cuántica,” p. 3, 2015. 

[7] L. Chuquiguanca, E. Malla, F. Ajila, and R. Guamán-quinché, 
“Arquitectura clúster de alto rendimiento utilizando herramientas de 
software libre,” vol. 2, no. 1, pp. 1–8, 2015. 

[8] A. † Velarde-Martinez, Luna-Ramirez, E. & Haro-Hernandez, and José, 
“Liebres Inteligentes: Sistema de Multicomputadoras para el 
procesamiento paralelo de aplicaciones científicas,” Rev. Tecnol. e 
Innovación, vol. 2, no. 3, pp. 454–463, 2015. 

[9] P. Burhanuddin, N. Universitas, M. Indonesia, P. R. View, and P. B. 
Nuhung, “Cluster Computing Analysis Based on Beowulf Architecture,” 
Int. J. Comput. Informatics, vol. 1, no. April, pp. 9–15, 2016. 

[10] E. L. Huamaní, P. Condori, and A. Roman-gonzalez, “Virtualizing a 
Cluster to Optimize the Problems of High Scientific Complexity within 
an Organization,” vol. 10, no. 6, pp. 618–622, 2019. 

[11] D. Schmidt, W. C. Chen, M. A. Matheson, and G. Ostrouchov, 
“Programming with BIG Data in R: Scaling Analytics from One to 
Thousands of Nodes,” Big Data Res., vol. 8, pp. 1–11, 2017. 

[12] N. M. Lapa Romero, J. A. Fiestas Iquira, A. Tenorio Trigoso, and Y. 
Nuñez Medrano, “Pruebas de rendimiento sobre el Clúster de CPUs y 
GPUs empleando simulación N-body,” no. July, pp. 19–21, 2018. 

 


