
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 8, 2019

Efficient Distributed SPARQL Queries on Apache
Spark

Saleh Albahli
College of Computer

Qassim University, Saudi Arabia

Abstract—RDF is a widely-accepted framework for describing
metadata in the web due to its simplicity and universal graph-
like data model. Owing to the abundance of RDF data, existing
query techniques are rendered unsuitable. To this direction, we
adopt the processing power of Apache Spark to load and query
a large dataset much more quickly than classical approaches.
In this paper, we have designed experiments to evaluate the
performance of several queries ranging from single attribute
selection to selection, filtering and sorting multiple attributes
in the dataset. We further experimented with the performance
of queries using distributed SPARQL query on Apache Spark
GraphX and studied different stages involved in this pipeline.
The execution of distributed SPARQL query on Apache Spark
GraphX helped us study its performance and gave insights into
which stages of the pipeline can be improved. The query pipeline
comprised of Graph loading, Basic Graph Pattern and Result
calculating. Our goal is to minimize the time during graph loading
stage in order to improve overall performance and cut the costs
of data loading.
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I. INTRODUCTION

The semantic web research came a long way from labelling
different web pages and linking information to developing
better processing systems and efficiently querying semantic
web data for information. Today, the semantic web’s methods,
scale and its representational language are changing drastically.
The web data is heterogeneous, it varies in size, semantics and
quality of the content which can be true or not. The semantic
web data is both high in volume and in velocity due to the
wide adoption of digital medium. This has given rise to a lot of
research questions. For example, how can we understand data
patterns and integrate diverse data for faster access and better
quality [1]. The current focus is not to develop new systems
from scratch but to improve on existing frameworks with the
use of new and improved technologies, such as MapReduce,
Apache Spark, big data management, etc.

Resource Description Framework (RDF) is a schema-free
data model [2] for linking and storing massive amount of both
structured and semi-structured web data in a form of a graph
(subject predicate object) where subject is linked to object
by predicate. With the use of Uniform Resource Identifiers
(URIs), RDF links and shares data in a directed and labelled
graph where the edges represent the named link and the two
nodes represent the two resources or endpoints. This allows
data merging even if the underlying schemas are different.
Unlike relational or hierarchical data models, RDF stores data
in a data graph where there is no concept of roots or hierarchy.

It just consists of resources with no single resource having
any particular importance over another resource. It perfectly
shows the relationship between different resources. Hence,
the semantic web is a big global data graph defined in RDF
with semantics embeded via RDFS (RDF Schema) [3]. More
specifically, semantics triples are added to RDF data using
RDFS by applying a set of inference rules to entail new facts,
which are not explicitly asserted.

For querying RDF data, SPARQL Protocol and RDF
Query Language (SPARQL) is used. SPARQL is currently
the standard query language for retrieving and manipulating
the data stored in RDF format. SPARQL provide a full
range of analytical query operations such as JOIN, SORT
and AGGREGATE without requiring a separate schema [4].
There are both programming languages and tools available
with which a SPARQL query can be constructed. SPARQL
allows to construct queries for RDF data as a set of subject-
predicate-object triple. In a relational database terms, it can be
considered as a table of three columns i.e. the subject column,
the predicate column and the object column. Many RDF data
processing systems rely on existing cluster computing engines
for parallelized data processing. The current trend of big data
needs fast loading and storage strategies to shorten the data
ingestion time before query and faster results after querying
[5]. Due to this, complex SPARQL queries over large RDF
graphs generally have to combine a lot of distributed pieces
of data through join operations.

The Apache Jena framework that is widely used as an
open source Semantic Web Framework in Java for RDF and
provides APIs to extract data from and write to data graph.
On the other side, Apache Spark as a MapReduce framework
proposes parallel computation using distributed main-memory
data abstraction i.e. 1) Resilient Distributed Data Sets (RDD),
a distributed lineage supported fault tolerant data abstraction
for in memory computations and 2) Data Frames (DF), a com-
pressed and schema-enabled data abstraction [6]. These data
abstractions make programming queries easier by enabling
translation and processing of high level query expressions such
as SPARQL. On top of data abstraction, Spark provide data
access models such as GraphX for processing semi-structured
data and SPARQL queries over RDF data.

GraphX from Apache Spark is a component for graphs and
graph-parallel computation. It reuses Spark’s RDD concept,
simplifies graph analytics tasks and makes operations on a
directed multi-graph. It provides APIs for fast and robust
development of a range of algorithms derived from graph
theory and applied to search engines and social networks.

Why do we need to improve the query processing of RDF
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datasets? As mentioned earlier, RDF data has increased in
volume and variety available from many different sources on
a range of topics. The RDF datasets such as Billion Triples
Challenge datasets which are collected by web crawlers, the
Linking Open Data Project and the recent conversion of the
data.gov dataset are all examples RDF. With the growing
availability of huge amount of RDF data, we need efficient
ways of querying this data to extract the useful information in
a reliable and fast manner [7]. Moreover, the goal is to support
different data mining tasks while improving semantic web and
exploring vast datasets for innovative insights.

We are achieving this goal by utilizing a cluster’s paral-
lelism i.e. our system is able to load and query a large dataset
much more quickly than traditional approaches. We have
designed experiments to evaluate the performance of several
queries ranging from single attribute selection to selection,
filtering and sorting multiple attributes in the dataset. We
further experimented with the performance of queries using
distributed SPARQL query on Apache Spark GraphX and
studied different stages involved in this pipeline. We realized
that minimizing the data loading time would significantly cut
the cost and enhance query performance.

Motivation: RDF is a graph-like representation of knowl-
edge. In this paper, we thus motivate the benefits of Apache
Spark’s framework GraphX to execute queries on RDF graph
data with in memory processing ability of Spark. Our work
is adopted the distributed manner and compare it with linear
SPARQL query processing with different complexities, read-
ability of queries and scalability using DBpedia dataset.

The importance of this study is that our approach per-
forms better query than traditional approaches even with
large datasets. Therefore, our approach of using SPARQL
query processing is enhanced with Apache Spark GraphX on
different sets of queries using large semantic web datasets.
The execution of distributed SPARQL query on Apache Spark
GraphX helped us study its performance and gave insights
into which stages of the pipeline can be improved. The query
pipeline comprised of Graph loading, Basic Graph Pattern and
Result calculating. Our goal was to minimize the time during
graph loading stage in order to improve overall performance
and cut the costs of data loading.

II. RELATED STUDY

There are vast amount of research work available in se-
mantic web, rdf, scalable pattern processing and much more.
In this section, we will be giving overview of different research
papers whose work is relevant to our work.

Chawla et al. [8] processed SPARQL queries on in-
memory cluster computing engine Apache Spark and com-
pared SPARQL execution strategies on different query shapes
and data sets. They performed experiments on both real-world
and synthetic data sets and proposed two new approaches for
RDF data model. They were able to achieve a performance
improvement by a factor of up to 2.4 on query execution time.
The researchers concluded that hybrid query plans combining
partitioned and broadcast joins improve query performance.
Moreover, using DF representation when RDD exhausted the
main memory of the cluster, helped store 10 times more data
on the same cluster size with only small loss in performance.

Weaver et al. [6] study the usage of two distributed join
algorithms, 1) partitioned join, and 2) broadcast join for the
evaluation of basic graph patterns (BGP) using Apache Spark.
They suggest through experimentation that hybrid join plans
gives more flexibility and achieve better performance than
single join plans.

Schätzle [9] aimed to optimize SPARQL queries in order
to reduce their execution time. For this purpose, they have
modified the conventional All Pair Shortest Path (APSP)
algorithms which takes precomputed join costs between triples
patterns in a SPARQL query graph using heuristic techniques.
Finally, the authors have compared the Floyd Warshall and
Johnson algorithms concluding the the former works faster in
computing query plans.

Agathangelos et al. [10] devised a novel relational database
to efficiently minimize query input size regardless of its pattern
shape and diameter. The prototype system called S2RDF is
developed on top of Spark and uses relational schema termed
as ExtVP (Extended Vertical Partitioning) to execute SPARQL
queries. It achieves sub-second runtimes for majority of queries
on a billion triples RDF graph.

Naacke et al. [7] developed an application of parallel hash-
joins for basic graph pattern matching without the need of any
pre-processing, loading or global indexing of the RDF data.
The approach relies on the cluster’s (using 1024 processors)
high bandwidth and fast memory to load and query data in
parallel and close to real-time.

Auer et al. [11] discuss existing work in query processing
of RDF data using Apache Spark. The RDF data model and
the Spark APIs impact the implementation of the RDF quey
processing approaches. RDDs have more flexibility for storage
and partitioning and GraphX supports graph-parallel and data-
parallel data processing.

Table I summarizes the various work conducted in RDF
query processing giving details on methodology and findings.
In this table, we clearly mention the reference of research
work, Apache tool that was used, type of dataset, methodology
adopted and finally the findings of each work.

III. EXPERIMENTAL ANALYSIS

We evaluated our proposed model with real world use
cases. Following are the details of the evaluation procedure.

A. Experimental Setup

We used two SPARQL implementations to compare and
evaluate the performance of semantic queries over RDF
datasets. For both of the scenarios we used Google Cloud
infrastructure to setup the environment. All of our implemen-
tations were written in Java and Scala for performance and
extensibility purposes.

1) Linear SPARQL: To establish a baseline for our ex-
periments, we setup Apache Jena on a single node having
7.5 GB of memory, 2 virtual CPUs and 20 GB of persistent
storage. Apache Jena is an opensource semantic web frame-
work written in Java and providing APIs to extract data from
and write to RDF graphs. Data is first loaded into an abstract
model which is then used to query data using SPARQL query
language.

www.ijacsa.thesai.org 565 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 8, 2019

TABLE I. COMPARISON TABLE OF PREVIOUS METHODOLOGIES FOR TRIPLE AND GRAPH MODEL.

Reference Apache
Spark Ab-
straction

Triple/Graph Methodology Finding

Naacke et
al. (2016)
[8]

Apache
Spark
SPARQL

Triple Compared five SPARQL query
processing strategies over an in-
memory based cluster computing
engine (Apache Spark) using different
query shapes and datasets.

Hybrid query plans combining partitioned
join and broadcast joins improve query per-
formance in almost all cases. Moreover,
SPARQL Hybrid RDD is bit more efficient
than the hybrid DF solution due to the ab-
sence of a data compression/decompression
overload. We can switch to DF representa-
tion if size of the RDDs saturates the main-
memory of the cluster.

Naacke et
al. (2017)
[6]

Apache
Spark
SPARQL

Graph Implemented and evaluated four
SPARQL query processing strategies
over different benchmark queries and
data sets

The hybrid query plans combining parti-
tioned and broadcast joins improved query
performance in almost all cases and it natu-
rally fits into the recent Spark-based S2RDF
system to improve its performance.

Chawla et
al. (2017)
[9]

Apache
Spark
SPARQL

Graph Modified the conventional All Pair
Shortest Path (APSP) algorithms which
take as input a pre-computed cost ma-
trix of a graph-based SPARQL query.

Optimised SPARQL queries in order to re-
duce their execution time, APSP’s Floyd
Warshall algorithm worked faster in com-
puting the plans than the Johnson algo-
rithm..

Schatzle et
al. (2016)
[10]

Apache
Spark
SPARQL

Triple /
GraphX

A relational partitioning schema for
RDF data called ExtVP that uses a
semi-join based preprocessing.

It efficiently minimizes query input size
regardless of its pattern shape and diameter.

Agathangelos
et al.
(2018) [11]

Apache
Spark,
Spark
SQL,
GraphX,
Graph-
Frames

Triple /
GraphX

Discussion on existing works with effi-
cient query answering and novel ideas
for improving query processing by ex-
ploiting data parallelization

Data partitioning is a key element for effi-
cient query processing. Graph partitioning
focuses on minimizing the edge-cut be-
tween partitions. GraphX has not been ex-
ploited yet towards this direction and could
be an option to build such algorithms.

2) Distributed SPARQL: Distributing SPARQL queries
over a cluster of commodity nodes not only improves system
performance but will soon become essential as semantic web
grows resulting and larger datasets to query and work with.

Apache Spark is one such distributed framework which
supports in-memory iterative processing. While vanilla Spark
is designed for general purpose distributed processing, it
provides a number of libraries which can be used for a wide
array of applications. A notable example is GraphX which
provides with APIs for working with distributed graphs of
nodes and arcs. Having properties pertaining to semantic data
processing, GraphX is a perfect candidate to map an RDF
graph and perform SPARQL queries in a distributed fashion.
We used an open- source implementation S2X; SPARQL query
processor for MapReduce based on Spark GraphX.

We used a cluster of 5 nodes to setup Apache Spark in
Google Cloud. Each node had 3 GB of memory, 2 virtual
CPUs and 20 GB of persistent storage. We used the latest
Spark version at the time of writing i.e. Apache Spark version
2.4.3.

3) Dataset: The experiments were designed to ingest RDF
datasets in N-Triples format. For datasets which were not in
N-Triples format, a preprocessing step was performed to parse
and convert the data to N-Triple format. All of the data was

uploaded to Google Storage via gsutil i.e. google storage API
for accessing data on distributed file system.

For smaller dataset, we created a few nodes graph man-
ually. For larger dataset, we used DBPedia dataset [12].
As noted earlier, DBPedia dataset was originally in Turtle
format which was preprocessed into N-Triples format before
experiments.

B. Experiment Design

We designed several queries to evaluate the performance
on available datasets. These ranged from simplest query on
single attribute selection to selection, filtering and sorting on
multiple attributes in the dataset.

The simplest query was to select person names in the
dataset.

// Simple SPARQL query
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {?person foaf:name ?name .}

The second and comparatively complex query was on
DBPedia dataset.
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// Complex SPARQL query
SELECT *
WHERE {
?person

<http://dbpedia.org/ontology/deathDate>
?deathDate .
?person <http://xmlns.com/foaf/0.1/page>

?page .
FILTER(?deathDate >= "1941-01-01"ˆˆxsd:date)
FILTER(?deathDate <= "1942-01-01"ˆˆxsd:date)
} order by ?deathDate;

Another query on DBPedia dataset was:

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX res: <http://dbpedia.org/resource/>
PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:
<http://www.w3.org/2000/01/rdf-schema#>
SELECT COUNT(DISTINCT ?uri)
WHERE {
?uri rdf:type dbo:Film .
?uri dbo:starring res:Leonardo_DiCaprio .
}

Next we studied the execution of distributed SPARQL
query on Apache Spark GraphX in terms of performance. This
gave us insights into which stages can be improved further
explained in Section III-D

C. Distributed SPARQL Performance

Fig. 1 shows the performance comparison results for linear
SPARQL query processing and its distributed variant. As we
can see, for smaller datasets, Linear query processing out-
performs distributed processing. This happens mainly because
large scale distributed systems do have overheads associated
with system initialization and communication costs which only
gets mitigated by processing enough data. This also enforces
the fact that semantic processing needs to embrace parallel and
distributed processing principals as the data to process keeps
on increasing.

During the experiments, we did note that as the dataset
increased, Apache Jena kept getting out of memory. We were
able to handle the situation by increasing JVM’s heap size.
However, this is a temporary solution and there is a limit to
size of heap on a single node. This again shows that single
node processing for SPARQL queries on semantic data is by
no means optimal.

D. Distributed SPARQL Analysis

To further study Spark based distributed SPARQL query
processing, we analyzed different stages involved in the dis-
tributed SPARQL pipeline. Fig. 2 shows the percentage time
spent in different stages while executing SPARQL query in a
distributed environment using Apache Spark’s GraphX library.
In total, the query pipeline consists of three separate stages:

Fig. 1. Performance comparison for Linear vs. Distributed SPARQL
processing with increasing data size

(1) Graph loading, (2) Basic Graph Pattern, and (3) Result
calculating. The most expensive stage in terms of performance
is Graph loading stage. This is expected since the first stage
involves reading data from distributed storage into the memory
along with all the graph creation logic. As illustrated in Fig.
2, the first stage takes almost 65% of the total execution time.
Once data is in memory, the next step is to create the graph
logic including the creation of Triple Patterns. Finally, the last
step is the actual SPARQL query processing on the dataset and
getting the result of the query.

These stages also present a potential improvement over the
current execution pipeline. Since most of the time is spent in
IO during the first stage, the system can be kept alive to keep
data in memory and avoid reloading data for every query. This
would greatly cut the cost of data loading, enhancing the over
all query performance.

Fig. 2. Analysis of different stages for distributed SPARQL

E. Data Loading

Time spent in IO is a limiting factor for most in- memory
systems. To study this, we compared the IO time for both linear
and distributed implementation. Fig. 3 shows the results of this
experiment. With default JVM settings, linear SPARQL failed
to handle larger datasets since it resulted in out of memory
exceptions. However, this did not happen in distributed setup
since data was partitioned among memory in distributed nodes.
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For all practical purposes, user can always tweak the JVM
heap size to avoid such out of memory exceptions. However,
as discussed earlier as well, although it is doable, it is not
a desirable solution since it involves manual configuration on
the user’s end.

Fig. 3. Data Loading Time Comparison with default JVM settings

F. Query Complexity

Query complexity can be defined as the particular function
a query performs. Although, an infinite set of queries can be
designed for different datasets, we categorize them into three
representative queries. The simplest query simply projected
a few columns from the desired dataset. The second used
an aggregation function on the dataset to compute frequency,
average etc. of a particular column. The last query involved
joins on different dataset columns.

In our final experiment, we compared the query perfor-
mance with different complexities having fixed dataset. Fig. 4
shows the results for different sets of queries for a fixed dataset
size of 1 GB. As expected, the results for simple projection and
aggregation are much better for distributed SPARQL mainly
because, backed distributed framework is able to work on
partitioned data in parallel on distributed nodes. A linear
query execution on the other hand has limited parallelization
and can limited performance. However, for queries involving
joins, distributed environments can limit the parallelization
since records from multiple dataset partitions may potentially
need to be co-grouped and joined. This involves extra IO
and serialization overheads associated with moving data across
network. Therefore, as shown in the Fig. 4, the performance
gain for join queries is a limited as compared to other queries.

IV. CONCLUSION AND FUTURE WORKS

The obtained results showed a good query response time
while using Spark based SPARQL comparing with Jena base-
line performance results. We recognized that reducing the time
of loading data will lead to lower the cost of potentially expen-
sive query processing and hence improve query performance.
Moreover, distributed SPARQL queries achieve better response
time handling larger datasets than when running on linear
SPARQL as data was partitioned among memory in distributed
nodes. This is unlike the linear SPARQL which trigger out of
memory exceptions. However, we can always tweak the JVM
heap size to avoid such out of memory exceptions but it is

Fig. 4. Query performance comparison for different queries.

still not a suitable solution as it involves manual configuration
on the user’s end. Since our work focus on two SPARQL
queries: linear and distributed, it would be interesting in future
to extend the study to investigate different types of queries as
well. Furthermore, integrating parallel architecture with new
settings and hardwares using different parallel RDF queries
can be further investigated to bring new outstanding results in
the field of semantic web.
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