
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 8, 2019

A Modular Aspect-Oriented Programming Approach
of Join Point Interfaces

Cristian Vidal1*, Erika Madariaga2*, Claudia Jiménez3*, and Luis Carter4*

1Departamento de Administración, Facultad de Economı́a y Administración, Universidad Católica del Norte, Antofagasta, Chile,
2Ingenierı́a Informática, Facultad de Ingenierı́a, Ciencia y Tecnologı́a, Universidad Bernardo O’Higgins, Santiago, Chile,

3Ingenierı́a Civil Informática, Escuela de Ingenierı́a, Universidad Viña del Mar, Viña del Mar, Chile,
4Ingenierı́a Civil Industrial, Facultad de Ingenierı́a, Universidad Autónoma de Chile, Chile,

Abstract—This paper describes and analyzes the main differ-
ences and advantages of the Join Point Interfaces (JPI) as an
Aspect-Oriented Programming (AOP) approach for the modular
software production concerning the standard aspect-oriented pro-
gramming methodology for Java (AspectJ) to propose a structural
modeling approach looking for modular software solutions. Using
a Software Engineering point-of-view, we highlight the relevance
of structural and conceptual design for JPI software applications.
We model and implement a classic example of AOP using AspectJ
and JPI as an application example to review their main difference
and highlight the JPI consistency between products (models
and code). Our proposal of UML JPI class diagrams allows
the definition of oblivious classes which know about their JPI
connections, an essential element to adapt and transform tradition
like-AspectJ AOP solutions to their JPI version. Thus, for the
modular software production and education, JPI seems an ideal
software development approach.

Keywords—Aspect-Oriented Programming; AspectJ; JPI; class
diagrams; UML

I. INTRODUCTION

The methodology of Aspect-Oriented Programming (AOP)
[1] allows to encapsulate or modularize the so-called “non-
modularizable cross-concerns” by classical programming
methodologies such as object-oriented programming and struc-
tured programming. The cross-functionalities are functions
spread as part of the modules such as in the methods
of classes mixing their steps and nature. In this way, the
cross-functionalities represent non-modularizable functional
elements by traditional software development methodologies
like structured and object-oriented software development. We
talk of aspect-oriented software development given the adap-
tation of other phases in the software development process to
encapsulate the so-called cross-concerns.

The users’ authentication and registration or log of their
actions are classic examples of cross-concerns [2] [3] [4].
By modularizing cross-concerns of an object-oriented software
system, classes and their methods can respect the single-
responsibility principle [5]), that is, classes and their methods
own and know their function and well-defined purpose. Thus,
consistency should exist in the behavior of classes’ methods
which do not presents actions out of their primary objective.
In summary, the principle of single-responsibility states that

*Corresponding author

a class should encapsulate only one responsibility. This rep-
resents a fundamental principle of modularization and object-
oriented programming [6].

Fig. 1 shows a diagram of UML use cases that repre-
sents a system and two cases of use that are examples of
cross-concerns, usually present in software systems: use cases
‘Logging’ and ‘Authentication’. Note that Jacobson [7] [8],
and Vidal et al. [2] indicate the use of ‘extends’ associations
between use cases that represent cross-concerns and base-use
cases. In traditional software systems, it is common that before
acting, the user must authenticate, and if such authentication
does not occur, the action does not proceed. Besides, it is usual
for current information systems to keep a record of the actions
performed by their users. In this context, Fig. 2 presents a
traditional UML class diagram for the example system of Fig.
1.

Fig. 2 shows two classes, Class1 and Class2, with a
one-to-many association. Each class has two attributes and
four methods. We can appreciate that both classes present
the methods A (..) and B (..), that is, Register Actions and
Authenticate. Assuming that the functionalities and associated
behavior of the methods A(..) and B(..) are not specific to
Class1 and Class2, and how these functionalities cannot be
represented in independent classes so that Class1 and Class2
respect the principle of only responsibility, then methods A(..)
and B(..) are examples of cross-concerns.

Table I presents the Java code associated with the UML
class diagram of Fig. 2. As can be seen in both classes, public
methods explicitly invoke the execution of methods A(..) and
B(..) which does not correspond to the responsibility nature
of public methods of Class1 and Class2, respectively. That is,
neither the classes nor the methods of this example respect the
principle of sole responsibility.

Such as Kiczales et al. [1] pointed out, classic or traditional
AOP permits the elimination of cross-concerns in classes
of object-oriented software systems modularizing them as
aspects. However, as Bodden [9] points out, Instroza et al. [10],
and Bodden et al. [11], traditional AOP Aspect-style does not
permit achieving a complete modularization for the existence
of implicit dependencies between aspects and classes. For
getting software products with greater modularity, the works
of [9] [10] [11] present Join Point Interfaces (JPI) to eliminate
implicit dependencies between classes and aspects of classic
AOP AspectJ-style.

Considering the mentioned JPI benefits for developing

www.ijacsa.thesai.org 569 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 8, 2019

Fig. 1. Example of Cross-Concern for Logging the Actions and Authenticating in a Use Cases Diagram of a System.

Fig. 2. Example of UML Class Diagram with Cross-Concerns.

TABLE I. JAVA EXAMPLE WITH CROSS-CONCERNS.

public class Class1 {
public <type>attribute1Class1;

public <type>attribute2Class1;

public <type>action1Class1([Arg1,., ArgN]){
authentication(..);

...

logging(..);

}

public <type>action2Class1([Arg1,., ArgN]){
authentication(..) ;

...

logging(..);

}
}

public class Class2 {
public <type>attribute1Class2;

public <type>attribute2Class2;

public <type>action1Class2([Arg1,., ArgN]){
authentication(..);

...

logging(..);

}

public <type>action2Class2([Arg1,., ArgN]){
authentication(..);

...

logging(..);

}
}

modular software, the main objective of this article is to apply
JPI concepts on a base example to demonstrate and describe
its practical advantages for getting modular aspect-oriented
software solutions without implicit dependencies. Moreover,
this article proposes an approach for the structural modeling
of JPI solutions along with gives the bases for future research
for behavioral modeling of JPI solutions.

This work organizes as follows: next section summarizes
related works. Section 3 presents and exemplifies the AspectJ
and JPI aspect-oriented programming approaches. Section 4
describes and exemplifies UML class diagrams along with to

propose and exemplify a UML class diagram for JPI solu-
tions. Finally, conclusions and future research work regarding
behavioral modeling ideas using UML sequence diagrams for
JPI solutions.

II. RELATED WORKS

Different works about AOP applications and extensions
already exist such us [12] and [13] which define formal
rules to specify AOP solutions and [14] that uses an AOP
framework to monitor the run-time state and behavior of
software applications. The works of [9] [10] and [11] are

www.ijacsa.thesai.org 570 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 8, 2019

bases and programming background of the JPI framework for
building AOP solutions. The work of [15] represent one of
the first article to describe and exemplify JPI modeling ideas.
This article describe an exemplify a more precised and detailed
structural modeling approach for JPI solutions which represent
advances to look for a complete JPI software development
process.

III. ASPECT-ORIENTED PROGRAMMING

This section summarizes AspectJ and JPI AOP styles.

A. AspectJ-Style AOP

Kiczales et al. [1] argue that the aspects, advice units, intro-
ductions, relations between data-types, join points, and point-
cuts represent relevant characteristics of traditional AspectJ-
like AOP. Also, there is a difference between base elements
and aspects, which are usually associated. Pointcuts in aspects
define the relations between aspects and classes, and aspects
can advise methods related to their pointcuts, or through the
inclusion of new behavior and attributes in advised classes,
that is, by introductions or declarations among types in those
classes.

In classical AOP, base elements of a system are oblivious
about their interaction with aspects of the system, as well as
the possibility of being advised, that is, base elements know
nothing about any change or new behavior. In this way, a
class that does not expect interruptions and changes in its
functionality may experience unexpected changes. According
to Bodden et al. [11], this is one of the implicit dependencies
that exist in classic AOP as well as in any previous AOP like
AspectJ modeling proposal.

Implicit dependencies between software modules compli-
cate the software development process. Eliminating implicit
dependencies between aspects and classes would facilitate the
software development by independent groups, one in charge
of system classes and another one in charge of aspects of the
system. That approach seems adequate for software evolution.
The work of [11] indicate that a solution is a complete knowl-
edge of the classes of the system by the developers of aspects,
and also, constant communication between development teams
is necessary before any change in the base elements, as well as,
to indicate all already advised class elements. This complete
communication seems viable in small software development
teams, but it is not always possible to develop software
between large and multiple independent teams.

AspectJ uses execution(..) in the definition of pointcuts
[16] [8] to capture defined objects which execute one of its
methods. For example, by using execution(type C2.met (..))
&& this (obj1) && target (obj2), obj1 and obj2 represent the
same object of class C2 that executes the method met (..). In
the same way, as pointed out by [16] and [8], in addition to
capturing the object that executes a method, it is also possible
to capture the object that invokes the execution of a method of
a given object, which could be the same. For example, in the
definition of the cutoff point call (type C2.met (..)) && this
(obj1) && target (c2), obj1 represents the object that invokes
the call of the method met (..) of an object of class C2, while
obj2 represents the object of class C2 that executes the method
met (..).

Table II presents the AOP AspectJ code solution for the
example code of Fig. 3. As shown in this figure, the principle
of sole responsibility is respected in Class1 and Class2 classes.
In this example, the methods, methods action1Class1(..)
and action2Class1(..), as well as action1Class2(..) and ac-
tion2Class2(..), of the classes Class1 and Class2 respectively,
are oblivious concerning the inclusion of aspects behavior.
This ingenuity of the advised methods is problematic for
methods that must preserve intact their original behavior.
That represents one of the implicit dependencies between
classes and previously mentioned aspects. In the same way,
if the signature of one of the public methods of Class1 or
Class2 changed, potentially Aspect1 and Aspect2 would not be
effective, that is, there would be no join point, and besides, no
compilation errors exist. The following subsection describes
the JPI approach proposed by [10] and [11] to look for
eliminating these dependencies between aspects and classes.

B. JPI

Such as [15] remark, the main difference of JPI concerning
the classic POA is, as its name indicates, the use of join point
interfaces as intermediate points of the association between
classes and aspects. In this way, JPI allows the elimination of
oblivious classes since advisable classes explicitly exhibit join
point interfaces and define pointcut rules for the effectiveness
of those unions. In the same way, aspects implement those
interfaces and do not know directly about the advisable classes.
Therefore, JPI eliminates the implicit dependencies between
classes and aspects which permit reaching higher levels of
modularization regarding classical AOP. JPI, as an extension
of AspectJ, supports traditional AspectJ code to facilitate
the adaptation of AspectJ code to JPI. JPI, like traditional
AOP, allows declaration between types of classes in aspects
which do not require explicit join point interfaces, that is,
classes continue being oblivious regarding the introduction of
attributes and behavior by aspects.

Table III shows a JPI solution for the classes and aspects of
the AOP AspectJ-style example of Table II. Table III presents
a new code box for the join point interfaces JPIAauthentication
and JPILogging regarding the classes and aspects of Table
II. As seen in Table III, each aspect, to be effective advising
classes, requires implementing join point interfaces exhibited
by those classes. Thus, Aspect1 implements the JPIAuthen-
tication and Aspect2 implements the JPILogging join point
interfaces respectively, both exhibited by Class1 and Class2.

As mentioned above, a join point interface can be used
for the inclusion of new methods and attributes, that is, for
the inter-type declaration in oblivious classes. JPI also allows
defining global join point interfaces for an AspectJ style of
AOP (Bodden et al. 2014).

We can appreciate in the JPI code of Table III, classes
Class1 and Class2 explicitly exhibit the join point interfaces
for the execution of any of their public methods. In this way,
JPI allows the elimination of implicit dependencies between
classes and aspects of traditional AOP. First, non-oblivious
classes indicate their methods associated with a join point
interface, that is, their advisable methods. Second, if a class
that exhibits join point interfaces regarding some method’s
signature and that method undergoes some signature change

www.ijacsa.thesai.org 571 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 8, 2019

TABLE II. AOP ASPECTJ CODE FOR THE EXAMPLE.

public class Class1 {
public <type>attribute1Class1;

public <type>attribute2Class1;

public <type>action1Class1([Arg1,., ArgN]){
...

}

public <type>action2Class1([Arg1,., ArgN]){
...

}
}

public class Class2 {
public <type>attribute1Class2;

public <type>attribute2Class2;

public <type>action1Class2([Arg1,., ArgN]){
...

}

public <type>action2Class2([Arg1,., ArgN]){
...

}
}

public aspect Aspect1 {
pointcut pcAuthentication(..):

execution(<type>Class1.action1Class1(

[Arg1, .., ArgN])) ‖
execution(<type>Class1.action2Class1(

[Arg1, .., ArgN])) ‖
execution(<type>Class2.action1Class2(

[Arg1, .., ArgN])) ‖
execution(<typo>Class2.action2Class2(

[Arg1, .., ArgN])) . . . ;

before(..): pcAuthenticate(..){
. . . //Authentification

}
}

public aspect Aspect2 {
pointcut pcLogging(..):

execution(<type>Class1.action1Class1(

[Arg1, .., ArgN])) ‖
execution(<type>Class1.action2Class1(

[Arg1, .., ArgN])) ‖
execution(<type>Class2.action1Class2(

[Arg1, .., ArgN])) ‖
execution(<typo>Class2.action2Class2(

[Arg1, .., ArgN])) . . . ;

after(..): pcLoggin(..){
. . . //Logging

}
}

without updating the pointcut rule in the JPI exhibition,
then a compilation error occurs. That is, the class developer
team must indicate changes in the methods’ signature in the
associated joint point interface exhibition. Then, in JPI, with
a clear definition of join point interfaces, classes and aspects
development teams could exist.

IV. JPI UML CLASS DIAGRAM: PROPOSAL AND
APPLICATION

A UML class diagram represents the classes of a software
system along with their associations [17]. Such as Vidal et al.
2015 [15] and Torres et al. [18] argue, a UML class diagram
allows classifying classes and their associations through the
use of stereotypes besides. For example, usually, a class
interface is represented by an <<interface>> stereotyped
class. In this way, UML class diagrams seem suitable for the
representation of JPI solutions.

Next, we define rules and names of elements for a JPI
UML class diagram:

• Classes and their associations are defined in the usual
way as in a UML class diagram.

• A join point interface is declared with the stereotype
<<jpi>> or <<global jpi>> depending on whether
the advisable classes explicitly or implicitly exhibit
those interface, respectively. In this proposal of JPI
UML class diagrams, a join point interface does not
have attributes either methods, that is, a JPI interface
represents a method without a signature.

• An aspect, which is a stereotyped class with
<<aspect>>, allows to define a series of variables
and methods of aspects, as well as to define meth-
ods of interfaces of point of union, and declarations
between types or introductions.

• Classes can exhibit interfaces of stereotyped junctions
with <<jpi>>. In this way, when a class exhibits
a junction point interface, there is an association of
the class to a join point interface. The role of the
class of this association presents a first line with the
stereotype <<exhibits>> together with the signature
of the interface, and a second line with the pointcut
rule.

• A global join point interface includes an association
to the recommended class with a line that indicates
the signature of the join point and another line with
the definition of the pointcut rule.

• The aspects, to effectively advise this is, to add behav-
ior on the call or execution of methods of advisable
classes, they must implement join point interfaces. For
this reason, each aspect, to be effective, presents an
association towards the associated point of attachment
interfaces. The role of the aspect in these associations
is ‘implements’.

• The aspects allow inter-type declaration, that is, to add
attributes and methods to existing classes. Thus, an
association between aspects and classes is used, where
the role of the aspect is ‘adding’.

www.ijacsa.thesai.org 572 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 8, 2019

TABLE III. AOP JPI CODE FOR THE EXAMPLE.

public class Class1 {
exhibits JPIAuthentication(..):

execution(* action1Class1([Arg1, ArgN]) ‖
execution(* action2Class1([Arg1, ArgN])) &&

args(..);

exhibits JPILogging(..):

execution(* action1Class1([Arg1, ArgN]) ‖
execution(* action2Class1([Arg1, ArgN])) &&

args(..);

public <type>attribute1Class1;

public <type>attribute2Class1;

public <type>action1Class1([Arg1,., ArgN]){
...

}

public <type>action2Class1([Arg1,., ArgN]){
...

}
}

public class Class2 {
exhibits JPIAuthentication(..):

execution(* action1Class2([Arg1, ArgN]) ‖
execution(* action2Class2([Arg1, ArgN])) &&

args(..);

exhibits JPILogging(..):

execution(* action1Class2([Arg1, ArgN]) ‖
execution(* action2Class2([Arg1, ArgN])) &&

args(..);

public <type>attribute1Class2;

public <type>attribute2Class2;

public <type>action1Class2([Arg1,., ArgN]){
...

}

public <type>action2Class2([Arg1,., ArgN]){
...

}
}

jpi JPIAuthentication(..);

jpi JPILogging(..);

public aspect Aspect1 {
before JPIAuthentication(..){

... //Authentication

}
}

public aspect Aspect2 {
after JPILogging(..){

. . . //Logging Actions

}
}

Because the proposed JPI UML class diagram extension
considers the use of stereotypes and special keywords, any
UML design tool can be used for the JPI UML diagram design.
In this way, it is possible to model a JPI solution and system
structurally. Fig. 3 presents an application of this proposal of
UML JPI class diagrams on the JPI example of Table III. Note
that JPIInterfaceA corresponds to JPIAauthentication while
JPIInterfaceB corresponds to JPILogging. Similarly, AspectA
corresponds to Aspect1 and AspectB with aspect2 of Table III.
As Fig. 3 shows, there is a clear analogy between the number
of components in the JPI UML class diagram and the JPI
code solution. Precisely, to review the consistency and modular
advantages of this proposal of UML JPI class diagrams is part
of the future work for the authors of this work.

It should be noted that for traditional AOP UML class
diagram, there are already proposals such as Kojarski et al.
[19] and [20] which use existing UML modeling tools.

V. CONCLUSIONS

JPI makes possible the generation of aspect-oriented so-
lutions without implicit dependencies, which in turn allows
achieving a high degree of modularization concerning tradi-
tional AOP. As this paper mentioned, JPI enables the definition

of introductions without join point interfaces, that is, for
oblivious classes of the introduction of new attributes and
behavior, however, those classes are no longer oblivious about
changes in the behavior of their methods through aspects’
advice units.

For the structural modeling of JPI applications, this work
extends UML class diagrams using JPI concepts for the mod-
eling JPI solutions. As presented in the modeling example, our
UML class diagrams proposal for JPI captures basic elements
of JPI such as global or non-global join point interfaces.
Other elements of JPI, such as closure and generic join points
[9], [10], [11], are part of future extensions to this modeling
proposal. Also, this proposal of UML JPI class diagrams
allows defining oblivious classes, which is an essential element
to achieve a complete adaptation and transformation of AOP
solutions into JPI solutions.

As future work, the authors of this article work on a
complete proposal of structural modeling for JPI applications,
as well as on ideas for modeling the behavior of JPI systems
through UML sequence diagrams. For this last idea of future
work, the actors of each scenario are identified, where the
aspects are clear participants and, for which, the participating
objects communicate in the existence of join points, that is,

www.ijacsa.thesai.org 573 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 8, 2019

Fig. 3. Example of JPI UML Class Diagram.

respecting the pointcut rules. The idea is to model, through
UML diagrams, the structure, and behavior of JPI solutions,
to work on the generation of JPI code from the models. From a
Software Engineering point-of-view, we want to use JPI as an
approach for the modular and consistent software development
approach.

REFERENCES

[1] G. Kiczales, “Aspect-oriented programming,” ACM Comput. Surv.,
vol. 28, no. 4es, Dec. 1996.

[2] C. V. Silva, R. Saens, C. D. Rı́o, and R. Villarroel, “Aspect-oriented
modeling: Applying aspect-oriented UML use cases and extending
aspect-z,” Computing and Informatics, vol. 32, no. 3, pp. 573–593,
2013.

[3] C. V. Silva, R. Villarroel, and C. P. Vasquez, “Jpiaspectz: A formal
specification language for aspect-oriented JPI applications,” in 33rd
International Conference of the Chilean Computer Science Society,
SCCC 2014, Talca, Maule, Chile, November 8-14, 2014, 2014, pp. 128–
131.

[4] C. V. Silva, R. Villarroel, R. S. Simón, R. Saens, T. Tigero, and
C. D. Rı́o, “Aspect-oriented formal modeling: (aspectz + object-z) =
ooaspectz,” Computing and Informatics, vol. 34, no. 5, pp. 996–1016,
2015.

[5] D. Wampler, Aspect-oriented design principles: Lessons from object-
oriented design, 1st ed. Vancouver, Canada: Proceedings of the Sixth
International Conference on Aspect-Oriented Software Development
(AOSD’07), 2007.

[6] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003.

[7] I. Jacobson, “Use cases and aspects-working seamlessly together,”
Journal of Object Technology, vol. 2, no. 4, pp. 7–28, 2003.

[8] I. Jacobson and P.-W. Ng, Aspect-Oriented Software Development with
Use Cases (Addison-Wesley Object Technology Series). Addison-
Wesley Professional, 2004.

[9] E. Bodden, “Closure joinpoints: Block joinpoints without surprises,” in
Proceedings of the Tenth International Conference on Aspect-oriented
Software Development, ser. AOSD ’11. New York, NY, USA: ACM,
2011, pp. 117–128.

[10] M. Inostroza, E. Tanter, and E. Bodden, “Join point interfaces for
modular reasoning in aspect-oriented programs,” in Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ser. ESEC/FSE ’11. New York,
NY, USA: ACM, 2011, pp. 508–511.

[11] E. Bodden, E. Tanter, and M. Inostroza, “Join point interfaces for safe
and flexible decoupling of aspects,” ACM Trans. Softw. Eng. Methodol.,
vol. 23, no. 1, pp. 7:1–7:41, Feb. 2014.

[12] C. Vidal Silva, R. Saens, C. Del Rı́o, and R. Villarroel, “Ooaspectz
and aspect-oriented uml class diagrams for aspect-oriented software
modelling (aosm),” Ingenierı́a e Investigación, vol. 33, no. 3, pp. 66–71,
2013.

[13] C. Vidal Silva, R. Villarroel, R. Schmal Simon, R. Saens, T. Tigero,
and C. Del Rio, “Aspect-oriented formal modeling:(aspectz+ object-z)=
ooaspectz,” Computing and Informatics, vol. 34, no. 5, pp. 996–1016,
2016.

[14] A. O. AL-Zaghameem, “An aspect oriented programming framework to
support transparent runtime monitoring of applications,” International
Journal of Advanced Computer Science and Applications, vol. 10, no. 6,
2019.

[15] C. V. Silva, L. López, R. Schmal, R. Villarroel, M. Bustamante, and
V. R. Sanchez, “Jpi uml software modeling,” International Journal of
Advanced Computer Science and Applications, vol. 6, no. 12, 2015.

[16] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming.
Greenwich, CT, USA: Manning Publications Co., 2003.

[17] T. Pender, UML Bible, 1st ed. New York, NY, USA: John Wiley &
Sons, Inc., 2003.

[18] D. Torre, Y. Labiche, M. Genero, and M. Elaasar, “A systematic
identification of consistency rules for uml diagrams,” Journal of Systems
and Software, vol. 144, pp. 121–142, 2018.

[19] S. Kojarski and D. H. Lorenz, “Modeling aspect mechanisms: A top-
down approach,” in Proceedings of the 28th International Conference
on Software Engineering, ser. ICSE ’06. New York, NY, USA: ACM,
2006, pp. 212–221.

[20] F. F. Silveira, A. M. da Cunha, and M. L. Lisbôa, “A state-based testing
method for detecting aspect composition faults,” in Computational
Science and Its Applications – ICCSA 2014, B. Murgante, S. Misra,
A. M. A. C. Rocha, C. Torre, J. G. Rocha, M. I. Falcão, D. Taniar,
B. O. Apduhan, and O. Gervasi, Eds. Cham: Springer International
Publishing, 2014, pp. 418–433.

www.ijacsa.thesai.org 574 | P a g e


