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Abstract—This study was carried out by the New York State 

Department of Health, between 2012 and 2016. This experiment 

relates to six supervised machine learning methods: Support 

Vector Machine (SVM), Logistic Regression (LR), Gradient 

Boosting (GB), Random Forest (RF), Deep Learning (DL) and 

the Ensemble Model, all of which are used in the prediction of 

infant mortality. This experiment applied ensemble model that 

concentrated on assigning different weights to different models 

per output class in order to obtain a better predictive 

performance for infant mortality. Efforts were made to measure 

the performance and compare the classifier accuracy of each 

model. Several criteria, including the area under ROC curve, 

were considered when comparing the ensemble model (GB, RF 

and DL) with the other five models (SVM, LR, DL, GB and RF). 

In terms of these different criteria, the ensemble model 

outperformed the others in predicting survival rates among 

infant patients given a balanced data set (the areas under the 

ROC curve for minor, moderate, major and extreme were 98%, 

95%, 92% and 97% respectively, giving a total accuracy of 

80.65%). For the imbalanced dataset, (the areas under the ROC 

curve for minor, moderate, major and extreme were 98%, 98%, 

99% and 99% respectively, giving total accuracy increased to 

97.44%). The results of the experiments used in this dissertation 

showed that using the ensemble model provided a better level of 

prediction for infant mortality than the other five models, based 

on the relative prediction accuracy for each model for each 

output class. Therefore, the ensemble model provides and 

extremely promises classifier in terms of predicting infant 

mortality. 
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I. INTRODUCTION 

In high-income countries, a significant part of public 
spending is committed to prevention and care. Chronic 
illnesses such as cancer, asthma and high fevers present 
serious barriers to infant survival, and dramatically increase 
spending on healthcare services. A World Health Organization 
survey in 2017 estimated that children under five years 
accounted for 5.4 million of these deaths. The inpatient 
discharge information has been play a crucial role in 
improving understanding of risk factors mechanisms in 
infants. Recent approaches using data mining techniques and 
machine learning algorithms have become part of the 
experimental processes of many disciplines over recent years 
[1]. 

In the healthcare field, data mining techniques help 
researchers analyze very large databases, and are useful in 

directing hospital policies to increase patient flow and 
minimize non-value-added care time. Classifications based on 
statistical analysis and Artificial Neural Networks, as well as 
other Machine Learning algorithms are becoming more 
common aspects of predictive healthcare models [3]. To 
increase the accuracy in prediction of machine learning 
models, new variables relating to patient information are used 
to construct the models. This study applies machine learning 
in an effort to change the current healthcare process from a 
receptive model into one that is increasingly proactive. The 
research question to be answered in this study can be stated as: 

RQ1: Can we identify the features that help to predict 
infant mortality? 

However, no study has yet applied ensemble machine 
learning methods that assign different weights to different 
models per output class. 

II. REVIEW OF EXISTING LITERATURE 

A. Infant Mortality 

Identifying the variables which affect statistics on health 
can be used to predict and thereby address and improve long-
term survival rates for infants. Kong et al. (2016) identified 
various predictors of mortality and morbidity among infants, 
pinpointing many factors relating to pre-term births aside from 
gestation and birth weight that could be associated with risks 
relating to high mortality and morbidity risks. For example, 
infants born at 24 and 25 weeks were more likely to die than 
infants born more than 26 weeks into the pregnancy. 
Identifying infants‟ risk levels by predicting future health 
outcomes helps improve the efficiency and quality of health 
care [2]. 

Diagnoses relating to the level of infant risk are important 
in terms of both clinical decision making and the provision of 
care for newborn children a study by Martinez (2017) 
identified predictors for prolonged hospitalization or 
readmission for acute lower respiratory infections (ALRIs) in 
infants with bronchopulmonary dysplasia (BPD). This wide-
ranging study was conducted using nationally representative 
data from children on a US inpatient database, and included a 
total of 138 patients. The study used logistic regression with 
and without an interaction term between gender and 
breastfeeding. The results of the regression showed a p value 
of ≤ 0.05 and odds ratios (OR) at 95% confidence intervals 
[3]. Studies have also proved that lower neonatal mortality 
rates were associated with early breastfeeding compared with 
higher mortality rates for late breastfeeding [4]. 
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B. Machine Learning 

The following will provide an overview of the various 
methods that are widely classified as supervised and 
unsupervised machine learning techniques in predicting infant 
mortality risks. 

Unsupervised machine learning in used to collect data with 
similar attributes into groups. Sample testing is then classified 
based on proximity within these groups. The groups are 
generated based on similarity scales such as probabilistic or 
Euclidean distance. Ravishankar and Clarke (2017) described 
commonly used clustering techniques and applied the iterative 
k-means clustering algorithm, in which the outliers in the 
legend are used to efficiently identify clusters on Dept. of 
Health of New York State. The algorithms proved successful 
in terms of processing for data analysis framework by 
applying data cleansing/ETL, data joining, classification and 
prediction, visualization of results, interpretation and 
reporting. Outliers in cost increases (such as the Monroe 
Community Hospital) were identified through iterative k-
means clustering [5]. 

Supervised classification techniques are the most 
commonly implemented methods employed by intelligent 
systems, and are applicable to cases which contain labeled 
data. Kenley and Shimony (2016), provide insights into 
predicting the brain maturity of infants and adolescents using 
structural and functional magnetic resonance imaging data. 
Data were evaluated throughout the duration of the functional 
magnetic resonance imaging of 50 new births from Louis 
Children‟s Hospital Neonatal Intensive Care Unit (NICU). 
The results of the experiment showed that using the Support 
Vector Machine (SVM) model to achieve results improved 
accuracy, sensitivity, specificity and p-values for binomial 
probabilities [6]. Previous studies used data from NICU 
patient data systems. Rinta-koski and Simo (2017), explored 
powerful mortality classification models using the SVM and 
Gaussian Process (GP) to identify clinical features on arrival 
at the Neonatal Intensive Care Unit and those made during the 
first 72 hours of care for 598 Very Low Birth-Weight infants 
(birth-weights of below 1500g), with combined features 
extracted from sensor measurements. The SVM achieved 
better classification accuracy (0.931) [7]. 

III. EXPERIMENTAL DESIGN AND METHODOLOGY 

This section sets out the nature of the experiments that will 
be used to answer the research question. The CRISP-DM 
methodology offers a structured approach to data mining [8]. 
The study will be performed as a five-stage process including 
evaluation, data understanding, data preparation, modelling 
and evaluation. Each step in the study will be undertaken 
using Python programming language and the Tensorflow 
library [9], an open source library for fast numerical 
computing, and the Scikit-learn library [10], an open source 
machine learning library for the Python programming 
language characterized by several classification, regression 
and clustering algorithms. The section is divided into sub-
sections based on the CRISP-DM framework as shown in 
Fig. 1, each of which will cover the framework in more detail. 

 

Fig. 1. CRISP-DM Model. 

The high-level experiment is illustrated in below Fig. 2. 

 

Fig. 2. High Level Design Experiment. 

IV. IMPLEMENTATION 

This section describes the results of the study and the 
experiments that were performed. The section pattern 
emulates that of the Design and Implementation section to 
make comparisons easier between balanced and unbalanced 
dataset outcomes. 

A. Exploratory Analysis of Dataset 

This section explores the infant and perinatal period 
dataset. First, we need to eliminate the duplicate 'Live born' 
words from the CCS diagnosis description feature since all 
patient infants were born alive, and the word does not add 
much meaning. It can therefore be safely ignored. However, 
we explored this feature to check the effectiveness of it on 
each class of mortality. Fig. 3 shows that there are differences 
between diagnoses in each class of mortality, although the 
Minor class is similar to entire population because this class 
represents 97% of data set. 
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Fig. 3. Entire Population CCS Diagnosis Description Words. 

As Fig. 4 shows, the mortality risk distribution by gender 
indicates that women enjoy better healthcare because the 
Extreme and Major figures are below the average figure for all 
patients. Meanwhile, males take less health care because their 
Extreme and Major cases are above the average patient care 
data. 

However, Fig. 5 and 6 shows that white patients enjoy 
better healthcare than other races because extreme, moderate 
and major figures are less than the average in terms of patient 
care. In addition, the broad range of other ethnicities generally 
has worse than average health. This appears to indicate 
discrimination in healthcare depending on race and ethnicity 
in the USA [11]. 

 

Fig. 4. Mortality Risk Distribution by Gender. 

 

Fig. 5. Mortality Risk Distribution over Race. 

 

Fig. 6. Mortality Risk Distribution over Ethnicity. 

B. Understanding the Data 

Statistics were generated to analyse the data in each 
column to discover a number of different values for each 
column. From the analysis, it was immediately apparent that 
the Age Group variable is not important as there is only one 
value (0 to 17) in the dataset. We will therefore not use this 
column. In the dataset, the birth weight column has a zero 
value for some records where we need to analyse mortality 
rates for new born infants. We checked to see why one row 
includes zero values for the Birth Weight column. It appears 
to indicate that a zero birth weight entry means that the patient 
might not be a new born, but we need to investigate this more 
deeply to confirm the assumption. After checking the 
Diagnosis column which also includes records with a zero 
birth weight value, we observed different diagnoses. That 
mean records have had zero birth weights entered by mistake, 
so we need to remove these zero values. However, in order to 
analyse missing data, we found missing data in only two 
features (see Table I), so we distinguish those features by 
assigning a value of -1. 

Before we proceed with the analysis, we need to compare 
different kinds of dimensionality reduction for plotting 
purposes, since we have 16 dimensions that we need to reduce 
to 2 dimensions in order to obtain good reduction plotting. 
Because most of the data is dense, we used principal 
component analysis (PCA) and t-SNE. Fig. 7 shows the PCA 
results, in which point distribution is not clear. 

However, the t-SNE analysis shown in Fig. 8 shows 
Extreme cases as clear areas, thereby offering better results 
than PCA. We then took the process through different kinds of 
outlier detection algorithms to check outliers from the data 
such as Robust Covariance, One-class SVM and Isolation 
Forest. We began with the Robust Outlier detector shown in 
Fig. 9, in which all points outside the boundary ellipse are 
outliers. 

TABLE. I. MISSING VARIABLE 

Count Variables  

45681 Operating provider license number 

159058 Other provider license number 
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Fig. 7. PCA Data Distribution Plot. 

 

Fig. 8. t-SNE Data Distribution Plot. 

 

Fig. 9. t-SNE Data Distribution Plot with Robust Outlier Detector. 

We then used the Isolation Forest algorithm shown in 
Fig. 10 which defines a separate boundary between points 
from outliers of all classes. 

However, we needed to perform another kind of outlier 
detection test. This was the One-class SVM shown in Fig. 11 
that sets regional boundaries; all points inside boundaries are 
valid data, while those outside it is outliers. The One-class 
SVM was the best detector of outliers, and data within the 
boundaries are consistent and closed. 

 

Fig. 10. t-SNE Data Distribution Plot with Isolation Forest Outlier Detector. 

 

Fig. 11. t-SNE Data Distribution Plot with One-Class SVM Outlier Detector. 

Cramer‟s V Association was then used to interpret 
associated factors between the nominal variables. The 
association range lies between 0 and 1, and greater values 
show stronger associations. The correlation matrix for 
Cramer‟s V Association heatmap matrix is shown in Fig. 12, 
which shows the relationship between the features. The result 
obtained from matrix is as follows: 

 No single feature is strongly associated with APR risk 
of mortality. 

 Patient Disposition and APR Severity of Illness Code 
have strong positive associations with APR risk of 
mortality. 

The uncertainty coefficient was also used in the study to 
explain associations between categories. The correlation 
coefficient determines the degree of association between two 
variables, and this is shown in Fig. 13, which shows the 
relationship between features. As shown in both associations 
the APR Severity of Illness description has a strong positive 
association with the APR risk of Mortality. 

C. Data Preparation 

After the analysis of the data is complete, the next step is 
to remove those issues that have been identified in the dataset 
so that the remaining data will fit the processes used in 
modelling. 

  

Fig. 12. Cramer‟s V Association Matrix of Variables with APR risk of 

Mortality. 
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Fig. 13. Uncertainty Coefficient of Variables with APR Risk of Mortality. 

1) Balanced dataset: Under Sample:Classifier machine 

learning algorithms such as Random Forest tend to give 

results biased towards classes which have the highest number 

of records. 

Classifier algorithms can ignore the features of minimal 
class, considering them no more than noise. It is highly 
probable that minimal classes will be misclassified when 
compared to better populated ones. The reason for using 
'Pandas sample' is because we have imbalance between 
mortality classes, as shown in Fig. 14. The 'Pandas sample' is 
implemented on the imbalanced dataset samples to balance it. 
The number of records showing extreme mortality risk is 
much lower than numbers in the other classes, as shown in 
Table II. 

 

Fig. 14. Unbalanced Data Set. 

TABLE. II. UNDER SAMPLING 

Balanced Dataset Imbalanced Data set Target: Mortality Risk  

735 167026 Minor 

735 2988 Moderate  

735 1529 Major  

735 735 Extreme  

2) Standardization standard scaler: The distribution of 

the Birth Weight feature as shown in Fig. 15 provides 

information about infants‟ weights. As shown in histogram, 

the average birth weight is 3.5 kilograms, and birthweights go 

up to 5 kilograms. Because of this, we need to test for 

normality using a variety of statistical analyses. 

First, we used the Shapiro-Wilk test, which returned a p-
value of 0.00, which is less than .05. We then used the 
Normal-t test, which also returned a value of 0.00. We also 
used the Anderson-Darling test to see if our data came from a 
normal distribution. The null hypostudy was rejected, similar 
to the previous two tests. 

The QQ plot could provide us with more certainty about 
the normality, and also offers better visualization. From the 
QQ plot shown in Fig. 16 we can see how the data appears, 
and it is immediately apparent that the data are not normally 
distributed. This visualization helps us to study abnormal 
cases in our experiment. 

3) Encoding categorical variables: After a balanced 

dataset had been successfully created, the only problem that 

remained was to remove categorical variables, as most 

machine learning models work only on numeric variables and 

cannot compute using features containing string values. All 18 

of the categorical variables were nominal, and this meant that 

the values within those categorical variables did not follow a 

specific natural order. In order to remove nominal variables, 

we performed encoding procedure. 

 

Fig. 15. Entire Population Birth Weight. 

 

Fig. 16. QQ Plot for Birth Weight. 
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4) Text vectorization: This part of the analysis focused on 

creating data vectors from text vectorization by importing a 

TF-IDF Vectorizer from sklearn.feature_extraction.text. The 

vectorizer was initialized, fitted and transformed to calculate 

the TF-IDF score for the text in the [(CCS Diagnosis 

Description)] feature. The sklearn fit_transform performed 

both fit and transform functions, and the output took the form 

of a skewed matrix. 

D. Models 

In this phase, we built classification models to predict 
infant mortality risk using Gradient Booted (GB), Support 
Vector Modelling (SVM), Random Forest (RF), Logistic 
Regression (LR), Deep Learning (DL) and ensemble models. 
The balanced data set was created after adding and encoding 
categorical data and normalizing the results to use for the 
construction of models. Before training the model, input data 
regarding text vectorization and strength of association of 
features was implemented to obtain a better fit for the model. 
For each model we processed data in two ways: first, we used 
the scikit-learn train_test_split method to divide the dataset 
into training, validation and testing datasets that would 
maintain the distribution of the output. 70% of the data were 
used for training, 15% for validation and 15% for testing. 

1) Logistic regression: Logistic Regression was used to 

provide a multi-class classification regression model. First, the 

LR module was imported to create an LR classifier object 

using the Logistic Regression cross validation function to get 

best parameters. 

2) Gradient boosted tree: We used XGBoost to predict 

the mortality risk for infants. We imported XGBoost, which 

uses an assessment metric to check the performance of the 

Training Model on the test dataset. 

3) Random forest: The Random Forest (RF) model used a 

randomized search function to evaluate the best hyper-

parameters. While the parameters were learned during the 

model training, hyper parameters must be set before training. 

The importance of each feature in the RF classification is 

indicated by the sum of the reduction in Gini Impurity (a 

measure that the decision tree uses to minimize when splitting 

each node for every node that is split by that feature. We can 

use these to attempt to calculate which of the predictor 

variables the RF considers most important in terms of 

mortality risk. The feature importance can be extracted from a 

trained RF. 

4) Support vector classifier model: We applied a 

prepackaged model provided by a scikit-learn support vector 

classifier to train an SVM model on this data. Tuning 

parameter values for machine learning algorithms effectively 

improves the performance of the model. 

5) Deep learning: We used fully connected network 

architecture to implement our infant mortality risk prediction 

model. We used the Class Weight variable to calculate the 

class weight and added it to model. After the model had been 

created, we were able to make predictions according to all the 

learned nodes. 

6) Ensemble model: Most of the known ensemble 

techniques do not account for the relative prediction accuracy 

of multiclass classification problems. It either uses a blanket 

weighting for all classes or uses voting, which could lead to 

equal votes for multiple different outputs, as shown in Fig. 17. 

In our approach, we decided to feed into the deep neural 
network the output probability per class from the different 
models, as they would allow the deep neural network to give 
different weights to different models per output class. This 
improved the overall prediction accuracy, which was based on 
the relative prediction accuracy for each model per output 
class as shown in Fig. 18. 

One limitation in most previous studies is that they only 
considered a blanket weighting for all classes, and no previous 
study has concentrated on assigning different weights to 
different models per output class. 

 

Fig. 17. Voting Mechanism. 

 

Fig. 18. Voting Mechanism with different Weights. 

V. EVALUATION AND RESULTS 

A detailed analysis of the experiments described in the 
previous section will be provided in this section, including the 
results of each experiment. The experiments were performed 
in order to build six models for supervised machine learning. 
This section evaluated the execution of each model according 
to the levels of accuracy gained after running each experiment 
on the dataset. The same experiment was also performed on 
the imbalanced dataset which contained biased values relating 
to the mortality risk features. When evaluating the 
performance of models, box plots were created using 
confusion matrixes that summarized the prediction results 
generated as well as the accuracies achieved. We also used 
cross validation techniques by applying a series of 
training/validation/test set splits based on logistic regression 
and random forest methods. The statistical analysis of the 
study result will also be discussed in this section. 
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A. Comparison of Average Performance of Imbalanced and 

Balanced Target Data 

Imbalanced data sets are common in predictive 
classification experiment. Fig. 19 shows the results for each 
classifiers on the imbalanced dataset in which the mortality 
risk was highly biased towards instances having a „minor‟ 
classification, for all models. 

The first analysis was performed on the results gained 
from the unbalanced data set. It is clear from the histogram of 
the accuracies that random forest and the ensemble model 
have higher accuracies than the models derived from the other 
algorithms. The maximum F1 score obtained by random forest 
model for the „extreme‟ class is above 60%. 

Due to the imbalanced data, the under-sampling approach 
has been taken to create a balanced dataset. Using alternative 
metrics like F1 score, recall, precision, true positive rate and 
false positive rate is strongly recommended in place of using 
the accuracy of the model to measure its performance. 

Tables III and IV shows the mean accuracies and 
classification metrics obtained from the imbalanced dataset 
and balanced data set of each model. 

B. Comparison of Classifiers Performance 

A further experiment was performed on all six models 
after applying the under-sampling technique. Fig. 20 shows 
the performance histogram of balanced dataset models. The 
most remarkable change here is the increase in F1 score for 
each target variable value. As the graph shows, the random 
forest model and the ensemble model have higher prediction 
accuracy when compared to other models. 

C. Strengths and Limitations of Results 

Machine learning algorithms and their use was considered 
as an integral factor in the research. The experiment used six 
machine learning algorithms (LR, RF, GB, DL, Ensemble and 
SVM), which were similar in the ways in which they were 
used for the classification of variables. 

The training models that were relevant to the different 
families in the same data set can be seen as one of the 
strengths of the study. Likewise, the ensemble model was built 
using different models–random forest, gradient boosting and 
deep learning–in order to obtain an efficient performance from 
the model. In the ensemble model, we decided to feed the 
output probability per class from the different models into the 
deep neural network, as they would allow the network to 
assign different weights to different models per output class. 
This improved the overall prediction accuracy, which was 
based on the relative prediction accuracy for each model per 
output class. The experiment gave us the opportunity to 

compare six models, which meant that the results obtained are 
more important than the results obtained by comparing only 
two models. 

The experiment also concentrated on analysing the impact 
of balancing a data set that was initially unbalanced. We used 
under-sampling to remove bias from the results, and a 
significant improvement on the performance of all models was 
achieved by applying the under-sampling process. Techniques 
relating to data pre-processing–such as feature scaling using z-
scores and converting categorical to numeric variables–were 
studied in detail during the experiment and subsequently 
applied to the data in order to improve the outcomes. 

As far as the limitations of the experiment are concerned, 
the study was based on records relating to patients from a 
particular hospital, and may therefore have been biased 
towards the population of a specific region. Additionally, the 
time span used for monitoring the patients was small (5 years). 
To provide improved forecast results, the period of 
observation should be increased in order to obtain 
comparatively stable values, and the result of this might have 
an effect on predictive modelling results. 

D. Summary of Analysis 

The results and evaluation of the research has been 
discussed in this section. All six models were built on two data 
sets, one with biased values in terms of the target variables 
and one with balanced values. Cross-validation was performed 
using LR and RF to obtain optimal parameters in order to 
enhance the models‟ performance. The ensemble models (RF, 
GB and DL) outperformed the RF, SVM, LR, GB and DL 
models in the prediction of mortality risk for both the balanced 
data set (Total Accuracy 80.65%) and the imbalanced data set 
(Total Accuracy 97.44%). In the ensemble model, we applied 
a new approach that no study has previously attempted by 
feeding the output probability per class from each model into 
the deep neural network, as this network would assign 
different weights to different models per output class. This 
improved the overall prediction accuracy in our experiment, 
which in turn was based on the relative prediction accuracy for 
each model per output class. We can therefore recommend this 
approach in other areas that have multiclass classification 
problems. The result also indicated a weaker performance of 
the DL model on a balanced dataset (Total Accuracy 70.89%) 
than on an imbalanced dataset (Total Accuracy 83.56%). 

The strengths and limitations of the results concentrate on 
the data pre-processing techniques, which were used to 
improve models performance. The concluding section which 
follows will offer a detailed summary of the study, as well as 
participation and effects, and will also offer avenues for 
further research. 
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Fig. 19. Model Comparison: Imbalanced Dataset. 

TABLE. III. PERFORMANCE IMBALANCED TARGET (MORTALITY RISK) 

  Accuracy Precision Recall F1 Score 

    Minor Moderate Major Extreme Minor Moderate Major Extreme Minor Moderate Major Extreme 

Gradient 

Boosted 

Tree 
95.76%  1.00  0.28  0.49  0.56  0.97  0.78  0.50  0.65  0.98  0.41  0.50  0.60 

 Logistic 

Regression 
 92.03 %  1.00  0.15  0.37  0.22  0.93  0.58  0.52  0.71  0.96  0.24 0.43   0.34 

 Random 

Forest 
  97.26%  1.00  0.39  0.55  0.72  0.98 0.63  0.61 0.59  0.99  0.48  0.58  0.68 

 Deep 

Learning 
 83.56%  1.00  0.03  0.07  0.31  0.85  0.10  0.93  0.40  0.92  0.04  0.14  0.35 

 Ensemble 

Model 
 97.44%  0.99  0.40  0.59  0.55  0.99  0.63  0.48  0.70  0.99  0.49  0.53  0.61 

Support 

Vector 

Machine 
91.70% 1.00 0.15 0.46 0.54 0.93 0.75 0.53 0.64 0.96 0.25 0.49 0.58 

TABLE. IV. PERFORMANCE BALANCED TARGET (MORTALITY RISK) 

  
Accuracy 

% 
Precision Recall F1 Score 

    Minor Moderate Major Extreme Minor Moderate Major Extreme Minor Moderate Major Extreme 

Gradient 

Boosted 

Tree 
76.34 1.00 0.52 0.63 0.78 0.91 0.70 0.63 0.73 0.95 0.60 0.63 0.75 

 Logistic 

Regression 
71.87 0.99 0.52 0.56 0.71 0.90 0.85 0.48 0.63 0.94 0.64 0.52 0.67 

 Random 

Forest 
79.09 1.00 0.67 0.65 0.77 0.92 0.67 0.67 0.82 0.96 0.67 0.66 0.80 

 Deep 

Learning 
70.89 0.95 0.50 0.52 0.71 0.94 0.67 0.46 0.66 0.94 0.57 0.49 0.68 

 Ensemble 

Model 
80.65 0.99 0.62 0.69 0.76 0.91 0.73 0.63 0.81 0.95 0.67 0.66 0.78 

Support 

Vector 

Machine 
70.99  0.93 0.44 0.57 0.86 0.86 0.67 0.67 

0.58 
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Fig. 20. Model Comparison: Balanced Dataset. 

VI. CONCLUSION 

A. Research Overview 

This dissertation took the form of an investigation of 
multiple supervised machine learning techniques. These 
techniques were used to analyse factors relating to discharge 
details concerning infant patients. The work offered a 
literature review that summarised existing studies into both 
machine learning and mortality prediction. An experiment 
using six supervised classification techniques was performed 
in order to construct predictive mortality risk models using 
data that had been collected from the New York State 
Department of Health‟s state wide planning and research 
cooperative system over a five-year period. The first used the 
Support Vector Machine (SVM) technique to classify 
supervised learning techniques, creating a model using line or 
hyperplane data. Logistic Regression (LR) is a more 
traditional predictive technique in medical study, where the 
probability of multi classed occurrences is examined. The 
Gradient Boosting (GB) is a powerful technique for building 
predictive models that include weak learners, loss function 
and the additive model. Random Forest (RF) is a prediction 
algorithm which is used to run test feature data through 
randomly created trees. At the first connected layer, each 
neuron in the learning algorithm receives input from all 
factors from the previous layer. Finally, the Ensemble method 
combined several machine learning techniques (in this case 
DL, RF and GB) into a single predictive model in order to 
improve prediction levels All techniques could be used to 
predict mortality risks for infants using patients‟ information 
in different ways. The main purpose of the study was to 
measuring the model accuracy and the F1 score, and to 
compare the performance of each model in order to conclude 

which model offers the best performance in terms of 
prediction accuracy. 

B. Problem Definition 

The limitations identified in the existing literature and gaps 
in the research were used as motivation for the dissertation. 
Rinta-koski and Simo (2017) suggest that more promising 
methods such as SVM can be used to identify clinical features 
on arrival at the Neonatal Intensive Care Unit, as well as 
features observed during the first 72 hours of care for 598 
Very Low Birth-Weight infants. However, Ahmadi et al 
(2017) applied Random Forest techniques to survey maternal 
risk factors that were associated with low birthweight 
neonates, using data mining on information collected from 
Milad Hospital to account for interactions between variables. 
The most commonly used algorithm to identify diseases is 
logical regression, so comparisons of accuracy were made 
between Logistic Regression, Support Vector Machine, 
Random Forest, Deep Learning, Gradient Boosted Tree and 
the Ensemble model. 

The experiment was performed to empirically determine 
which of the six classifiers offers the better performance, 
giving a positive answer to the research question asked at the 
start of the dissertation, which was “Can we identify which 
features help to predict infant mortality?” No study has yet 
applied ensemble machine learning methods concentrating on 
assigning different weights to different models per output 
class in order to obtain a better predictive performance for 
infant mortality. 

C. Future Work and Recommendations 

This project focused only on patients from a particular 
hospital, and might have biased towards the population of a 
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specific region. Further research should be conducted on 
monitoring and capturing more patient information from 
hospitals in different regions or countries, which would help 
build a more generalizable model. There were important 
variables that could not be considered in this experiment, 
including the mother‟s age, which could be useful for 
analyzing a new approach to create labels using three 
categories (18 to 28, 29 to 39 and 40 to 49) in an attempt to 
identify relation between the age of the mother and infant 
mortality risk. These data should also be collected and 
analysed to increase prediction accuracy. 
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