
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

76 | P a g e

www.ijacsa.thesai.org

Chemical Reaction Optimization Algorithm to Find

Maximum Independent Set in a Graph

Mohammad A. Asmaran
1
, Ahmad A. Sharieh

2
, Basel A. Mahafzah

3

Department of Computer Science, The University of Jordan, Amman, Jordan

Abstract—Finding maximum independent set (MIS) in a

graph is considered one of the fundamental problems in the

computer science field, where it can be used to provide solutions

for various real life applications. For example, it can be used to

provide solutions in scheduling and prioritization problems.

Unfortunately, this problem is one of the NP-problems of

computer science, which limit its usage in providing solution for

such problems with large sizes. This leads the scientists to find a

way to provide solutions of such problems using fast algorithms

to provide some near optimal solutions. One of the techniques

used to provide solutions is to use metaheuristic algorithms. In

this paper, a metaheuristic algorithm based on Chemical

Reaction Optimization (CRO) is applied with various techniques

to find MIS for application represented by a graph. The

suggested CRO algorithm achieves accuracy percentages that

reach 100% in some cases. This variation depends on the overall

structure of the graph along with the picked parameters and

colliding molecule selection criteria during the reaction

operations of the CRO algorithm.

Keywords—Chemical reaction optimization; graph; maximum

independent set; metaheuristic algorithm; modified Wilf algorithm;

optimization problems

I. INTRODUCTION

In this paper, a metaheuristic Chemical Reaction
Optimization (CRO) algorithm has been utilized to find out
maximum independent set (MIS) in a graph. In this approach,
computational steps are formulated as a set of molecules
reactions that leads toward approximated solution. CRO
approach considers two types of collisions that could happen:
On-Wall collision and Inter-molecular collision as illustrated
in [1]. These collisions could be effective or ineffective
depending on the nature and the type of the problem to be
implemented or solved. The effective On-Wall collision is
called decomposition, where the colliding molecule is
supposed to be decomposed into several parts (mainly two
parts). Effective inter-molecular collision is called synthesis,
which involves merging the colliding molecules together.

In [2], Independent Sets (ISs) are described to be some of
the useful information that can be concluded from graphs and
used in real life applications; such as project scheduling and
social network analysis, while they are important concept in
building bipartite graphs [3,4] which are fundamental in many
computing areas; such as coding theory and projective
geometry. Independent set can be defined as a set of nodes in
a graph that are not connected. Note that a graph may contain
several independent sets, and finding the maximum one is the
best goal to achieve. The IS with maximum size is referred to
as MIS.

Finding an MIS in a graph is considered very useful
approach for many real life applications and problems, such as
optimization problems, job scheduling, and social network
analysis. MIS can be determined using brute force approach in
O(N

2
×2

N
) run time units, where N is the number of vertices in

a graph. This approach takes a lot of time to find an MIS for
large N as described in [5]. Many approaches and algorithms
are proposed to find out an MIS of a graph, but with very long
run time. So, many algorithms have been proposed to find out
an approximation to actual exact MIS solution with less time
complexity as in [6,7,8,2,9].

Here are some definitions related to MIS and CRO:

 An undirected graph is G(V, E), where V is a set of
vertices and E is a set of edges in G. The set of vertices
is a collection or group that contains the vertices
(nodes) in the graph and these vertices (nodes) are
connected to each other by links that are called Edges.
The collection or group that contains all graph edges is
called Edge Set noted by E.

 An Independent Set (IS) in a graph G(V,E) is defined
in [10,11] to be a set V’, where V' ⊆ V and there is not
exist an edge that connects vs and ve, where e ∈ E, vs∈
V' and ve∈ V' (i.e. either vs or ve∈ V');Where a
Maximum Independent Set (MIS) is defined to be the
IS of the largest size among all available ISs in G.

 Chemical Reaction Optimization (CRO) is defined in
[1,15] as a metaheuristic approach that mimics the
process of chemical reactions in the field of Computer
Science. It relays on minimizing the potential energy to
the minimal value without sticking in local minima.
This algorithm defines an objective function that is
used to calculate potential energy of the current state of
reaction (execution) process. Just like genetic
algorithms, this is done by iterating for a predefined
number of iterations or meeting optimal objective
value.

 On-wall ineffective collision is a CRO operation that
involves colliding the molecule on the wall without any
effective restructure of the colliding molecule.

 Decomposition (On-wall effective collision), is a CRO
operation that involves colliding the molecule on the
wall effectively so that colliding molecule is
decomposed (divided) into multiple molecules.

 Inter-molecular ineffective collision is a CRO
operation that involves colliding two molecules

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

77 | P a g e

www.ijacsa.thesai.org

together ineffectively so that no major structural
change would occur.

 Synthesis (Inter-molecular effective collision) is a CRO
operation that involves colliding two molecules
together effectively so that a new molecule of the
merged collided molecules will be generated.

The solution for a problem based on CRO is represented as
a molecular structure noted as (ω), which has a minimum
potential energy that is determined by a problem specific
objective function noted as PEω, which is determined by an
objective function f(ω). Each molecule has a kinetic energy
that illustrates the tolerance of having worse solutions and
noted as KE.

In this paper, different techniques are implemented over
CRO algorithm to provide an approximate solution for the
MIS problem. In these techniques, an implementation of CRO
is provided to solve MIS problem to provide near optimal
solution.

In the remaining sections, a review of related work is
presented in Section 2. A description of the proposed
algorithms will be explained in Section 3. This is followed by
experimental results in Section 4 and discussion in Section 5.
Section 6 presents the conclusion and intended future
research.

In this paper, a new approach is applied to find Maximum
Independent Set to explore its ability in order to find better
approximation results than previous approaches that cannot be
applied on huge graphs which may contain millions of nodes.
Finding a maximum independent set with near optimal results
would be used to provide a solution of many real-life
applications; such as prioritization and scheduling
applications.

II. RELATED WORK

In their research for finding solution of the MIS problem,
researchers have handled the issue using different approaches
based on type of final result or the nature of graph, such as
degree of nodes, as illustrated in [10,11,12] where such
approaches have been used. In general, finding MIS can be
done using one of the following three approaches: using brute
force algorithm, approximation algorithms, and exact
algorithms for special type of graphs.

The first approach is using an exact (brute force)
algorithm. The direct way to solve such problem is to check
all possible solutions by representing the presence of node in
the solution by 1 and the absence by 0 as mentioned in [11].
So, we can represent the solution by a binary number with
length N, where N is the number of nodes in the given graph.
This involves checking 2

N
 numbers that represent all possible

subsets of the original set of nodes. For each solution (binary
number), all nodes must be checked to ensure disconnection of
nodes (N

2
). So, final run time complexity would be O(N

2
×2

N
).

Nevertheless, some researchers have produced exact
algorithms with better runtime. In [14], the authors proposed
an algorithm, which achieved an exact solution in O(1.2132

n
)

time for a graph of size n vertices, while in [15], the authors
provided an algorithm with running time complexity of

O(1.2114
n
) to find an exact solution. Such a reduction in the

run time could have high influence in case of critical run time
applications like process scheduling on a CPU.

The second approach is using approximation algorithms
based on heuristics to provide approximate solution in
polynomial-time. According to [12], “Most polynomial-space
algorithms for MIS use the following simple idea to search a
solution: branch on a vertex of maximum degree by either
excluding it from the solution set, or including it to the
solution set. In the first branch, we will delete the vertex from
the graph and in the second branch we will delete the vertex
together with all its neighbors from the graph”. Algorithms
that use such heuristics can be found in [7,16]. More
evolutionary heuristic approaches can be found. For example,
in [6,17,18,19], genetic algorithm was used to find an
approximate solution for the MIS problem. In [20], a swarm
intelligence approach based on ant-colony optimization was
used to find a solution. Note that, approximation algorithms
are used in real applications just like in [21], where genetic
algorithm is used to generate data for testing PLSQL
(Procedural Language extension to Structured Query
Language) program units. This generated data is a sub-set of
the actual data range that can’t be covered in some extreme
cases, where data to be tested is huge and can’t be tested using
normal brute-force concept. A more generic test data
generation for software testing is proposed in [22] to generate
test data using genetic algorithm for software testing purposes
rather than using normal brute-force test data generation.

The third approach is using exact algorithms to find exact
solution in polynomial-time, but for graphs of special classes,
such as designing a polynomial run time algorithm that finds
an exact solution in graphs with vertex of degree 2 at
maximum. Such algorithms are case sensitive ones and can’t
be generalized to find exact solutions to graph of random
shape and arbitrary degree. Examples of this form of
algorithms can be found in [23], where an exact algorithm is
provided for graphs with vertices of maximum degree of 3, or
in [12,24], where, in addition to an exact solution provided for
any random graphs, the authors provided a O(1.1571

N
),

1.1737
N
×N

O(1)
, 1.1893

N
×N

O(1)
, and 1.1970

N
×N

O(1)
, for graphs

of maximum degree of 4, 5, 6, and 7, respectively.

As mentioned before, all exact solutions attempts consume
a very large amount of time to execute. Such algorithms
would decrease the feasibility of e solutions. So, a new
paradigm of computing near optimal solution has been
proposed, such as in [7,8,9,16]. As illustrated in [8], this is
done using heuristic or metaheuristic techniques. Combining
of exact and meta-heuristic algorithms can provide near
optimal solution in a shorter time like in [25] where better
execution time has been achieved. Moreover, there are some
known strategies to do parallel implementation of
metaheuristic approaches. By parallelizing these algorithms
such as in [26], an enhanced version with better performance
could be achieved.

In [27], CRO has been used to find optimal solution for
task scheduling and resource allocation in grid computing.
They propose several versions of CRO to solve task
scheduling problem. These versions have been experimented

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

78 | P a g e

www.ijacsa.thesai.org

and tested against four metaheuristic approaches. The results
show that CRO outperforms the other approaches in terms of
accuracy and performance, especially in case of large test
instances.

In [1], CRO has been used to provide a solution for
quadratic assignment problem described in [28]. CRO
implementation has been tested against various evolutionary
approaches. Test results show that CRO implementation
outperforms other implementations in many cases. Parallel
implementation of CRO has been used to solve the same
problem in [29], where test results show that parallel CRO
implementation provides better performance along with
solution quality in comparison with sequential one.

In [1], CRO algorithm has been used to solve resource-
constrained project scheduling problem described in [30] as
planning the project milestones according to predefined
priorities. In real life, project is divided into fixed time slots.
Project activities are assigned to time slots according to
available resources that are limited, while activities could be
dependent on each other. CRO is used to find best scheduling
of tasks that minimizes project lifetime. Test results show that
CRO implementation can achieve better results for known
benchmarks.

In [1], CRO has been used to provide a solution for
channel assignment problem in wireless mesh networks
described in [31] to assign available channels to multiple
wireless networks. It is used for wireless communication
channel selection to be used in the communication between
neighboring mesh routers without suffering any interference
or communication problems. The results show that CRO has
improved current solutions of the problem.

In [32], CRO has been used to solve population transition
problem in peer-to-peer live streaming. In this problem,
network live streaming has been improved by grouping peers
into multiple colonies according to delay. Peers with less
delay can act as service providers for longer delay ones. So,
the system is said to be in universal streaming when all peers
are served with sufficient streaming data. Test results show
that evolutionary approach of CRO outperforms existing non-
evolutionary approaches.

In [33], CRO has been used to find a solution for network
coding optimization problem described in [34] to provide
coding mechanism for network with minimum number of
digits. In this problem, network coding has been used to
enhance transmission rate between routers on certain
interfaces. This strategy of coding specific interfaces could
increase transmission rate without avoidance of extra
computational overhead by coding all available interfaces.
Test results show that CRO outperformed existing algorithms.

In [35], CRO has been used in Artificial Neural Network
(ANN) training. ANN is composed of layers that contain
multiple computational units called neurons. Neurons must be
assigned weights to provide best results. Tuning is done by
training the network with set of training data. Test results
show that CRO trained ANN has better testing error.

In [36], CRO has been used to solve Set Covering Problem
(SCP) while in [37] a strengthened version of clique covering
has been investigated. SCP can be formulated as the
following:

 Given a set M, ⊆ , j = 1,...,n are n subsets of M,

and weights of the subsets, cj, j = 1,...,n; and set cover
is a collection ⊆ {1,...,n} such that ⋃ ∈ = M.

SCP tries to minimize the cost of covering the entire
set using a subset of the original set. There are two
types of set covering problem, unicost, and non-
unicost. CRO outperformed the accuracy of other
algorithms in case of non-unicost SCP, where optimal
solution has been determined in 65 experiments. In
case of unicost SCP, CRO shows outstanding
performance in comparison to other approaches.

In [38], a version of CRO called Greedy CRO (CROG) has
been proposed and implemented to solve 0-1 Knapsack
Problem. Experimental results show that CROG outperforms
other metaheuristic approaches, such as genetic algorithms,
ant-colony, and quantum-inspired evolutionary algorithms.

In [39], enhanced version of CRO has been used to find
optimal road network design that takes into consideration the
cost along with noise and vehicles emissions. Proposed CRO
was tested against Genetic Algorithm (GA) for comparison.
Test results show that CRO outperformed GA in most cases.

In [40], Objective Power Flow (OPF) problem has been
solved using CRO algorithm. OPF aims to minimize power
generation cost by considering many constraints, such as the
balance of the power, bus voltage magnitude limits,
transmission line flow limits, and transformer tap settings. The
results show that CRO can provide the best results among
other algorithms on the IEEE-30 test case. Note that best
result is the one with lowest power flow cost.

In [27], CRO implementation has been extended using
parallel approach to solve the Quadratic Assignment Problem
(QAP). QAP seeks to optimally assign facilities to locations
in a way to minimize transportation cost of facilities, as they
are required in multiple locations. Parallel CRO has been
compared with sequential one in solving QAP, experimental
results show that parallel CRO reduces computational time
with more accurate results.

In [41,42], CRO implementation has been done to solve
Max Flow problem (MFP) in a way that is close to Ford-
Fulkerson algorithm. In [42], the results have been compared
with GA in term of accuracy and performance. The results
show that the problem is solvable by CRO and GA; however,
the GA one outperforms the CRO one.

In this research, we provide adapted versions of CRO to
find a solution of the MIS problem. Several scenarios are
investigated when a molecule (subset of the graph) is selected
randomly among available molecules, and a molecule is
selected according to certain criteria. The selected criteria are
the minimum connectivity. The adapted CRO algorithm with
its implementation and performance are presented.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

79 | P a g e

www.ijacsa.thesai.org

III. CRO ALGORITHM FOR MIS

In CRO, a molecule is represented by a node in a graph.
Thus, an MIS has set of not connected nodes, or set of none
neighboring nodes. In such representation, the CRO considers
each molecule a candidate solution (i.e. Independent Set).
Molecule potential energy is defined as the number of
remaining graph nodes that are not contained in the molecule.
So, if the number of graph nodes is 50 and the molecule
contains 5 nodes, the potential energy is 50-5=45. Fig. 1
shows the flowchart of the CRO algorithm.

Initially, there are N molecules manipulated by the
algorithm, since every node is considered as one molecule,
which is the minimum solution (each node is an independent
set). A molecule is selected for the purpose of collision in each
iteration. Collision type is selected according to the initial
inter-molecular to on-wall collisions ratio.

In case of inter-molecular collision, effectiveness of the
collision depends on whether selected molecules can be
merged together or not. This is done by checking the
confliction between the two molecules, so that each node in
the second molecule is checked with the conflicting (i.e.
neighbors) nodes of the first molecule. If the node is found
among the conflicting nodes of the first molecule, the collision
is defined to be none effective collision and nothing would
happen because the two molecules are not eligible to be
merged. This is because each molecule is assumed to be an
independent set, and it is not allowed to contain conflicting
nodes. On the other hand, if the entire nodes of the second
molecule are not exist among the conflicting nodes of the first
molecule, the collision is defined to be effective, so that
selected molecules are merged together and new molecule is
formulated. This new molecule contains the whole nodes of
the collided molecules.

Table I shows the mapping of chemical notations to their
corresponding mathematical representation defined in [1,13].
The solution is represented by a molecular structure noted as
(ω).

Fig. 1 was adapted from [1,13], shows a flowchart of the
CRO algorithm, which indicates that the first step of the
algorithm is the initialization, as described in [1]. Initialization
includes pre-processing (e.g. preparing the data in appropriate
data structure, and removing unnecessary data), and initial
values calculations (e.g. algorithm variables and constants).
This step is followed by the iteration checking condition,
which examines stopping criteria condition to avoid infinite
calculations or iterations. If stopping criteria condition is met,
the algorithm execution is finished, and no more iteration is
done. On the other hand, if the condition is not satisfied, no
more iteration is done. In each iteration, a collision must be
performed, which could be either on-wall or inter-molecular
collision. This involves determination of which action to be
taken in the next iteration. If the collision type is selected, the
next step is to decide whether the selected collision type is
effective or ineffective according to the selected collision
molecules. In case of intermolecular collision, effective
collision is called synthesis, which indicates that collided
molecules should be merged. In case of on-wall collision,
effective collision is called decomposition, which indicates

that collided molecule should be decomposed into two
molecules. Regardless of collision type or its effectiveness, all
affected molecules potential energy should be calculated and
checked with previously registered minimum value of the
molecules.

In case of on-wall collision, effectiveness of the collision
depends on how many times a molecule collision did happen
without any improvement in the solution. So, if a predefined
number of iterations are reached without any improvement in
its minimum value, the collision is defined to be an effective
on-wall collision. In this case, the molecule is divided into two
molecules, where each molecule contains the same number of
original molecule’s nodes. For example, if the collided
molecule contains nodes {1, 10, 19, 50}, this molecule will be
divided into two molecules one molecule contains {1, 10},
while the other one contains {19, 50}.

Another main factor of the proposed algorithm is molecule
selection, which indicates to how a molecule is selected for
further processing, such as on-wall collision or inter-molecular
collision. In this proposed algorithm, multiple scenarios are
tested, as the following:

1) A molecule is selected randomly among available

molecules.

2) A molecule is selected according to certain criteria.

The selected criteria are the minimum connectivity.

TABLE. I. MAPPING CHEMICAL REACTION TO MATHEMATICAL

MEANING

Chemical

Meaning
Mathematical Meaning

Mathematical

Representation

Molecular

structure
Solution Ω (e.g. MIS)

Potential energy Objective function value

PEω = f(ω) (e.g. number of

remaining nodes in a graph
that are not selected as in

the solution)

Kinetic energy
Measure of tolerance of

having worse solutions

KEω(e.g. the same value

determined by the original
algorithm)

Number of hits
Current total number of

moves
(e.g. number of iterations)

Minimum

structure
Current optimal solution

(e.g. the best solution found

during the execution of the
algorithm)

Minimum value
Current optimal function
value

(e.g. the potential energy of
the minimum structure)

Minimum hit
number

Number of moves when

the current optimal

solution is found

(e.g. number of iterations

“hits” till finding the

minimum structure)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

80 | P a g e

www.ijacsa.thesai.org

Fig. 1. A General Flowchart of the CRO Algorithm.

According to the above criteria of molecule selection,
multiple combinations are tested to find out whether things go
better or not, as follows:

1) Multiple random molecules: In this scenario, molecules

are selected randomly for collision. In each iteration, a random

molecule is selected for collision with another random

selected molecule, or to collide with wall.

2) Single random molecule with random molecules: In

this scenario, a random molecule is selected as a main

molecule. In each iteration, this molecule is selected as the

main molecule. In case of inter-molecular collision is

performed, the second molecule is selected randomly. So, in

this scenario, all iterations are done on the same molecule, but

the variation appears in the second molecule only.

3) Single random molecule with minimum degree

molecules: This scenario appears to be the same as the

previous one, where a single random starting molecule is

selected and used for every iteration in the reaction life cycle.

But, the variation is that second molecule in case of inter-

molecular collision is selected according to the criteria that is

not random. Instead of that, the second molecule is selected

according to its connectivity degree, where minimum

connectivity degree molecule is selected to collide with fixed

starting random molecule.

4) Single minimum molecule with random degree

molecules: In this scenario, minimum connectivity degree

molecule is selected at the beginning and used for every

iteration. In case of inter-molecular collision iteration, the

second molecule is selected randomly.

5) Single minimum molecule with minimum degree

molecules: In this scenario, the same behavior of the previous

scenario (4) is done with a difference that the second molecule

in case of inter-molecular collision is selected according to its

connectivity degree, so that minimum connectivity degree is

selected to collide with initial minimum connectivity degree

molecule.

If the collision is defined to be an effective inter-molecular
collision, the components of the molecule are merged together
and the conflicting nodes are computed with redundant nodes
removal (no redundancy in conflicting nodes). The old
molecules are removed from the pool of available molecules,
while the resultant molecule is added to the pool.

In an iteration, potential energy is updated according to
equation (1).

 (1)

Where ω denotes a molecule, Size(ω) denotes number of
nodes in a molecule, and N denotes the number of nodes in the
graph.

Kinetic energy doesn’t affect the process of CRO in this
proposed algorithm, since each molecule is assumed to be
effective and capable of reacting with other molecules at any
moment, regardless of its situation or kinetic energy.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

81 | P a g e

www.ijacsa.thesai.org

A. CRO Algorithm

CRO algorithm relies on two major operations. These
operations determine the way of finding the final solution.
These operations are on-wall collision and inter-molecular
collision. On-wall collision divides the molecule into two
equally size molecules in case if it is effective. Otherwise (i.e.
ineffective), the original molecule remains without any
change. This operation is presented in Fig. 2. The other
operation is to collide with another molecule (i.e. inter-
molecular collision). If the collision is effective, the molecules
are merged together (synthesized); otherwise, nothing happens
as illustrated in Fig. 3. A function called next is called to
determine whether to continue in executing next iteration or
not, as it is illustrated in Fig. 4. Choosing collision molecules
is done by one of two functions "chooseMinimumConflecting
Molecule" or "chooseRandom Molecule", which is called once
in case of on-wall collision and twice in case of inter-
molecular collision to select necessary molecule(s) for
collision. There are two implementations for this function,
because there are two cases for the second selected molecule
that are random or minimum connected molecules; as it is in
Fig. 5. There are two cases for passing parameters to both
functions: null value or non-null value. In case of null value, it
means that this is the first selected molecule in the iteration
regardless of collision type.

First selected molecule is fixed by selecting the same node
all the time. So, the algorithm seeks the molecules looking for
the molecule containing the initially selected node at the
beginning of the algorithm execution. In case of non-null value,
the algorithm has two cases: the second molecule is selected
randomly or the molecule with minimum neighbors is selected.

In the code in Fig. 5, random molecule is selected. In the
code in Fig. 6, the minimum neighbor molecule is selected.

At the beginning of execution, initror initmc function is
called, where it is responsible of initializing molecules pool by
adding created initial molecules to it and selecting the base
molecule for reactions, as in Fig. 7 and Fig. 8.

Name: collideOnWall

Input: Molecule object that should collide on wall, and Boolean value to

specify if the collision is effective.

Output: array of molecules either with size 1 (in case of ineffective
collision) or 2 (in case of effective collision).

Function collideOnWall(Molecule molecule, boolean effective) {

MISMolecule results[] = null;

if(effective == true){

Molecule results[] = new Molecule[2];
int mid = (Number Of Nodes in molecule)/2;

results[0] = new molecule of colliding molecule nodes indexed

between 0 and mid-1.
results[1] = Create Molecule of molecule Nodes indexed from mid to

the end of the list.

}
else{

results = new MISMolecule[1];

results[0] = molecule;
}

return results;

}

Fig. 2. Collideonwall Function that Performs the Collision on Wall of the

Selected (Parameterized) Molecule According to the Selected Effectiveness.

Name: collideWithMolecule

Input: Two molecule objects that should collide together, and Boolean

value to specify if the collision is effective.

Output: Molecule object that represents the synthesized molecule

(effective collision) or null (ineffective collision).

Function collideWithMolecule(Molecule molecule1, Molecule

molecule2, boolean effective) {
if(effective==true){

MISMolecule result = create molecule of nodes contained in

molecule1 and molecule2
return result

}
return null

}

Fig. 3. Collidewithmolecule Function that Performs the Collision between

two Selected (Parameterized) Molecules According to the Selected

Effectiveness.

Name: next
Input: number of hits (iterations), and maximum number of hits

(iterations).

Output: Boolean value that indicates whether CRO algorithm should
continue or stop its operations.

Function next() {
if(TotalNumberOfHits<NoOfIterations){

return true

}
return false

}

Fig. 4. Next Function Decides whether CRO Algorithm should Perform

Further Steps or Stop its Work.

Name: chooseRandomMolecule

Input: Molecule object, and available molecules list.
Output: Chosen Molecule object (Random Selection).

Function chooseRandomMolecule(Molecule molecule) {
Molecule pickedMolecule= null

if(molecule == null){

for each molecule in the available molecules{
if(the molecule contains the default selected node){

pickedMolecule = current molecule

Break
}

}

}else{
int index = random number between 0 and number of available

molecules

pickedMolecule = select molecule located at the random index in the
available molecules list

}

return pickedMolecule
}

Fig. 5. ChooseRandomMolecule Function that Chooses a Molecule from

Available Molecules.

Note that in the code of Fig. 8, the initial selected node that
would be selected during CRO life cycle is determined
according to the number of neighbors, where it is the node
with minimum number of nodes. While in the other
implementation, the node is selected randomly among graph
nodes regardless of its connectivity, as in Fig. 7.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

82 | P a g e

www.ijacsa.thesai.org

Name: chooseMinimumConflectingMolecule

Input: Molecule object, and available molecules list.

Output: Chosen Molecule object (Minimum Connectivity Degree Molecule).

Function chooseMinimumConflectingMolecule(Molecule molecule){

Molecule pickedMolecule=null
if(molecule == null){

for each molecule in the available molecules {

if(the molecule contains the default selected node){
pickedMolecule = current molecule

Break

}
}

}
else {

Molecule minimum = null

int min = Number of nodes in graph
for each molecule in the available molecules {

if (currentMolecule != molecule){

int temp = number of conflecting nodes in currentMolecule

if ((minimum == null) or (temp < min)){

minimum = choosenMolecule

min = temp
}

}

}
pickedMolecule = minimum

}

return pickedMolecule
}

Fig. 6. Chooseminimumconflectingmolecule Function that Chooses

Minimum Connectivity Degree Molecule from Available Molecules.

Name: initr

Input:Graph Nodes

Output: initializing molecules (conversion of graph nodes into CRO

molecules).

Function initr(){

noOfIterations = number of graph nodes
minimumNoOfIterations = 0

minimumSize = number of graph nodes

intselectedIndex= pick random number between 0 and number of nodes-1
foreach node in the graph nodes{

MISMolecule molecule = create molecule containing current graph node

only
molecule.PotentialEnergy = number of graph nodes-1

molecule.NumberOfHits = 0

molecule.MinimumHitNumber = 0
molecule.MinimumStructure = molecule;

molecule.MinimumValue = molecule.PotentialEnergy

add molecule to the available molecules
if (node index=selectedIndex){

selectedNode = node

}
}

remove molecules that contain selected node neighbors nodes from the

available molecules
noOfIterations = noOfIterations - number of removed molecules

}

Fig. 7. Initr Function that Initializes the Execution of CRO Algorithm and

Chooses Starting Molecule Randomly.

B. Example

In this section, an example of the algorithm execution is
provided by considering (Minimum initial node &Minimum
iteration node) algorithm. Consider the graph in Fig. 9. The
algorithm will initialize CRO molecules by representing each
graph node by a single molecule. The potential energy equals
to the number of remaining nodes not included in the

molecule. So, initially, there are 5 molecules where these
molecules contain nodes 1, 2, 3, 4, and 5; while potential
energy for each of them is 4. This is because there is a graph
node in the molecule, and the remaining graph nodes are not
included in the molecules.

The algorithm will pick molecule with minimum
conflicting nodes first, and do all reactions on that molecule.
In this example, the algorithm can pick one of the molecules
containing nodes 1, 4, and 5, as each has minimum number of
conflicting nodes, which equals to 2.

Name: initmc

Input: Graph Nodes.

Output: initializing molecules (conversion of graph nodes into CRO
molecules) and picks minimum connected node molecule as initial starting

solution.

function initmc(){

noOfIterations = number of graph nodes

//the algorithm will iterate exactly the number of nodes

minimumNoOfIterations = 0
//initial minimum number of iterations to find solution is 0

minimumSize = number of graph nodes

/*minimum solution initially is same number of graph nodes (maximum
excluded nodes in worst case)*/

int minimumLinks = number of graph nodes + 1
/*initial minimum number of node linkes is the number of graph nodes +1

note that this variable is used to keep track of discovered minimum no of

node neighbors*/
foreach node in the graph nodes{

MISMolecule molecule = create molecule containing current graph node

only
//each node in the graph would be represented as a unique molecule.

molecule.PotentialEnergy = number of graph nodes-1

/*initial molecule potential energy is the no of remaining graph nodes

not included in the molecule which is the number of graph nodes-1*/

molecule.NumberOfHits = 0

//initial no of hits is 0 where no collisions have occurred.
molecule.MinimumHitNumber = 0

//minimum no of hits to find best solution is initially 0

molecule.MinimumStructure = molecule;
/*minimum structure (best solution) is the initial one which is the current

molecule structure (one node)*/

molecule.MinimumValue = molecule.PotentialEnergy
/* minimum value of potential energy (best solution value) is the initial

one which is the initial potential energy of molecule*/

add molecule to the available molecules
//adding molecule to the molecules pool.

if (minimumLinks> number of node Neighbors)

{
selectedNode = node

minimumLinks = number of node Neighbors

}
/*check the number of current node neighbors so that if it is less than

minimum observed links, then its corresponding molecule will be

selected to be initial colliding molecule and its number of neighbors is
saved in minimumLinks to keep track of it and compared to remaining

nodes*/

}
remove molecules that contain selected node neighbors nodes from the

available molecules

/*selected node neighbors should be excluded from the molecules pool
since they won’t be part of the solution (IS) since their neighbor node is

selected to be initial part of the solution*/

noOfIterations = noOfIterations - number of removed molecules
//number of iterations decreased by the number of removed molecules

}

Fig. 8. Initmc Function that Initializes the Execution of CRO Algorithm and

Chooses Starting Molecule with Minimum Connectivity Degree.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

83 | P a g e

www.ijacsa.thesai.org

Fig. 9. Example of a Graph of 5 Nodes; Initially, each Node is Considered a

Molecule and a Potential Energy for Each is 4.

Pick one of these three nodes randomly; and assume that
molecule of node 5 is selected. The algorithm will iterate 5
times (number of nodes in graph). In the first iteration, the
algorithm will choose another molecule (molecule that
contains node 1) and do the collision with previously selected
one (contains node 5). The algorithm will check the
effectiveness of collision by checking whether the nodes in the
two molecules are conflicting (neighbors) or not; which in this
case, they are not. So, the collision is effective, and the
molecules should merge (synthesized). This will produce new
molecule that contains nodes 1 and 5, and the number of
conflicting nodes is 3, and the potential energy is modified to
be 3 instead of 4. Assume a molecule that contains node 4 is
selected in the next iteration, the collision with the molecule
that contains nodes 1 and 5 won’t be effective, and nothing
would happen because the node 4 conflicts with node 5
included in the molecule.

In case on-wall collision is decided to be performed, the
molecule that contains nodes 1 and 5 would be divided into
two molecules: a molecule would contain node 1, and another
molecule would contain node 5. At the end, the result will be
the molecule that achieves lower potential energy, which is in
our simple iteration is the molecule that contains nodes 1 and
5. So, the Maximum Independent Set is {1, 5}. In case the
molecule that contains node 4 has been chosen to collide with
the original molecule (i.e. molecule of node 1), the collision
will be effective, and the two molecules will synthesize and
form new molecule that contains both nodes. While in case the
same molecule that contains node 4 has been chosen to collide
with the molecule that contains nodes {1, and 5}, the collision
will be marked as ineffective and nothing would happen. This
is because node 4 conflicts with node 5 contained in the main
molecule.

C. Analytical Evaluation

Given a graph with N nodes, the algorithm will iterate
exactly N iterations (Stopping criteria is the iteration of N
iterations, where N is the number of nodes in graph). Within
each iteration, first of all, the collision type is chosen and
defined to be on-wall or inter-molecular collision. If the
collision is defined to be on-wall collision, one of the
followings will be done according to the effectiveness of
collision:

1) Effective on-wall collision: The original molecule is

divided into two molecules containing the halves of the

original molecule. The original molecule is removed from the

molecules pool, and the resultant molecules are added to that

pool. In this case, the run time complexity of dividing the

molecule is O(N/2) ≈O(N).

2) Ineffective on-wall collision: The original molecule

remains with same structure and nothing happens at all, since

the original molecule is not affected by the collision. See

collideOnWall in Fig. 2. In this case, a constant number of

steps O(K) is performed, where K is constant number that

represents the number of steps needed to check effectiveness

flag and going forward to the next step.

On the other hand, if the collision is defined to be inter-
molecular collision, one of the followings will be done
according to the effectiveness of collision:

1) Effective inter-molecular collision: This is referred to

as “collideWithMolecule” function in Fig. 3. Note that

effective is a Boolean parameter that indicates whether the

collision is effective or not. If the collision is effective, the

algorithm will iterate through first molecule, and the second

molecule will create new molecule that contains all the nodes

contained by the two molecules. So, in worst case, the first

molecule contains half of the graph nodes, and the second one

contains the other half of the graph nodes. The merge process

will iterate with run time cost of O(N/2) to add first molecule

nodes; while in the addition of the second molecule it will

check every node to prevent adding the same node twice.

Every node in the second molecule will be checked across first

molecule nodes with run time cost of O(N/2), and this will be

done for each node in the second molecule. So, the overall run

time complexity is O([N/2]+[N/2] [N/2]) ≈O(N
2
).

After merging the molecules, the conflicts will be
computed by adding first molecule conflicting nodes list to the
second molecule conflicting nodes list with redundancy
removals. In the worst case, first molecule conflicting nodes
are N-2 (e.g. all graph nodes except itself and the merging
node), and the second node conflicting nodes are N-2 (e.g. all
graph nodes except itself and the merging node). The
algorithm will iterate (N-2) to add first conflicting nodes and
will iterates (N-2) to add second molecule conflicting nodes.
But, while adding second molecule conflicting nodes, it will
check the list of the first molecule conflicting node to prevent
duplication of the nodes. In this case, all the conflicting nodes
in the second molecule will be found in the first molecule. So,
the second molecule conflicting nodes will be found in the list
of size (N-2) added by the first molecule. This involves
finding all the conflicting nodes of the second molecule in the
first molecule conflicting list by iterating 1, 2, 3,…, (N/2)
iterations. So, the algorithm will iterate [1+2+3+…+(N/2)]
iterations to add second molecule conflicting nodes. Thus, the
overall complexity is O(N

2
).

2) Ineffective inter-molecular collision: In this case, the

resultant run time complexity of collision execution will be

O(2N
2
). In this case, the algorithm won’t do anything, refer to

“collideWithMolecule” in Fig. 3, and nothing happens while

the molecules are returned back to the molecules pool without

any processing. So, constant number of steps is performed.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

84 | P a g e

www.ijacsa.thesai.org

Complexity of collision effectiveness computation:

1) On-wall collision: As described in [1,13,32], the

effectiveness of on-wall collision is determined by checking

the number of ineffective iterations of the molecule.

Ineffective iterations are the iterations that have been done on

the molecule after minimum value is found without any

improvement. If the number of iterations exceeds a predefined

constant value, the collision will be defined to be an effective

one; otherwise it is not. So, the run time complexity of

determining effectiveness of the collision is constant.

2) Inter-molecular collision: The effectiveness of the

collision is determined by checking the readiness of molecules

to be merged together. This is done by checking the existence

of any of the second molecule nodes within the first molecule

conflicting nodes. If the check determines that any of the

second molecule nodes exists in the conflicting nodes of the

first molecule, the collision is defined to be effective;

otherwise, it is not. In the worst case, first molecule contains

one node and (N-1) conflicting nodes, while the second

molecule contains all the remaining graph nodes so that its

size is (N-1). To check the existence of second molecule nodes

in the conflicting nodes of the first molecule, the whole list of

the first molecule nodes should be iterated for every node in

the second molecule, until finding the checked node or

reaching the end of the list and the node is assumed to be not

conflicting. So, the iterations are, [1,2,3,…,N-1] and the run

time complexity is [1+2+3+…+(N-1)].In this case, the run

time complexity of the effectiveness calculation is O((N-2)(N-

3)/2)=O(N
2
).

Complexity of molecule selection types:

1) Random selection: In the random selection, the

algorithm will pick a random molecule from the list of

available molecules to perform intended operation. So, in this

case, no processing is done, and a constant number of steps

(K) is performed.

2) Minimum connectivity degree node selection: In this

case, the algorithm will iterate through the available molecules

to select the molecule with minimum number of conflicting

nodes. In the worst case, the number of molecules is equal to

the number of graph nodes (N). So, the algorithm will iterate

through N molecules to find out the one with minimum

number of conflicting nodes. The complexity of finding

minimum connectivity degree among N nodes is O(N). The

run time complexity of finding the same initial molecule is

O(N).

One of the main constants to be defined prior to algorithm
execution is Inter-Molecular to On-Wall collisions Ratio (R).
According to the value of R, the number of inter-molecular
collisions equals to R (Number of CRO iterations) and on-
wall collisions will be (1-R) (Number of CRO iterations).
So, equations (2) and (3) will hold.

 (2)

 (3)

The overall run time complexity of the collision is the
complexity of collision effectiveness calculation, the molecule
selection complexity, and the collision execution complexity
according to its effectiveness; and is expressed as in equation
(4).

 (4)

In case of On-Wall collision, there are two cases:

1) Ineffective collision: By applying equation (4), the

resultant is equation (5) for On-Wall collision complexity

 (5)

Where O(Mol. Selection) depends on the molecule
selection criteria. So, in case of random molecule selection,
the resultant equation is represented in equation (6). While in
case of minimum connectivity degree molecule selection is
used, the collision run time complexity is as in equation (7).

 (6)

 (7)

2) Effective collision: By applying equation (4), the

resultant equation (8) of collision complexity is as in equation

(7).

 (8)

Where O(Mol. Selection) depends on the molecule
selection criteria. So, in case of random molecule selection,
the resultant equation is as in equation (9). While in case of
minimum connectivity degree molecule selection is used, the
collision complexity is as in equation (10).

 (9)

 (10)

In case of Inter-Molecular collision, there are two cases:

1) Ineffective collision: By applying equation (4), the

resultant collision complexity is as in equation (11). The

ineffective collision does not perform any operation on the

colliding molecule(s). So, the complexity of its execution is

constant (K). But the calculation of collision effectiveness in

worst-case would check the half of graph nodes against the

second half of graph nodes that could be fully connected. So,

the final equation would look like the following:

 ∑

 (11)

Where O(Mol. Selection) depends on the molecule
selection criteria. So, in case of random molecule selection,
the resultant is as in equation (12). While in case of minimum
connectivity degree molecule selection is used, the collision
complexity is as in equation (13).

 (12)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

85 | P a g e

www.ijacsa.thesai.org

 (13)

2) Effective collision: By applying equation (4), the

resultant of collision complexity is as in equation (14).

 * ∑
 (

)+

 (14)

In case of random molecule selection, the resultant is as in
equation (15)

 (15)

While in case of minimum connectivity degree molecule
selection is used, the collision complexity is as in equation
(16).

 (16)

Overall complexity of on-wall collision is as in equation
(17).

 (17)

Overall complexity of inter-molecular collision is as in
equation (18).

 (18)

The overall run time complexity of CRO algorithm is as in
equation (19).

 (19)

IV. EXPERIMENTAL RESULTS

The CRO variations are implemented using Java
programming language and tested for comparison purposes
using random generated graphs. The generated graphs are
saved on permanent storage to insure the execution of various
CRO versions on the same graphs for more accurate
comparison. Moreover, multiple graph sizes have been
generated with different connectivity degree percentages. As
in [7], most of these graphs are manipulated using Modified
Wilf algorithm to find out their exact MIS solution. These
exact solutions are used to find the accuracy percentage of
CRO results. CRO has been executed with different inter-
molecular to on-wall collision ratio values (4 values) seeking
for the best ratio value in term of time and accuracy.
Moreover, these executions are repeated 5 times to calculate
average execution time looking for more accurate measures.
The tested ratio values are (0.25, 0.50, 0.75, and 0.95). The
accuracy percentage is defined, as in equation (20).

Accuracy Percentage
100 Size(MIS by CRO)

Size (MIS by Modified-Wilf)
 (20)

The algorithms are tested on a laptop with the following
specifications: CPU: Intel (R) Core(TM) i7-4510U CPU @
2.00GHz 2.60GHz; Memory: 8.00 GB; and Operating System:
64-bit Operating System (Windows 10 Home).

After executing the CRO algorithm over a set of
randomized graphs, the algorithm variations have been tested
over a set of benchmark datasets to measure accuracy, where
optimal solution has achieved in some cases, as shown later.

The resulting execution times are listed below for graphs
of sizes range from 100 nodes to 1000 nodes with connectivity
degrees (20%, 60%, 80%, and 90%) for the various versions
of the proposed CRO algorithm.

Tables II to V show that when we increase the ratio of
inter-molecule collision to on-wall collision ratio, the
smoothness of chart increases, which indicates that the
algorithm runtime much closer to theoretical analysis. On the
other hand, the algorithms show unpredictable time results due
to on-wall collisions that divide the molecules to two different
parts. Note that those new molecules will start over collecting
other molecules to formulate new solutions.

The results show that high collision ratio provides better
performance for low connectivity degree. Note that this is not
the case for graphs with higher connectivity degree, where the
maximum collision ratio consumes the highest time. When the
collision ratio is decreased, the execution time of the
algorithm on highly connected graphs achieves the minimum
run time, and for those with lowest connectivity degree it
achieves the worst run time. This scenario is a result of
checking the efficiency of collision between two molecules.
As described in the algorithm code, in order to check whether
the molecules can collide effectively the connections
(neighbors) of the colliding molecules are checked to be sure
of conflicting neighbors. So, in case of high connectivity
graphs, this will be done by a higher number of iterations. As
long as the ratio of collisions is low, the number of inter-
molecule collisions is low, which decreases the number of
checks between molecules that minimizes the time of
execution.

After calculating average time for the different algorithm
executions and for the different selected graphs with different
sizes and different connectivity degrees, Fig. 10 shows that the
best execution time is achieved when a random starting node
and picking minimum connected node in each iteration, and
when the inter-molecule to on-wall collision ratio is 75%.
Moreover, the results show that when picking minimum
connected molecules, in each iteration, it provides better in
execution time performance than picking random molecule at
each stage. This happens because the number of checks of
conflicting nodes between colliding molecules is minimum
when the two molecules are picked according to minimum
connectivity. While in case of random molecules, there is no
guarantee of the number of connections in the picked
molecules which could be the highest, so that the number of
checks of conflicting nodes is high.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

86 | P a g e

www.ijacsa.thesai.org

TABLE. II. EXPERIMENTAL EXECUTION TIME IN MSEC. FOR 20%, 60 %, 80%, AND 90% CONNECTIVITY DEGREES’ GRAPHS WITH INITIAL RANDOM

GRAPH NODE SELECTION AND RANDOM MOLECULE SELECTION (RR) IN EACH ITERATION WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95)

Connectivity

Degree
20% 60% 80% 90%

Size/Collision

Ratio
0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

100 593 362 256 222 50 59 46 50 19 16 19 12 6 6 3 9

200 4619 3209 1912 1925 272 256 246 271 28 53 53 49 15 15 15 16

300 13675 9078 5958 6147 900 698 831 872 137 128 121 156 37 31 34 28

400 35356 22709 15665 14917 1791 1493 1725 2094 212 234 262 281 44 47 47 46

500 62235 47346 29810 30129 4531 2631 3256 4047 218 412 409 528 84 75 84 87

600 117545 72077 48263 51952 8056 4695 5490 6882 968 625 825 912 75 112 118 134

700 187109 126150 79830 82306 10953 8171 8324 11051 1250 953 1122 1424 140 140 165 193

800 269999 192701 107425 121437 12533 11324 12495 16707 831 1297 1787 2106 237 187 240 281

900 407757 277431 166954 177255 18281 14379 18175 22828 2515 1796 2368 2940 124 234 356 406

1000 551154 373748 232953 242983 26922 20995 24464 32371 2762 1965 3231 4069 281 381 431 544

TABLE. III. EXPERIMENTAL EXECUTION TIME IN MSEC. FOR 20%, 60 %, 80%, AND 90% CONNECTIVITY DEGREES’ GRAPHS WITH INITIAL MINIMUM

GRAPH NODE SELECTION AND RANDOM MOLECULE SELECTION (MR) IN EACH ITERATION WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95)

Connectivity

Degree
20% 60% 80% 90%

Size/Collision

Ratio
0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

100 606 409 287 251 109 81 65 69 28 25 21 18 19 12 6 10

200 4230 3035 2130 2057 553 379 296 367 90 78 95 91 43 28 34 26

300 14841 11393 7000 6832 1234 906 991 1198 212 250 253 280 59 53 59 57

400 32222 24763 14987 15814 3309 2185 2100 2555 496 303 381 451 77 87 93 106

500 67398 45029 31119 30814 4398 3722 4239 5010 543 510 793 925 168 122 178 183

600 121295 75942 49422 54483 6157 5507 7376 9413 700 862 925 1171 122 206 224 246

700 189972 137178 87550 89818 12060 10264 11134 13771 1034 1090 1503 1940 412 275 331 425

800 266150 188499 123894 130012 24717 15082 16855 21770 1847 2119 2647 3414 390 365 478 597

900 409454 267807 161301 187702 24989 19514 23766 31255 4853 2406 3150 3885 432 453 621 757

1000 545105 389631 229173 256270 35639 26005 27629 37977 2232 3428 4365 5817 409 568 797 1044

TABLE. IV. EXPERIMENTAL EXECUTION TIME IN MSEC. FOR 20%, 60 %, 80%, AND 90% CONNECTIVITY DEGREES’ GRAPHS WITH INITIAL RANDOM

GRAPH NODE SELECTION AND MINIMUM MOLECULE SELECTION (RM) IN EACH ITERATION WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95)

Connectivity

Degree
20% 60% 80% 90%

Size/Collision

Ratio
0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

100 476 328 212 193 80 47 43 46 21 15 12 9 7 6 3 0

200 3917 2423 1525 1439 299 218 241 218 56 34 34 31 21 21 15 12

300 5952 5385 4818 4869 753 616 679 650 134 87 100 93 34 31 31 28

400 23999 16660 11689 11410 975 1113 1263 1486 362 228 196 203 56 44 34 37

500 52396 34185 24442 22005 3730 2803 2370 2844 478 359 325 387 62 53 56 68

600 34862 36307 38833 38067 4160 3831 4451 4900 375 353 515 669 68 81 106 97

700 94925 101125 54167 61317 5401 6825 7222 7741 356 750 903 968 81 97 128 149

800 233388 173169 94075 91432 2106 8976 10587 11448 1053 697 1262 1478 200 206 200 231

900 334125 149173 143130 129653 7993 16879 14036 16306 1284 1028 1750 2112 259 253 250 284

1000 309296 230572 168135 176303 8178 10025 19302 22409 1659 2281 2365 2872 331 337 322 365

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

87 | P a g e

www.ijacsa.thesai.org

TABLE. V. BEST ACCURACY RESULTS OF INITIAL RANDOM GRAPH NODE SELECTION AND RANDOM MOLECULE SELECTION (RR) IN EACH ITERATION

ON 20%, 60%, 80%, AND 90% CONNECTIVITY DEGREE GRAPHS WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95)

Connectivity Degree 20% 60% 80% 90%

Size/Collision Ratio 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

100 32 58 63 74 57 71 86 71 67 67 67 67 50 75 75 75

200 44 56 56 67 80 80 100 80 75 75 75 75

300 42 58 50 67 67 67 67 83 60 60 80 80

400 45 55 64 55 57 57 57 71 60 60 80 80

500 50 70 60 70 43 57 57 57 60 60 60 80

600 36 43 57 50 57 57 57 71 80 80 80 80

700 45 64 64 64 57 57 71 71 60 80 60 80

800 36 50 57 57 38 63 50 63 80 80 80 80

900 46 54 62 62 50 63 75 63 50 50 67 83

1000 31 44 44 56 56 44 56 56 50 67 67 67

Fig. 10. Average Execution Time for All Tested CRO Algorithm Versions with (Collision Ratios 0.25, 0.5, 0.75, and 0.95).

In Table VI, we demonstrate the accuracy of CRO
algorithm running using full random selection of initial and
iteration molecules, where the accuracy is calculated using
equation (20) according to Modified Wilf algorithm results. In
20% connectivity degree, Modified Wilf algorithm can obtain
an MIS from a graph of up to 150 nodes in an acceptable time.
While in the higher connectivity degrees (60%, 80%, and
90%) the solutions are obtained in a graph of up to 1000
nodes. The results show that the accuracy is dropping when
the number of nodes is going up. When the connectivity
degree increases, the accuracy becomes more stable and near
to constant regardless of graph size. Moreover, when CRO
algorithm is run using 95% inter-molecules to on-wall
collision ratio, it provides better results. This is a result of
performing more inter-molecule collisions, which provides
more combinations of nodes (solutions), so that better
solutions could be discovered.

Table VII demonstrates the accuracy of CRO algorithm
using random selection of iteration molecules, while starting
with minimum molecule (minimum connected node), where
the accuracy is calculated using equation (20) according to
Modified Wilf algorithm results. The results show that the

accuracy is dropping when the number of nodes is growing
up. When the connectivity degree increases, the accuracy
becomes more stable and near to constant regardless of graph
size. Moreover, when CRO algorithm is run using 95% inter-
molecules to on-wall collision ratio, it provides better results.

Table VIII shows accuracy results of CRO algorithm using
random selection of initial iteration molecules and picking
minimum connectivity node in each iteration, where the
accuracy is calculated using equation (20) according to
Modified Wilf algorithm results. In the higher connectivity
degrees (60%, 80%, and 90%), the solutions are obtained from
graph of up to 1000 nodes. The results show that the accuracy
is dropping when the number of nodes is growing up. This is a
normal result of increasing the number of nodes, where the
size of MIS becomes greater, so that the percentage won’t be
affected by low number of nodes, not like small solutions,
where a single node could increase the percentage of accuracy
by a significant value.

Table IX shows the accuracy results of CRO algorithm
using minimum connectivity molecule and selecting minimum
connectivity molecule in each iteration, where the accuracy is
calculated using equation (20) according to Modified Wilf

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

88 | P a g e

www.ijacsa.thesai.org

algorithm results. In the higher connectivity degrees (60%,
80%, and 90%), the solutions are obtained up to 1000 nodes
graph size. The results show that the accuracy is dropping
when the number of nodes is going up. Moreover, the
algorithm shows almost identical accuracy regardless of inter-
molecule to on-wall collisions ratio. This indicates that the
best results are obtained early at the beginning of execution,
so that it doesn’t differ if the collisions between the molecules
are increased or not. This indication can be used to decrease
the number of iterations in case of higher ratio; but the
problem is how to obtain stopping condition?

Fig. 11 shows the average accuracy of each type of
algorithms along with inter-molecule to on-wall collisions
ratio. The figure shows that random selection of molecules in
CRO iterations provides better accuracy results, especially,
when the ratio of inter-molecule to on-wall collisions
increases. The algorithm performance on graph with95% ratio
provides better results in case of random selection. These
results represent the worst results in term of accuracy among
all tests. This is a result of using minimum number of
neighbors as selection criteria for initial base molecule and
other molecules in each iteration, so that static selection of
colliding nodes is performed, and less nodes combinations are
discovered.

Extra experiments have been done to test proposed
implementation on benchmark datasets, such as Graph50_10,
Graph100_10, Hamming6_2, Hamming6_4, Hamming8_4,
and Hamming10_4 obtained from [43,44,45]. The results
listed in Table X show that the CRO algorithm provides
optimal solution in some cases, specially, when the selection
of molecules is done in random and the inter-molecular to on-
wall collisions ratio is high, such as (75% or 95%). On the
other hand, the results show that minimum degree molecule
selection criteria provide lower accuracy, which tends to be
the result of selecting special molecules each time of collision,
which could deviate from the correct path of optimal solution
that may contain higher degree nodes. The results show that
optimal solution (Exact solution) of MIS could be achieved by
CRO. But, the main problem is that this result is not
guaranteed. CRO should be executed many times (in our case
10 times) to have more solutions that may contain the optimal
one. So, if the execution of CRO is finished within 1 second,
and the re-execution is done 10 times, this means that the total
execution time is 10 seconds, which is the actual time to be
compared with. This makes Modified-Wilf better choice and
more worthy to use in case of small problems (lower graph
size and higher connectivity), since the difference of achieved
performance is low with guaranteed results.

TABLE. VI. BEST ACCURACY RESULTS OF INITIAL MINIMUM GRAPH NODE SELECTION AND RANDOM MOLECULE SELECTION (MR) IN EACH ITERATION

ON 20%, 60%, 80%, AND 90% CONNECTIVITY DEGREE GRAPHS WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95)

Connectivity Degree 20% 60% 80% 90%

Size/Collision Ratio 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

100 42 58 74 68 43 71 86 100 50 67 67 67 50 75 75 100

200 44 56 67 67 60 80 80 80 75 75 75 75

300 42 50 58 58 67 83 83 67 80 60 80 80

400 45 55 64 64 57 71 71 71 60 60 60 80

500 50 60 70 70 43 57 71 71 60 80 80 80

600 36 50 50 57 57 57 71 71 60 60 80 80

700 55 55 73 73 57 57 71 71 80 60 60 80

800 43 43 50 57 50 63 63 63 80 80 60 80

900 38 54 62 62 50 75 63 75 50 67 50 67

1000 38 44 50 56 44 56 56 78 50 50 67 67

TABLE. VII. EXPERIMENTAL EXECUTION TIME IN MSEC. FOR 20%, 60 %, 80%, AND 90% CONNECTIVITY DEGREES’ GRAPHS WITH INITIAL MINIMUM

GRAPH NODE SELECTION AND MINIMUM MOLECULE SELECTION (MM) IN EACH ITERATION WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95)

Connectivity

Degree
20% 60% 80% 90%

Size/Collision

Ratio
0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

100 602 385 266 209 127 84 75 50 27 18 12 12 16 15 15 6

200 1002 1493 1562 1616 622 427 293 262 54 46 62 68 36 31 21 22

300 13926 8450 6857 5362 299 403 719 912 384 275 206 200 53 40 43 43

400 38450 23482 13688 11688 2965 2118 1897 1776 600 440 331 319 87 62 75 81

500 49903 36941 26663 23738 972 1603 2972 3635 1228 837 671 653 215 200 128 131

600 113015 70506 47772 40013 15934 10204 7210 6739 1650 1290 937 802 87 121 159 190

700 90279 80873 63352 66949 2159 4441 7888 9837 362 794 1084 1406 153 187 284 293

800 138417 97888 83193 98044 29062 19616 15420 15520 3347 2821 2600 2434 221 268 322 447

900 384084 229520 160319 139371 3503 9079 16972 22223 772 1409 2290 2816 1187 737 615 525

1000 27344 79701 140458 187492 41688 37861 27133 26490 959 2088 3381 4256 225 400 603 718

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

89 | P a g e

www.ijacsa.thesai.org

TABLE. VIII. BEST ACCURACY RESULTS OF INITIAL RANDOM GRAPH NODE SELECTION AND MINIMUM MOLECULE SELECTION (RM) IN EACH ITERATION

ON 20%, 60%, 80%, AND 90% CONNECTIVITY DEGREE GRAPHS WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95)

Connectivity Degree 20% 60% 80% 90%

Size/Collision Ratio 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

100 37 37 42 26 57 43 57 43 50 50 67 50 75 100 100 75

200 56 44 44 44 60 80 60 40 75 100 100 100

300 33 33 33 33 67 50 33 50 60 60 60 80

400 27 36 36 36 43 43 43 43 60 60 60 60

500 30 40 30 40 43 43 29 43 40 60 60 80

600 36 21 29 21 43 29 29 43 60 60 60 60

700 27 27 36 27 43 57 57 43 40 40 80 60

800 21 21 29 21 38 25 50 38 60 60 60 40

900 23 23 31 23 38 25 50 50 50 50 33 33

1000 19 13 19 25 33 44 33 33 50 50 33 50

TABLE. IX. BEST ACCURACY RESULTS OF INITIAL MINIMUM GRAPH NODE SELECTION AND MINIMUM MOLECULE SELECTION (MM) IN EACH

ITERATION ON 20%, 60%, 80%, AND 90% CONNECTIVITY DEGREE GRAPHS WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95)

Connectivity Degree 20% 60% 80% 90%

Size/Collision Ratio 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

100 32 32 32 21 43 43 43 43 33 33 33 33 75 75 75 75

200 33 33 33 33 40 40 40 40 75 75 100 75

300 17 17 17 17 50 50 50 50 40 40 40 40

400 27 27 27 27 43 43 43 43 40 40 40 40

500 20 20 20 20 43 43 43 43 60 60 60 60

600 29 29 29 29 57 57 57 57 40 40 40 40

700 18 18 18 18 29 29 29 29 40 40 40 40

800 21 21 21 21 50 50 50 50 40 40 40 40

900 15 15 15 15 25 25 25 25 83 83 83 83

1000 25 25 25 25 22 22 22 22 33 33 33 33

Fig. 11. Average Accuracy for the Tested CRO Algorithm Versions with (Collision Ratios 0.25, 0.5, 0.75, and 0.95).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

90 | P a g e

www.ijacsa.thesai.org

TABLE. X. SIZES OF MIS RESULTED FROM EXECUTING CRO ALGORITHM ON A SELECTED SET OF BENCHMARK DATASETS

CRO Algorithm Optimal

MIS

CRO-RR CRO-RM CRO-MR CRO-MM

Benchmark/Collision Ratio 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

Graph50_10 15 7 11 14 15 14 15 15 15 8 12 14 15 14 14 14 14

Graph100_10 30 25 30 30 30 30 30 30 30 22 30 30 30 30 30 30 30

Hamming6_2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Hamming6_4 12 10 10 12 12 9 10 10 9 8 10 12 12 8 10 9 9

Hamming8_4 16 8 13 16 16 10 12 12 11 8 14 16 16 10 10 10 12

Hamming10_4 20 7 11 20 20 11 12 12 11 8 11 17 20 11 11 11 11

V. CONCLUSIONS AND FUTURE WORK

In this paper, scenarios of CRO algorithm have been
implemented and applied to solve the MIS problem. The CRO
algorithm is applied and evaluated on a set of randomized
graphs and the accuracy of the results has been compared
against exact solutions obtained by Modified Wilf algorithm.

The algorithm mainly converts graph nodes into a set of
molecules. After that, it picks one of the molecules to be its
main molecule for reaction. Then, it iterates while picking
another interacting molecule to collide with initial one. In this
paper, the selection of molecule was implemented using
random one and minimum connected one.

The algorithm is tested with variety of parameters, and
provides good results in some cases; such as the results of
executing RR version with higher collision ratio of the
algorithm, as shown in Tables VI and X. This shows that CRO
technique can be used to find the solution of MIS problem,
and it can be modified to provide better results. The random
technique of selecting initial molecule and selecting molecules
that are involved in the reaction iterations achieves better
accuracy, while guided technique that depends on the degree
of connectivity achieves better execution time. This can lead
to look for a combination of both techniques to achieve better
results in term of execution time and accuracy. Note that the
average accuracy of random approach is about 75%, and
achieves exact solution in some cases, while minimum
approach outperforms random approach by decreasing the
execution time by at least 25%.

As future work, this algorithm will be adapted to run on a
parallel architecture, just like in [46,47], where a parallel
heuristic local search is used to solve travelling salesman
problem using four parallel architectures (e.g. “OTIS-
Hypercube”, “OTIS-Mesh”, OTIS hyper hexa-cell, and OTIS
mesh of trees optoelectronic architectures) and testing against
other architectures, such as “The optical chained-cubic tree
interconnection network” which is illustrated in [48].

REFERENCES

[1] A. Lam, V. Li, “Chemical-Reaction-Inspired Metaheuristic for
Optimization”. IEEE Transactions on Evolutionary Computation, 2010,
14(3): pp: 381 – 399, https://doi.org/10.1109/TEVC.2009.2033580.

[2] S. Butenko, “Maximum Independent Set And Related Problems, With
Applications”. PhD dissertation, University Of Florida, 2003.

[3] Y. Shang, "Groupies in random bipartite graphs". Applicable Analysis
and Discrete Mathematics, 2010, 4(2), pp: 278–283, DOI:
10.2298/AADM100605021S.

[4] Y. Shang, "On the Hamiltonicity of random bipartite graphs". Indian
Journal of Pure and Applied Mathematics, 2015, 46(2), pp: 163–173,
DOI: 10.1007/s13226-015-0119-6.

[5] Y. Liu, J. Lu, H. Yang,X. Xiao, and Z. Wei, “Towards maximum
independent sets on massive graphs”. in Proceedings of the VLDB
Endowment, 2015, 8(13), pp:2122-2133, https://doi.org/10.14778/
2831360.2831366.

[6] S. Abu Nayeem and M. Pal Madhumangal, “Genetic algorithmic
approach to find the maximum weight independent set of a graph”,
Journal of Applied Mathematics and Computing, 2007, 25(1), pp: 217-
229. https://doi.org/10.1007/BF02832348.

[7] A. Al-Jaber and A. Sharieh, “Algorithms Based on Weight Factors for
Maximum Independent Set”. DIRASAT , 1999,27(1), pp: 74-90.

[8] D. Andrade, M. Resende, and R. Werneck, “Fast local search for the
maximum independent set problem”. Journal of Heuristics, (2012),
18(4), pp: 525-547. https://doi.org/10.1007/s10732-012-9196-4.

[9] T. Chan and S. Har-Peled , “Approximation Algorithms for Maximum
Independent Set of Pseudo-Disks”. Discrete & Computational
Geometry,2012, 48(2), pp: 373-392, https://doi.org/10.1007/s00454-
012-9417-5.

[10] J. Robson, “Algorithms for maximum independent sets”. Journal of
Algorithms, 1986, 7(3), pp:425-440, https://doi.org/10.1016/0196-
6774(86)90032-5.

[11] Wikipedia. “Independent set (graph theory)”.2016, [online] Available at:
https://en.wikipedia.org/wiki/Independent_set_(graph_theory)
[Accessed 01 Nov. 2018].

[12] A. Lam, Li Victor, “Chemical Reaction Optimization: a tutorial.
Memetic Computing”, 2012, 4(1), pp: 3-17,
https://doi.org/10.1007/s12293-012-0075-1.

[13] M. Xiao and H. Nagamochi. “Exact Algorithms for Maximum
Independent Set”. Algorithms and Computation, 2013, pp: 328-338.
Berlin, Heidelberg: Springer, https://dx.doi.org/10.1016/j.ic.2017.
06.001.

[14] J. Kneis, A. Langer, and P. Rossmanith, “A Fine-Grained Analysis of a
Simple Independent Set Algorithm, ” in Proceedings of FSTTCS 2009,
2009, pp: 287–298, https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2326.

[15] N. Bourgeois, B. Escoffier, V. Paschos, and J. Van Rooij, (2012) “Fast
algorithms for Max Independent Set,” Algorithmica, 62(1).382–41,
https://doi.org/10.1007/s00453-010-9460-7.

[16] A. Sharieh, W. Al-Rawagepfeh, M. Mahafzah, and A. Al-Dahamsheh,
“An Algorithm for finding Maximum Independent Set in a Graph”.
European Journal of Scientific Research, 2008, 23(4), pp: 586-596.

[17] T. Back and S. Khuri, “An evolutionary heuristic for the MIS problem,
Evolutionary Computation” IEEE World Congress on Computational
Intelligence., Proceedings of the First IEEE Conference on
Computational Intelligence, 1994, pp: 531-535,
https://doi.org/10.1109/ICEC.1994.350004.

[18] X. Liu, A. Sakamoto, T. Shimamoto, “A genetic algorithm for maximum
independent set problems”. in Proceedings of 1996 IEEE International
Conference on Systems, Man and Cybernetics, Beijing, China, 14-17
October 1996, pp: 1916 - 1921 vol.3,
https://doi.org/10.1109/ICSMC.1996.565404.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

91 | P a g e

www.ijacsa.thesai.org

[19] S. Mehrabi, A. Mehrabi, and A. Mehrabi, “A New Hybrid Genetic
Algorithm for Maximum Independent Set Problem”. In Proceedings of
the 4th International Conference on Software and Data Technologies,
(ICSOFT 2009), Sofia, Bulgaria, July 26-29, 2009, pp: 314 – 317,
https://doi.org/10.5220/0002253403140317.

[20] L. Youmei and X. Zongben, “An Ant Colony Optimization Heuristic for
Solving MIS Problems, “Computational Intelligence and Multimedia
Applications, ICCIMA 2003. Proceedings. Fifth International
Conference, pp: 206-211, 2003, http://dx.doi.org/10.1109/
ICCIMA.2003.1238126.

[21] M. Alshraideh, B. Mahafzah, H. Salman, and I. Salah, “Using genetic
algorithm as test data generator for stored PL/SQL program units”,
Journal of Software Engineering and Applications,2013, 6(2), pp: 65-73,
http://dx.doi.org/10.4236/jsea.2013.62011.

[22] M. Alshraideh, B. Mahafzah, and S. Al-Sharaeh, “A multiple-population
genetic algorithm for branch coverage test data generation”, Software
Quality Journal, 2011, 19(3), pp: 489-513,
https://doi.org/10.1007/s11219-010-9117-4.

[23] I. Razgan, “Faster Computation of MIS and Parameterized Vertex Cover
for Graphs with Maximum Degree 3,” Journal of Discrete Algorithms,
2009, 7(2), pp: 191-212, https://doi.org/10.1016/j.jda.2008.09.004.

[24] M. Xiao and H. Nagamochi, “An exact algorithm for maximum
independent set in degree-5 graphs”. Discrete Applied Mathematics 199,
2016, pp: 137–155, https://doi.org/10.1016/j.dam.2014.07.009.

[25] J. Puchinger and G. Raidl, “Combining Metaheuristics and Exact
Algorithms in Combinatorial Optimization: A Survey and
Classification”. Artificial Intelligence and Knowledge Engineering
Applications: A Bioinspired Approach (pp” 41-53). Berlin, Heidelberg:
Springer,2005, https://doi.org/10.1007/11499305_5.

[26] V. Cung, S. Martins, C. Ribeiro, and C. Roucairol. “Strategies for the
Parallel Implementation of Metaheuristics”. Essays and Surveys in
Metaheuristics, US: Springer,2002, (pp. 263-308).
https://doi.org/10.1007/978-1-4615-1507-4_13.

[27] H. Kim, H. Lam, and S. Kang, “Chemical Reaction Optimization for
Task Scheduling in Grid Computing”. IEEE Transactions on Parallel
and Distributed,2011, 22(10), pp: 1624 – 1631,
https://doi.org/10.1109/TPDS.2011.35.

[28] E. Loiola, N. de Abreu, P. Boaventura-Netto, P. Hahn, and T. Querido,
“A survey for the quadratic assignment problem”. Eur J Oper Res, 2007,
176(2), pp:657–690, https://doi.org/10.1016/j.ejor.2005.09.032.

[29] J. Xu, A. Lam, and V. Li, “Parallel Chemical Reaction Optimization for
the Quadratic Assignment Problem”. Proceedings of the 2010
International Conference on Genetic and Evolutionary Methods, GEM
2010, July 12-15, 2010, Las Vegas Nevada, USA.

[30] E. Demeulemeester and W. Herroelen,“Project scheduling: a research
handbook”. Academic Publishers, Boston, MA, USA, 2002,
https://doi.org/10.1007/b101924.

[31] A. Subramanian, H. Gupta, S. Das, and J. Cao, “Minimum interference
channel assignment in multiradio wireless mesh networks”. IEEE Trans
Mobile Comput, 2008, 7(12), pp:1459–1473,
https://doi.org/10.1109/TMC.2008.70.

[32] A. Lam, J. Xu, and V. Li, “Chemical reaction optimization for
population transition in peer-to-peer live streaming”. Proceedings of the
IEEE congress on evolutionary computation. Barcelona, Spain, 2010,
https://doi.org/10.1109/CEC.2010.5585933.

[33] B. Pan, A. Lam, and V. Li, “Network coding optimization based on
chemical reaction optimization”. Proceedings of the IEEE global
communications conference. Houston, TX, USA, 2011,
https://doi.org/10.1109/GLOCOM.2011.6133697.

[34] M. Kim, M. Medard, V. Aggarwal, U. OReilly, W. Kim, and C. Ahn,
“Evolutionary approaches to minimizing network coding resources”.
Proceedings of the 26th annual IEEE conference on computer
Communications, Anchorage, AK, USA,2007,
https://doi.org/10.1109/INFCOM.2007.231.

[35] P. Palmes, T. Hayasaka, and S. Usui, “Mutation-based genetic neural
network”. IEEE Trans Neural Network, 2005, 16(3), pp:587–600,
https://doi.org/10.1109/TNN.2005.844858.

[36] J. Yu, A. Lam, and V. Li, “Chemical reaction optimization for the set
covering problem”. in Proceedings of 2014 IEEE Congress on
Evolutionary Computation (CEC 2014), Beijing, China, 6-11 July 2014,
In IEEE CEC Proceedings, 2014, pp: 512-519,
https://doi.org/10.1109/CEC.2014.6900233.

[37] Y. Shang, "Poisson approximation of induced subgraph counts in an
inhomogeneous random intersection graph model". Bulletin of the
Korean Mathematical Society, in press.

[38] T. Truong, K. Li, and Y. Xu, “Chemical reaction optimization with
greedy strategy for the 0–1 knapsack problem”. Applied Soft
Computing, 2013, 13(4), pp: 1774–1780,
https://doi.org/10.1016/j.asoc.2012.11.048.

[39] W. Szeto, Y. Wang, and S. Wong, “The chemical reaction optimization
approach to solving the environmentally sustainable network design
problem”. Computer-Aided Civil and Infrastructure Engineering, 2014,
29(2), pp: 140-158, https://doi.org/10.1111/mice.12033.

[40] Y . Sun, A. Lam, V. Li, J. Xu, and J. Yu, “Chemical reaction
optimization for the optimal power flow problem”. The 2012 IEEE
Congress on Evolutionary Computation (CEC 2012), Brisbane,
Australia, 10-15 June 2012. In IEEE CEC Proceedings, 2012, pp: 1-8,
https://doi.org/10.1109/CEC.2012.6253003.

[41] Y. Khanafseh, M. Surakhi, A. Sharieh, and A. Sleit, “A Comparison
between Chemical Reaction Optimization and Genetic Algorithms for
Max Flow Problem”, International Journal of Advanced Computer
Science and Applications (IJACSA), 2017, 8(8), pp: 8-15,
http://dx.doi.org/10.14569/IJACSA.2017.080802.

[42] R. Barham, A. Sharieh, and A. Sliet, “Chemical Reaction Optimization
for Max Flow Problem”, (IJACSA) International Journal of Advanced
Computer Science and Applications, 2016, 7(8), pp: 189-196.

[43] K. Xu,“Vertex Cover Benchmark Instances (DIMACS & BHOSLIB)”.
IJEA (international journal of Experimental algorithms),2012, 3(1), pp:
1-18.

[44] Penn State Harrisburg University. Vertex Cover Benchmark Instances,
2019. [online] Available at: https://turing.cs.hbg.psu.edu/benchmarks/
vertex_cover.html [Accessed 27 March 2019].

[45] DIMACS. the Center for Discrete Mathematics and Theoretical
Computer Science, 2019. [online] Available at: http://dimacs.rutgers.edu
[Accessed 8 March 2019].

[46] A. Al-Adwan, B. Mahafzah, and A. Sharieh, “Solving traveling
salesman problem using parallel repetitive nearest neighbor algorithm on
OTIS-Hypercube and OTIS-Mesh optoelectronic architectures”, Journal
of Supercomputing, 2018, 74(1), pp: 1-36,
https://doi.org/10.1007/s11227-017-2102-y.

[47] A. Al-Adwan, A. Sharieh, and B. Mahafzah, "Parallel heuristic local
search algorithm on OTIS hyper hexa-cell and OTIS mesh of trees
optoelectronic architectures" Applied Intelligence, 2018, 49(10), pp: 1-
28, https://doi.org/10.1007/s10489-018-1283-2.

[48] B. Mahafzah, M. Alshraideh, T. Abu-Kabeer, E. Ahmad, and N. Hamad,
“The optical chained-cubic tree interconnection network: Topological
structure and properties” Computers & Electrical Engineering,2012,
38(2), pp: 330-345, https://doi.org/10.1016/j.compeleceng.2011.11.023.

