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Abstract—Finding maximum independent set (MIS) in a 

graph is considered one of the fundamental problems in the 

computer science field, where it can be used to provide solutions 

for various real life applications. For example, it can be used to 

provide solutions in scheduling and prioritization problems. 

Unfortunately, this problem is one of the NP-problems of 

computer science, which limit its usage in providing solution for 

such problems with large sizes. This leads the scientists to find a 

way to provide solutions of such problems using fast algorithms 

to provide some near optimal solutions. One of the techniques 

used to provide solutions is to use metaheuristic algorithms. In 

this paper, a metaheuristic algorithm based on Chemical 

Reaction Optimization (CRO) is applied with various techniques 

to find MIS for application represented by a graph. The 

suggested CRO algorithm achieves accuracy percentages that 

reach 100% in some cases. This variation depends on the overall 

structure of the graph along with the picked parameters and 

colliding molecule selection criteria during the reaction 

operations of the CRO algorithm. 
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I. INTRODUCTION 

In this paper, a metaheuristic Chemical Reaction 
Optimization (CRO) algorithm has been utilized to find out 
maximum independent set (MIS) in a graph. In this approach, 
computational steps are formulated as a set of molecules 
reactions that leads toward approximated solution. CRO 
approach considers two types of collisions that could happen: 
On-Wall collision and Inter-molecular collision as illustrated 
in [1]. These collisions could be effective or ineffective 
depending on the nature and the type of the problem to be 
implemented or solved. The effective On-Wall collision is 
called decomposition, where the colliding molecule is 
supposed to be decomposed into several parts (mainly two 
parts). Effective inter-molecular collision is called synthesis, 
which involves merging the colliding molecules together. 

In [2], Independent Sets (ISs) are described to be some of 
the useful information that can be concluded from graphs and 
used in real life applications; such as project scheduling and 
social network analysis, while they are important concept in 
building bipartite graphs [3,4] which are fundamental in many 
computing areas; such as coding theory and projective 
geometry. Independent set can be defined as a set of nodes in 
a graph that are not connected. Note that a graph may contain 
several independent sets, and finding the maximum one is the 
best goal to achieve. The IS with maximum size is referred to 
as MIS. 

Finding an MIS in a graph is considered very useful 
approach for many real life applications and problems, such as 
optimization problems, job scheduling, and social network 
analysis. MIS can be determined using brute force approach in 
O(N

2
×2

N
) run time units, where N is the number of vertices in 

a graph. This approach takes a lot of time to find an MIS for 
large N as described in [5]. Many approaches and algorithms 
are proposed to find out an MIS of a graph, but with very long 
run time. So, many algorithms have been proposed to find out 
an approximation to actual exact MIS solution with less time 
complexity as in [6,7,8,2,9]. 

Here are some definitions related to MIS and CRO: 

 An undirected graph is G(V, E), where V is a set of 
vertices and E is a set of edges in G. The set of vertices 
is a collection or group that contains the vertices 
(nodes) in the graph and these vertices (nodes) are 
connected to each other by links that are called Edges. 
The collection or group that contains all graph edges is 
called Edge Set noted by E. 

 An Independent Set (IS) in a graph G(V,E) is defined 
in [10,11] to be a set V’, where V' ⊆ V and there is not 
exist an edge that connects  vs and ve, where e ∈ E, vs∈ 
V' and ve∈ V' (i.e. either vs or ve∈ V');Where a 
Maximum Independent Set (MIS) is defined to be the 
IS of the largest size among all available ISs in G. 

 Chemical Reaction Optimization (CRO) is defined in 
[1,15] as a metaheuristic approach that mimics the 
process of chemical reactions in the field of Computer 
Science. It relays on minimizing the potential energy to 
the minimal value without sticking in local minima. 
This algorithm defines an objective function that is 
used to calculate potential energy of the current state of 
reaction (execution) process. Just like genetic 
algorithms, this is done by iterating for a predefined 
number of iterations or meeting optimal objective 
value. 

 On-wall ineffective collision is a CRO operation that 
involves colliding the molecule on the wall without any 
effective restructure of the colliding molecule. 

 Decomposition (On-wall effective collision), is a CRO 
operation that involves colliding the molecule on the 
wall effectively so that colliding molecule is 
decomposed (divided) into multiple molecules. 

 Inter-molecular ineffective collision is a CRO 
operation that involves colliding two molecules 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

77 | P a g e  

www.ijacsa.thesai.org 

together ineffectively so that no major structural 
change would occur. 

 Synthesis (Inter-molecular effective collision) is a CRO 
operation that involves colliding two molecules 
together effectively so that a new molecule of the 
merged collided molecules will be generated. 

The solution for a problem based on CRO is represented as 
a molecular structure noted as (ω), which has a minimum 
potential energy that is determined by a problem specific 
objective function noted as PEω, which is determined by an 
objective function f(ω).  Each molecule has a kinetic energy 
that illustrates the tolerance of having worse solutions and 
noted as KE. 

In this paper, different techniques are implemented over 
CRO algorithm to provide an approximate solution for the 
MIS problem. In these techniques, an implementation of CRO 
is provided to solve MIS problem to provide near optimal 
solution. 

In the remaining sections, a review of related work is 
presented in Section 2. A description of the proposed 
algorithms will be explained in Section 3. This is followed by 
experimental results in Section 4 and discussion in Section 5. 
Section 6 presents the conclusion and intended future 
research. 

In this paper, a new approach is applied to find Maximum 
Independent Set to explore its ability in order to find better 
approximation results than previous approaches that cannot be 
applied on huge graphs which may contain millions of nodes. 
Finding a maximum independent set with near optimal results 
would be used to provide a solution of many real-life 
applications; such as prioritization and scheduling 
applications. 

II. RELATED WORK 

In their research for finding solution of the MIS problem, 
researchers have handled the issue using different approaches 
based on type of final result or the nature of graph, such as 
degree of nodes, as illustrated in [10,11,12] where such 
approaches have been used.  In general, finding MIS can be 
done using one of the following three approaches: using brute 
force algorithm, approximation algorithms, and exact 
algorithms for special type of graphs. 

The first approach is using an exact (brute force) 
algorithm. The direct way to solve such problem is to check 
all possible solutions by representing the presence of node in 
the solution by 1 and the absence by 0 as mentioned in [11]. 
So, we can represent the solution by a binary number with 
length N, where N is the number of nodes in the given graph. 
This involves checking 2

N
 numbers that represent all possible 

subsets of the original set of nodes. For each solution (binary 
number), all nodes must be checked to ensure disconnection of 
nodes (N

2
). So, final run time complexity would be O(N

2
×2

N
). 

Nevertheless, some researchers have produced exact 
algorithms with better runtime. In [14], the authors proposed 
an algorithm, which achieved an exact solution in O(1.2132

n
) 

time for a graph of size n vertices, while in [15], the authors 
provided an algorithm with running time complexity of 

O(1.2114
n
 ) to find an exact solution. Such a reduction in the 

run time could have high influence in case of critical run time 
applications like process scheduling on a CPU. 

The second approach is using approximation algorithms 
based on heuristics to provide approximate solution in 
polynomial-time. According to [12], “Most polynomial-space 
algorithms for MIS use the following simple idea to search a 
solution: branch on a vertex of maximum degree by either 
excluding it from the solution set, or including it to the 
solution set. In the first branch, we will delete the vertex from 
the graph and in the second branch we will delete the vertex 
together with all its neighbors from the graph”. Algorithms 
that use such heuristics can be found in [7,16]. More 
evolutionary heuristic approaches can be found. For example, 
in [6,17,18,19], genetic algorithm was used to find an 
approximate solution for the MIS problem. In [20], a swarm 
intelligence approach based on ant-colony optimization was 
used to find a solution. Note that, approximation algorithms 
are used in real applications just like in [21], where genetic 
algorithm is used to generate data for testing PLSQL 
(Procedural Language extension to Structured Query 
Language) program units. This generated data is a sub-set of 
the actual data range that can’t be covered in some extreme 
cases, where data to be tested is huge and can’t be tested using 
normal brute-force concept. A more generic test data 
generation for software testing is proposed in [22] to generate 
test data using genetic algorithm for software testing purposes 
rather than using normal brute-force test data generation. 

The third approach is using exact algorithms to find exact 
solution in polynomial-time, but for graphs of special classes, 
such as designing a polynomial run time algorithm that finds 
an exact solution in graphs with vertex of degree 2 at 
maximum. Such algorithms are case sensitive ones and can’t 
be generalized to find exact solutions to graph of random 
shape and arbitrary degree.  Examples of this form of 
algorithms can be found in [23], where an exact algorithm is 
provided for graphs with vertices of maximum degree of 3, or 
in [12,24], where, in addition to an exact solution provided for 
any random graphs, the authors provided a O(1.1571

N
 ), 

1.1737
N
×N

O(1)
, 1.1893

N
×N

O(1)
, and 1.1970

N
×N

O(1)
, for graphs 

of maximum degree of 4, 5, 6, and 7, respectively. 

As mentioned before, all exact solutions attempts consume 
a very large amount of time to execute. Such algorithms 
would decrease the feasibility of e solutions. So, a new 
paradigm of computing near optimal solution has been 
proposed, such as in [7,8,9,16]. As illustrated in [8], this is 
done using heuristic or metaheuristic techniques. Combining 
of exact and meta-heuristic algorithms can provide near 
optimal solution in a shorter time like in [25] where better 
execution time has been achieved. Moreover, there are some 
known strategies to do parallel implementation of 
metaheuristic approaches. By parallelizing these algorithms 
such as in [26], an enhanced version with better performance 
could be achieved. 

In [27], CRO has been used to find optimal solution for 
task scheduling and resource allocation in grid computing. 
They propose several versions of CRO to solve task 
scheduling problem. These versions have been experimented 
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and tested against four metaheuristic approaches. The results 
show that CRO outperforms the other approaches in terms of 
accuracy and performance, especially in case of large test 
instances. 

In [1], CRO has been used to provide a solution for 
quadratic assignment problem described in [28]. CRO 
implementation has been tested against various evolutionary 
approaches. Test results show that CRO implementation 
outperforms other implementations in many cases. Parallel 
implementation of CRO has been used to solve the same 
problem in [29], where test results show that parallel CRO 
implementation provides better performance along with 
solution quality in comparison with sequential one. 

In [1], CRO algorithm has been used to solve resource-
constrained project scheduling problem described in [30] as 
planning the project milestones according to predefined 
priorities. In real life, project is divided into fixed time slots. 
Project activities are assigned to time slots according to 
available resources that are limited, while activities could be 
dependent on each other. CRO is used to find best scheduling 
of tasks that minimizes project lifetime.  Test results show that 
CRO implementation can achieve better results for known 
benchmarks. 

In [1], CRO has been used to provide a solution for 
channel assignment problem in wireless mesh networks 
described in [31] to assign available channels to multiple 
wireless networks. It is used for wireless communication 
channel selection to be used in the communication between 
neighboring mesh routers without suffering any interference 
or communication problems. The results show that CRO has 
improved current solutions of the problem. 

In [32], CRO has been used to solve population transition 
problem in peer-to-peer live streaming. In this problem, 
network live streaming has been improved by grouping peers 
into multiple colonies according to delay. Peers with less 
delay can act as service providers for longer delay ones. So, 
the system is said to be in universal streaming when all peers 
are served with sufficient streaming data. Test results show 
that evolutionary approach of CRO outperforms existing non-
evolutionary approaches. 

In [33], CRO has been used to find a solution for network 
coding optimization problem described in [34] to provide 
coding mechanism for network with minimum number of 
digits. In this problem, network coding has been used to 
enhance transmission rate between routers on certain 
interfaces. This strategy of coding specific interfaces could 
increase transmission rate without avoidance of extra 
computational overhead by coding all available interfaces. 
Test results show that CRO outperformed existing algorithms. 

In [35], CRO has been used in Artificial Neural Network 
(ANN) training. ANN is composed of layers that contain 
multiple computational units called neurons. Neurons must be 
assigned weights to provide best results. Tuning is done by 
training the network with set of training data. Test results 
show that CRO trained ANN has better testing error. 

In [36], CRO has been used to solve Set Covering Problem 
(SCP) while in [37] a strengthened version of clique covering 
has been investigated. SCP can be formulated as the 
following: 

 Given a set M,   ⊆  , j = 1,...,n are n subsets of M, 

and weights of the subsets, cj, j = 1,...,n; and set cover 
is a collection  ⊆  {1,...,n} such that ⋃    ∈  = M. 

SCP tries to minimize the cost of covering the entire 
set using a subset of the original set. There are two 
types of set covering problem, unicost, and non-
unicost. CRO outperformed the accuracy of other 
algorithms in case of non-unicost SCP, where optimal 
solution has been determined in 65 experiments. In 
case of unicost SCP, CRO shows outstanding 
performance in comparison to other approaches. 

In [38], a version of CRO called Greedy CRO (CROG) has 
been proposed and implemented to solve 0-1 Knapsack 
Problem.  Experimental results show that CROG outperforms 
other metaheuristic approaches, such as genetic algorithms, 
ant-colony, and quantum-inspired evolutionary algorithms. 

In [39], enhanced version of CRO has been used to find 
optimal road network design that takes into consideration the 
cost along with noise and vehicles emissions. Proposed CRO 
was tested against Genetic Algorithm (GA) for comparison. 
Test results show that CRO outperformed GA in most cases. 

In [40], Objective Power Flow (OPF) problem has been 
solved using CRO algorithm. OPF aims to minimize power 
generation cost by considering many constraints, such as the 
balance of the power, bus voltage magnitude limits, 
transmission line flow limits, and transformer tap settings. The 
results show that CRO can provide the best results among 
other algorithms on the IEEE-30 test case. Note that best 
result is the one with lowest power flow cost. 

In [27], CRO implementation has been extended using 
parallel approach to solve the Quadratic Assignment Problem 
(QAP).  QAP seeks to optimally assign facilities to locations 
in a way to minimize transportation cost of facilities, as they 
are required in multiple locations. Parallel CRO has been 
compared with sequential one in solving QAP, experimental 
results show that parallel CRO reduces computational time 
with more accurate results. 

In [41,42], CRO implementation has been done to solve 
Max Flow problem (MFP) in a way that is close to Ford-
Fulkerson algorithm. In [42], the results have been compared 
with GA in term of accuracy and performance. The results 
show that the problem is solvable by CRO and GA; however, 
the GA one outperforms the CRO one. 

In this research, we provide adapted versions of CRO to 
find a solution of the MIS problem. Several scenarios are 
investigated when a molecule (subset of the graph) is selected 
randomly among available molecules, and a molecule is 
selected according to certain criteria. The selected criteria are 
the minimum connectivity. The adapted CRO algorithm with 
its implementation and performance are presented. 
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III. CRO ALGORITHM FOR MIS 

In CRO, a molecule is represented by a node in a graph. 
Thus, an MIS has set of not connected nodes, or set of none 
neighboring nodes. In such representation, the CRO considers 
each molecule a candidate solution (i.e. Independent Set). 
Molecule potential energy is defined as the number of 
remaining graph nodes that are not contained in the molecule. 
So, if the number of graph nodes is 50 and the molecule 
contains 5 nodes, the potential energy is 50-5=45. Fig. 1 
shows the flowchart of the CRO algorithm. 

Initially, there are N molecules manipulated by the 
algorithm, since every node is considered as one molecule, 
which is the minimum solution (each node is an independent 
set). A molecule is selected for the purpose of collision in each 
iteration. Collision type is selected according to the initial 
inter-molecular to on-wall collisions ratio. 

In case of inter-molecular collision, effectiveness of the 
collision depends on whether selected molecules can be 
merged together or not. This is done by checking the 
confliction between the two molecules, so that each node in 
the second molecule is checked with the conflicting (i.e. 
neighbors) nodes of the first molecule. If the node is found 
among the conflicting nodes of the first molecule, the collision 
is defined to be none effective collision and nothing would 
happen because the two molecules are not eligible to be 
merged. This is because each molecule is assumed to be an 
independent set, and it is not allowed to contain conflicting 
nodes. On the other hand, if the entire nodes of the second 
molecule are not exist among the conflicting nodes of the first 
molecule, the collision is defined to be effective, so that 
selected molecules are merged together and new molecule is 
formulated. This new molecule contains the whole nodes of 
the collided molecules. 

Table I shows the mapping of chemical notations to their 
corresponding mathematical representation defined in [1,13]. 
The solution is represented by a molecular structure noted as 
(ω). 

Fig. 1 was adapted from [1,13], shows a flowchart of the 
CRO algorithm, which indicates that the first step of the 
algorithm is the initialization, as described in [1]. Initialization 
includes pre-processing (e.g. preparing the data in appropriate 
data structure, and removing unnecessary data), and initial 
values calculations (e.g. algorithm variables and constants). 
This step is followed by the iteration checking condition, 
which examines stopping criteria condition to avoid infinite 
calculations or iterations. If stopping criteria condition is met, 
the algorithm execution is finished, and no more iteration is 
done. On the other hand, if the condition is not satisfied, no 
more iteration is done. In each iteration, a collision must be 
performed, which could be either on-wall or inter-molecular 
collision. This involves determination of which action to be 
taken in the next iteration. If the collision type is selected, the 
next step is to decide whether the selected collision type is 
effective or ineffective according to the selected collision 
molecules. In case of intermolecular collision, effective 
collision is called synthesis, which indicates that collided 
molecules should be merged. In case of on-wall collision, 
effective collision is called decomposition, which indicates 

that collided molecule should be decomposed into two 
molecules. Regardless of collision type or its effectiveness, all 
affected molecules potential energy should be calculated and 
checked with previously registered minimum value of the 
molecules. 

In case of on-wall collision, effectiveness of the collision 
depends on how many times a molecule collision did happen 
without any improvement in the solution. So, if a predefined 
number of iterations are reached without any improvement in 
its minimum value, the collision is defined to be an effective 
on-wall collision. In this case, the molecule is divided into two 
molecules, where each molecule contains the same number of 
original molecule’s nodes. For example, if the collided 
molecule contains nodes {1, 10, 19, 50}, this molecule will be 
divided into two molecules one molecule contains {1, 10}, 
while the other one contains {19, 50}. 

Another main factor of the proposed algorithm is molecule 
selection, which indicates to how a molecule is selected for 
further processing, such as on-wall collision or inter-molecular 
collision. In this proposed algorithm, multiple scenarios are 
tested, as the following: 

1) A molecule is selected randomly among available 

molecules. 

2) A molecule is selected according to certain criteria. 

The selected criteria are the minimum connectivity. 

TABLE. I. MAPPING CHEMICAL REACTION TO MATHEMATICAL 

MEANING 

Chemical 

Meaning 
Mathematical Meaning 

Mathematical 

Representation 

Molecular 

structure 
Solution Ω (e.g. MIS) 

Potential energy Objective function value 

PEω = f(ω) (e.g. number of 

remaining nodes in a graph 
that are not selected as in 

the  solution) 

Kinetic energy 
Measure of tolerance of 

having worse solutions 

KEω(e.g. the same value 

determined by the original 
algorithm) 

Number of hits 
Current total number of 

moves 
(e.g. number of iterations) 

Minimum 

structure 
Current optimal solution 

(e.g. the best solution found 

during the execution of the 
algorithm) 

Minimum value 
Current optimal function 
value 

(e.g. the potential energy of 
the minimum structure) 

Minimum hit 
number 

Number of moves when 

the current optimal 

solution is found 

(e.g. number of iterations 

“hits” till finding the 

minimum structure) 
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Fig. 1. A General Flowchart of the CRO Algorithm. 

According to the above criteria of molecule selection, 
multiple combinations are tested to find out whether things go 
better or not, as follows: 

1) Multiple random molecules: In this scenario, molecules 

are selected randomly for collision. In each iteration, a random 

molecule is selected for collision with another random 

selected molecule, or to collide with wall. 

2) Single random molecule with random molecules: In 

this scenario, a random molecule is selected as a main 

molecule. In each iteration, this molecule is selected as the 

main molecule. In case of inter-molecular collision is 

performed, the second molecule is selected randomly. So, in 

this scenario, all iterations are done on the same molecule, but 

the variation appears in the second molecule only. 

3) Single random molecule with minimum degree 

molecules: This scenario appears to be the same as the 

previous one, where a single random starting molecule is 

selected and used for every iteration in the reaction life cycle.  

But, the variation is that second molecule in case of inter-

molecular collision is selected according to the criteria that is 

not random. Instead of that, the second molecule is selected 

according to its connectivity degree, where minimum 

connectivity degree molecule is selected to collide with fixed 

starting random molecule. 

4) Single minimum molecule with random degree 

molecules: In this scenario, minimum connectivity degree 

molecule is selected at the beginning and used for every 

iteration. In case of inter-molecular collision iteration, the 

second molecule is selected randomly. 

5) Single minimum molecule with minimum degree 

molecules: In this scenario, the same behavior of the previous 

scenario (4) is done with a difference that the second molecule 

in case of inter-molecular collision is selected according to its 

connectivity degree, so that minimum connectivity degree is 

selected to collide with initial minimum connectivity degree 

molecule. 

If the collision is defined to be an effective inter-molecular 
collision, the components of the molecule are merged together 
and the conflicting nodes are computed with redundant nodes 
removal (no redundancy in conflicting nodes). The old 
molecules are removed from the pool of available molecules, 
while the resultant molecule is added to the pool. 

In an iteration, potential energy is updated according to 
equation (1). 

                             (1) 

Where ω denotes a molecule, Size(ω) denotes number of 
nodes in a molecule, and N denotes the number of nodes in the 
graph. 

Kinetic energy doesn’t affect the process of CRO in this 
proposed algorithm, since each molecule is assumed to be 
effective and capable of reacting with other molecules at any 
moment, regardless of its situation or kinetic energy. 
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A. CRO Algorithm  

CRO algorithm relies on two major operations. These 
operations determine the way of finding the final solution. 
These operations are on-wall collision and inter-molecular 
collision. On-wall collision divides the molecule into two 
equally size molecules in case if it is effective. Otherwise (i.e. 
ineffective), the original molecule remains without any 
change. This operation is presented in Fig. 2. The other 
operation is to collide with another molecule (i.e. inter-
molecular collision). If the collision is effective, the molecules 
are merged together (synthesized); otherwise, nothing happens 
as illustrated in Fig. 3. A function called next is called to 
determine whether to continue in executing next iteration or 
not, as it is illustrated in Fig. 4. Choosing collision molecules 
is done by one of two functions "chooseMinimumConflecting 
Molecule" or "chooseRandom Molecule", which is called once 
in case of on-wall collision and twice in case of inter-
molecular collision to select necessary molecule(s) for 
collision. There are two implementations for this function, 
because there are two cases for the second selected molecule 
that are random or minimum connected molecules; as it is in 
Fig. 5. There are two cases for passing parameters to both 
functions: null value or non-null value. In case of null value, it 
means that this is the first selected molecule in the iteration 
regardless of collision type. 

First selected molecule is fixed by selecting the same node 
all the time. So, the algorithm seeks the molecules looking for 
the molecule containing the initially selected node at the 
beginning of the algorithm execution. In case of non-null value, 
the algorithm has two cases: the second molecule is selected 
randomly or the molecule with minimum neighbors is selected. 

In the code in Fig. 5, random molecule is selected. In the 
code in Fig. 6, the minimum neighbor molecule is selected. 

At the beginning of execution, initror initmc function is 
called, where it is responsible of initializing molecules pool by 
adding created initial molecules to it and selecting the base 
molecule for reactions, as in Fig. 7 and Fig. 8. 

Name: collideOnWall 

Input: Molecule object that should collide on wall, and Boolean value to 

specify if the collision is effective. 

Output: array of molecules either with size 1 (in case of ineffective 
collision) or 2 (in case of effective collision). 

 

Function collideOnWall(Molecule molecule, boolean effective) { 

MISMolecule results[] = null; 

if(effective == true){ 

Molecule results[] = new Molecule[2]; 
int mid = (Number Of Nodes in molecule)/2; 

results[0] = new molecule of colliding molecule nodes indexed 

between 0 and mid-1. 
results[1] = Create Molecule of molecule Nodes indexed from mid to 

the end of the list. 

} 
else{ 

results = new MISMolecule[1]; 

results[0] = molecule; 
} 

return results; 

} 

Fig. 2. Collideonwall Function that Performs the Collision on Wall of the 

Selected (Parameterized) Molecule According to the Selected Effectiveness. 

Name: collideWithMolecule 

Input: Two molecule objects that should collide together, and Boolean 

value to specify if the collision is effective. 

Output: Molecule object that represents the synthesized molecule 

(effective collision) or null (ineffective collision). 
 

Function collideWithMolecule(Molecule molecule1, Molecule 

molecule2, boolean effective) { 
if(effective==true){ 

MISMolecule result = create molecule of nodes contained in 

molecule1 and molecule2 
return result 

} 
return null 

} 

Fig. 3. Collidewithmolecule Function that Performs the Collision between 

two Selected (Parameterized) Molecules According to the Selected 

Effectiveness. 

Name: next 
Input: number of hits (iterations), and maximum number of hits 

(iterations). 

Output: Boolean value that indicates whether CRO algorithm should 
continue or stop its operations. 

 

Function next() { 
if(TotalNumberOfHits<NoOfIterations){ 

return true 

} 
return false 

} 

Fig. 4. Next Function Decides whether CRO Algorithm should Perform 

Further Steps or Stop its Work. 

Name: chooseRandomMolecule 

Input: Molecule object, and available molecules list. 
Output: Chosen Molecule object (Random Selection). 

 

Function chooseRandomMolecule(Molecule molecule) { 
Molecule pickedMolecule= null 

if(molecule == null){ 

for each molecule in the available molecules{ 
if(the molecule contains the default selected node){ 

pickedMolecule = current molecule 

Break 
} 

} 

}else{ 
int index = random number between 0 and number of available 

molecules 

pickedMolecule = select molecule located at the random index in the 
available molecules list 

} 

return pickedMolecule 
} 

Fig. 5. ChooseRandomMolecule Function that Chooses a Molecule from 

Available Molecules. 

Note that in the code of Fig. 8, the initial selected node that 
would be selected during CRO life cycle is determined 
according to the number of neighbors, where it is the node 
with minimum number of nodes. While in the other 
implementation, the node is selected randomly among graph 
nodes regardless of its connectivity, as in Fig. 7. 
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Name: chooseMinimumConflectingMolecule 

Input: Molecule object, and available molecules list. 

Output: Chosen Molecule object (Minimum Connectivity Degree Molecule). 

Function chooseMinimumConflectingMolecule(Molecule molecule){ 

Molecule pickedMolecule=null 
if(molecule == null){ 

for each molecule in the available molecules { 

if(the molecule contains the default selected node){ 
pickedMolecule = current molecule 

Break 

} 
} 

} 
else { 

Molecule minimum = null 

int min = Number of nodes in graph 
for each molecule in the available molecules { 

if (currentMolecule != molecule){ 

int temp = number of conflecting nodes in currentMolecule 

if ((minimum == null) or (temp < min)){ 

minimum = choosenMolecule 

min = temp 
} 

} 

} 
pickedMolecule = minimum 

} 

return pickedMolecule 
} 

Fig. 6. Chooseminimumconflectingmolecule Function that Chooses 

Minimum Connectivity Degree Molecule from Available Molecules. 

Name: initr 

Input:Graph Nodes 

Output: initializing molecules (conversion of graph nodes into CRO 

molecules). 

Function initr(){ 

noOfIterations = number of graph nodes     
minimumNoOfIterations = 0 

minimumSize = number of graph nodes 

intselectedIndex= pick random number between 0 and number of nodes-1 
foreach node in the graph nodes{ 

MISMolecule molecule = create molecule containing current graph node 

only 
molecule.PotentialEnergy = number of graph nodes-1 

molecule.NumberOfHits = 0 

molecule.MinimumHitNumber = 0 
molecule.MinimumStructure  = molecule; 

molecule.MinimumValue = molecule.PotentialEnergy 

add molecule to the available molecules 
if (node index=selectedIndex){ 

selectedNode = node 

} 
} 

remove molecules that contain selected node neighbors nodes from the 

available molecules 
noOfIterations = noOfIterations  - number of removed molecules 

} 

Fig. 7. Initr Function that Initializes the Execution of CRO Algorithm and 

Chooses Starting Molecule Randomly. 

B. Example 

In this section, an example of the algorithm execution is 
provided by considering (Minimum initial node &Minimum 
iteration node) algorithm. Consider the graph in Fig. 9. The 
algorithm will initialize CRO molecules by representing each 
graph node by a single molecule. The potential energy equals 
to the number of remaining nodes not included in the 

molecule. So, initially, there are 5 molecules where these 
molecules contain nodes 1, 2, 3, 4, and 5; while potential 
energy for each of them is 4. This is because there is a graph 
node in the molecule, and the remaining graph nodes are not 
included in the molecules. 

The algorithm will pick molecule with minimum 
conflicting nodes first, and do all reactions on that molecule. 
In this example, the algorithm can pick one of the molecules 
containing nodes 1, 4, and 5, as each has minimum number of 
conflicting nodes, which equals to 2. 

Name: initmc 

Input: Graph Nodes. 

Output: initializing molecules (conversion of graph nodes into CRO 
molecules) and picks minimum connected node molecule as initial starting 

solution. 

function initmc(){ 

noOfIterations = number of graph nodes   

//the algorithm will iterate exactly the number of nodes 

minimumNoOfIterations = 0 
//initial minimum number of iterations to find solution is 0 

minimumSize = number of graph nodes 

/*minimum solution initially is same number of graph nodes (maximum 
excluded nodes in worst case)*/ 

int minimumLinks = number of graph nodes + 1 
/*initial minimum number of node linkes is the number of graph nodes +1 

note that this variable is used to keep track of discovered minimum no of 

node neighbors*/ 
foreach node in the graph nodes{ 

MISMolecule molecule = create molecule containing current graph node 

only 
//each node in the graph would be represented as a unique molecule. 

molecule.PotentialEnergy = number of graph nodes-1 

/*initial molecule potential energy is the no of remaining graph nodes 

not included in the molecule which is the number of graph nodes-1*/ 

molecule.NumberOfHits = 0 

//initial no of hits is 0 where no collisions have occurred. 
molecule.MinimumHitNumber = 0 

//minimum no of hits to find best solution is initially 0 

molecule.MinimumStructure  = molecule; 
/*minimum structure (best solution) is the initial one which is the current 

molecule structure (one node)*/ 

molecule.MinimumValue = molecule.PotentialEnergy 
/* minimum value of potential energy (best solution value) is the initial 

one which is the initial potential energy of molecule*/ 

add molecule to the available molecules 
//adding molecule to the molecules pool. 

if (minimumLinks> number of node Neighbors) 

{ 
selectedNode = node 

minimumLinks = number of node Neighbors 

} 
/*check the number of current node neighbors so that if it is less than 

minimum observed links, then its corresponding molecule will be 

selected to be initial colliding molecule and its number of neighbors is 
saved in minimumLinks to keep track of it and compared to remaining 

nodes*/ 

} 
remove molecules that contain selected node neighbors nodes from the 

available molecules 

/*selected node neighbors should be excluded from the molecules pool 
since they won’t be part of the solution (IS) since their neighbor node is 

selected to be initial part of the solution*/ 

noOfIterations = noOfIterations  - number of removed molecules 
//number of  iterations decreased by the number of removed molecules  

} 

Fig. 8. Initmc Function that Initializes the Execution of CRO Algorithm and 

Chooses Starting Molecule with Minimum Connectivity Degree. 
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Fig. 9. Example of a Graph of 5 Nodes; Initially, each Node is Considered a 

Molecule and a Potential Energy for Each is 4. 

Pick one of these three nodes randomly; and assume that 
molecule of node 5 is selected. The algorithm will iterate 5 
times (number of nodes in graph). In the first iteration, the 
algorithm will choose another molecule (molecule that 
contains node 1) and do the collision with previously selected 
one (contains node 5). The algorithm will check the 
effectiveness of collision by checking whether the nodes in the 
two molecules are conflicting (neighbors) or not; which in this 
case, they are not. So, the collision is effective, and the 
molecules should merge (synthesized). This will produce new 
molecule that contains nodes 1 and 5, and the number of 
conflicting nodes is 3, and the potential energy is modified to 
be 3 instead of 4. Assume a molecule that contains node 4 is 
selected in the next iteration, the collision with the molecule 
that contains nodes 1 and 5 won’t be effective, and nothing 
would happen because the node 4 conflicts with node 5 
included in the molecule. 

In case on-wall collision is decided to be performed, the 
molecule that contains nodes 1 and 5 would be divided into 
two molecules: a molecule would contain node 1, and another 
molecule would contain node 5. At the end, the result will be 
the molecule that achieves lower potential energy, which is in 
our simple iteration is the molecule that contains nodes 1 and 
5. So, the Maximum Independent Set is {1, 5}. In case the 
molecule that contains node 4 has been chosen to collide with 
the original molecule (i.e. molecule of node 1), the collision 
will be effective, and the two molecules will synthesize and 
form new molecule that contains both nodes. While in case the 
same molecule that contains node 4 has been chosen to collide 
with the molecule that contains nodes {1, and 5}, the collision 
will be marked as ineffective and nothing would happen. This 
is because node 4 conflicts with node 5 contained in the main 
molecule. 

C. Analytical Evaluation 

Given a graph with N nodes, the algorithm will iterate 
exactly N iterations (Stopping criteria is the iteration of N 
iterations, where N is the number of nodes in graph). Within 
each iteration, first of all, the collision type is chosen and 
defined to be on-wall or inter-molecular collision. If the 
collision is defined to be on-wall collision, one of the 
followings will be done according to the effectiveness of 
collision: 

1) Effective on-wall collision: The original molecule is 

divided into two molecules containing the halves of the 

original molecule. The original molecule is removed from the 

molecules pool, and the resultant molecules are added to that 

pool. In this case, the run time complexity of dividing the 

molecule is O(N/2) ≈O(N). 

2) Ineffective on-wall collision: The original molecule 

remains with same structure and nothing happens at all, since 

the original molecule is not affected by the collision. See 

collideOnWall in Fig. 2. In this case, a constant number of 

steps O(K) is performed, where K is constant number that 

represents the number of steps needed to check effectiveness 

flag and going forward to the next step. 

On the other hand, if the collision is defined to be inter-
molecular collision, one of the followings will be done 
according to the effectiveness of collision: 

1) Effective inter-molecular collision: This is referred to 

as “collideWithMolecule” function in Fig. 3. Note that 

effective is a Boolean parameter that indicates whether the 

collision is effective or not. If the collision is effective, the 

algorithm will iterate through first molecule, and the second 

molecule will create new molecule that contains all the nodes 

contained by the two molecules. So, in worst case, the first 

molecule contains half of the graph nodes, and the second one 

contains the other half of the graph nodes. The merge process 

will iterate with run time cost of O(N/2) to add first molecule 

nodes; while in the addition of the second molecule it will 

check every node to prevent adding the same node twice. 

Every node in the second molecule will be checked across first 

molecule nodes with run time cost of O(N/2), and this will be 

done for each node in the second molecule. So, the overall run 

time complexity is O([N/2]+[N/2]   [N/2]) ≈O(N
2
 ). 

After merging the molecules, the conflicts will be 
computed by adding first molecule conflicting nodes list to the 
second molecule conflicting nodes list with redundancy 
removals. In the worst case, first molecule conflicting nodes 
are N-2 (e.g. all graph nodes except itself and the merging 
node), and the second node conflicting nodes are N-2 (e.g. all 
graph nodes except itself and the merging node). The 
algorithm will iterate (N-2) to add first conflicting nodes and 
will iterates (N-2) to add second molecule conflicting nodes. 
But, while adding second molecule conflicting nodes, it will 
check the list of the first molecule conflicting node to prevent 
duplication of the nodes. In this case, all the conflicting nodes 
in the second molecule will be found in the first molecule. So, 
the second molecule conflicting nodes will be found in the list 
of size (N-2) added by the first molecule. This involves 
finding all the conflicting nodes of the second molecule in the 
first molecule conflicting list by iterating 1, 2, 3,…, (N/2) 
iterations. So, the algorithm will iterate [1+2+3+…+(N/2)] 
iterations to add second molecule conflicting nodes. Thus, the 
overall complexity is O(N

2
). 

2) Ineffective inter-molecular collision: In this case, the 

resultant run time complexity of collision execution will be 

O(2N
2
). In this case, the algorithm won’t do anything, refer to 

“collideWithMolecule” in Fig. 3, and nothing happens while 

the molecules are returned back to the molecules pool without 

any processing. So, constant number of steps is performed. 
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Complexity of collision effectiveness computation: 

1) On-wall collision: As described in [1,13,32], the 

effectiveness of on-wall collision is determined by checking 

the number of ineffective iterations of the molecule. 

Ineffective iterations are the iterations that have been done on 

the molecule after minimum value is found without any 

improvement. If the number of iterations exceeds a predefined 

constant value, the collision will be defined to be an effective 

one; otherwise it is not. So, the run time complexity of 

determining effectiveness of the collision is constant. 

2) Inter-molecular collision: The effectiveness of the 

collision is determined by checking the readiness of molecules 

to be merged together. This is done by checking the existence 

of any of the second molecule nodes within the first molecule 

conflicting nodes. If the check determines that any of the 

second molecule nodes exists in the conflicting nodes of the 

first molecule, the collision is defined to be effective; 

otherwise, it is not. In the worst case, first molecule contains 

one node and (N-1) conflicting nodes, while the second 

molecule contains all the remaining graph nodes so that its 

size is (N-1). To check the existence of second molecule nodes 

in the conflicting nodes of the first molecule, the whole list of 

the first molecule nodes should be iterated for every node in 

the second molecule, until finding the checked node or 

reaching the end of the list and the node is assumed to be not 

conflicting. So, the iterations are, [1,2,3,…,N-1] and the run 

time complexity is [1+2+3+…+(N-1)].In this case, the run 

time complexity of the effectiveness calculation is O((N-2)(N-

3)/2)=O(N
2
). 

Complexity of molecule selection types: 

1) Random selection: In the random selection, the 

algorithm will pick a random molecule from the list of 

available molecules to perform intended operation. So, in this 

case, no processing is done, and a constant number of steps 

(K) is performed. 

2) Minimum connectivity degree node selection: In this 

case, the algorithm will iterate through the available molecules 

to select the molecule with minimum number of conflicting 

nodes.  In the worst case, the number of molecules is equal to 

the number of graph nodes (N). So, the algorithm will iterate 

through N molecules to find out the one with minimum 

number of conflicting nodes. The complexity of finding 

minimum connectivity degree among N nodes is O(N). The 

run time complexity of finding the same initial molecule is 

O(N). 

One of the main constants to be defined prior to algorithm 
execution is Inter-Molecular to On-Wall collisions Ratio (R). 
According to the value of R, the number of inter-molecular 
collisions equals to R  (Number of CRO iterations) and on-
wall collisions will be (1-R)   (Number of CRO iterations). 
So, equations (2) and (3) will hold. 

                                                  (2) 

                                                 (3) 

The overall run time complexity of the collision is the 
complexity of collision effectiveness calculation, the molecule 
selection complexity, and the collision execution complexity 
according to its effectiveness; and is expressed as in equation 
(4). 

                                                 
                             (4) 

In case of On-Wall collision, there are two cases: 

1) Ineffective collision: By applying equation (4), the 

resultant is equation (5) for On-Wall collision complexity 

                                                (5) 

Where O(Mol. Selection) depends on the molecule 
selection criteria. So, in case of random molecule selection, 
the resultant equation is represented in equation (6). While in 
case of minimum connectivity degree molecule selection is 
used, the collision run time complexity is as in equation (7). 

                                           (6) 

                                            (7) 

2) Effective collision: By applying equation (4), the 

resultant equation (8) of collision complexity is as in equation 

(7). 

                                               (8) 

Where O(Mol. Selection) depends on the molecule 
selection criteria. So, in case of random molecule selection, 
the resultant equation is as in equation (9). While in case of 
minimum connectivity degree molecule selection is used, the 
collision complexity is as in equation (10). 

                                               (9) 

                                          
                  (10) 

In case of Inter-Molecular collision, there are two cases: 

1) Ineffective collision: By applying equation (4), the 

resultant collision complexity is as in equation (11). The 

ineffective collision does not perform any operation on the 

colliding molecule(s). So, the complexity of its execution is 

constant (K). But the calculation of collision effectiveness in 

worst-case would check the half of graph nodes against the 

second half of graph nodes that could be fully connected. So, 

the final equation would look like the following: 

            ∑     
     

  
          

 
                                    (11) 

Where O(Mol. Selection) depends on the molecule 
selection criteria. So, in case of random molecule selection, 
the resultant is as in equation (12). While in case of minimum 
connectivity degree molecule selection is used, the collision 
complexity is as in equation (13). 

                                        (12) 
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                   (13) 

2) Effective collision: By applying equation (4), the 

resultant of collision complexity is as in equation (14). 

           *  ∑     
      (

          

 
)+  

                                (14) 

In case of random molecule selection, the resultant is as in 
equation (15) 

                                    (15) 

While in case of minimum connectivity degree molecule 
selection is used, the collision complexity is as in equation 
(16). 

                                     (16) 

Overall complexity of on-wall collision is as in equation 
(17). 

                                            (17) 

Overall complexity of inter-molecular collision is as in 
equation (18). 

                                            
                    (18) 

The overall run time complexity of CRO algorithm is as in 
equation (19). 

                                     
                      

                                   (19) 

IV. EXPERIMENTAL RESULTS 

The CRO variations are implemented using Java 
programming language and tested for comparison purposes 
using random generated graphs. The generated graphs are 
saved on permanent storage to insure the execution of various 
CRO versions on the same graphs for more accurate 
comparison. Moreover, multiple graph sizes have been 
generated with different connectivity degree percentages. As 
in [7], most of these graphs are manipulated using Modified 
Wilf algorithm to find out their exact MIS solution. These 
exact solutions are used to find the accuracy percentage of 
CRO results. CRO has been executed with different inter-
molecular to on-wall collision ratio values (4 values) seeking 
for the best ratio value in term of time and accuracy. 
Moreover, these executions are repeated 5 times to calculate 
average execution time looking for more accurate measures. 
The tested ratio values are (0.25, 0.50, 0.75, and 0.95). The 
accuracy percentage is defined, as in equation (20). 

Accuracy Percentage   
100 Size(MIS by CRO)

Size (MIS by Modified-Wilf)
         (20) 

The algorithms are tested on a laptop with the following 
specifications: CPU: Intel (R) Core(TM) i7-4510U CPU @ 
2.00GHz 2.60GHz; Memory: 8.00 GB; and Operating System: 
64-bit Operating System (Windows 10 Home). 

After executing the CRO algorithm over a set of 
randomized graphs, the algorithm variations have been tested 
over a set of benchmark datasets to measure accuracy, where 
optimal solution has achieved in some cases, as shown later. 

The resulting execution times are listed below for graphs 
of sizes range from 100 nodes to 1000 nodes with connectivity 
degrees (20%, 60%, 80%, and 90%) for the various versions 
of the proposed CRO algorithm. 

Tables II to V show that when we increase the ratio of 
inter-molecule collision to on-wall collision ratio, the 
smoothness of chart increases, which indicates that the 
algorithm runtime much closer to theoretical analysis. On the 
other hand, the algorithms show unpredictable time results due 
to on-wall collisions that divide the molecules to two different 
parts. Note that those new molecules will start over collecting 
other molecules to formulate new solutions. 

The results show that high collision ratio provides better 
performance for low connectivity degree. Note that this is not 
the case for graphs with higher connectivity degree, where the 
maximum collision ratio consumes the highest time. When the 
collision ratio is decreased, the execution time of the 
algorithm on highly connected graphs achieves the minimum 
run time, and for those with lowest connectivity degree it 
achieves the worst run time. This scenario is a result of 
checking the efficiency of collision between two molecules. 
As described in the algorithm code, in order to check whether 
the molecules can collide effectively the connections 
(neighbors) of the colliding molecules are checked to be sure 
of conflicting neighbors. So, in case of high connectivity 
graphs, this will be done by a higher number of iterations. As 
long as the ratio of collisions is low, the number of inter-
molecule collisions is low, which decreases the number of 
checks between molecules that minimizes the time of 
execution. 

After calculating average time for the different algorithm 
executions and for the different selected graphs with different 
sizes and different connectivity degrees, Fig. 10 shows that the 
best execution time is achieved when a random starting node 
and picking minimum connected node in each iteration, and 
when the inter-molecule to on-wall collision ratio is 75%. 
Moreover, the results show that when picking minimum 
connected molecules, in each iteration, it provides better in 
execution time performance than picking random molecule at 
each stage. This happens because the number of checks of 
conflicting nodes between colliding molecules is minimum 
when the two molecules are picked according to minimum 
connectivity. While in case of random molecules, there is no 
guarantee of the number of connections in the picked 
molecules which could be the highest, so that the number of 
checks of conflicting nodes is high. 
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TABLE. II. EXPERIMENTAL EXECUTION TIME IN MSEC. FOR 20%, 60 %, 80%, AND 90% CONNECTIVITY DEGREES’ GRAPHS WITH INITIAL RANDOM 

GRAPH NODE SELECTION AND RANDOM MOLECULE SELECTION (RR) IN EACH ITERATION WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95) 

Connectivity 

Degree 
20% 60% 80% 90% 

Size/Collision 

Ratio 
0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 

100 593 362 256 222 50 59 46 50 19 16 19 12 6 6 3 9 

200 4619 3209 1912 1925 272 256 246 271 28 53 53 49 15 15 15 16 

300 13675 9078 5958 6147 900 698 831 872 137 128 121 156 37 31 34 28 

400 35356 22709 15665 14917 1791 1493 1725 2094 212 234 262 281 44 47 47 46 

500 62235 47346 29810 30129 4531 2631 3256 4047 218 412 409 528 84 75 84 87 

600 117545 72077 48263 51952 8056 4695 5490 6882 968 625 825 912 75 112 118 134 

700 187109 126150 79830 82306 10953 8171 8324 11051 1250 953 1122 1424 140 140 165 193 

800 269999 192701 107425 121437 12533 11324 12495 16707 831 1297 1787 2106 237 187 240 281 

900 407757 277431 166954 177255 18281 14379 18175 22828 2515 1796 2368 2940 124 234 356 406 

1000 551154 373748 232953 242983 26922 20995 24464 32371 2762 1965 3231 4069 281 381 431 544 

TABLE. III. EXPERIMENTAL EXECUTION TIME IN MSEC. FOR 20%, 60 %, 80%, AND 90% CONNECTIVITY DEGREES’ GRAPHS WITH INITIAL MINIMUM 

GRAPH NODE SELECTION AND RANDOM MOLECULE SELECTION (MR) IN EACH ITERATION WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95) 

Connectivity 

Degree 
20% 60% 80% 90% 

Size/Collision 

Ratio 
0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 

100 606 409 287 251 109 81 65 69 28 25 21 18 19 12 6 10 

200 4230 3035 2130 2057 553 379 296 367 90 78 95 91 43 28 34 26 

300 14841 11393 7000 6832 1234 906 991 1198 212 250 253 280 59 53 59 57 

400 32222 24763 14987 15814 3309 2185 2100 2555 496 303 381 451 77 87 93 106 

500 67398 45029 31119 30814 4398 3722 4239 5010 543 510 793 925 168 122 178 183 

600 121295 75942 49422 54483 6157 5507 7376 9413 700 862 925 1171 122 206 224 246 

700 189972 137178 87550 89818 12060 10264 11134 13771 1034 1090 1503 1940 412 275 331 425 

800 266150 188499 123894 130012 24717 15082 16855 21770 1847 2119 2647 3414 390 365 478 597 

900 409454 267807 161301 187702 24989 19514 23766 31255 4853 2406 3150 3885 432 453 621 757 

1000 545105 389631 229173 256270 35639 26005 27629 37977 2232 3428 4365 5817 409 568 797 1044 

TABLE. IV. EXPERIMENTAL EXECUTION TIME IN MSEC. FOR 20%, 60 %, 80%, AND 90% CONNECTIVITY DEGREES’ GRAPHS WITH INITIAL RANDOM 

GRAPH NODE SELECTION AND MINIMUM MOLECULE SELECTION (RM) IN EACH ITERATION WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95) 

Connectivity 

Degree 
20% 60% 80% 90% 

Size/Collision 

Ratio 
0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 

100 476 328 212 193 80 47 43 46 21 15 12 9 7 6 3 0 

200 3917 2423 1525 1439 299 218 241 218 56 34 34 31 21 21 15 12 

300 5952 5385 4818 4869 753 616 679 650 134 87 100 93 34 31 31 28 

400 23999 16660 11689 11410 975 1113 1263 1486 362 228 196 203 56 44 34 37 

500 52396 34185 24442 22005 3730 2803 2370 2844 478 359 325 387 62 53 56 68 

600 34862 36307 38833 38067 4160 3831 4451 4900 375 353 515 669 68 81 106 97 

700 94925 101125 54167 61317 5401 6825 7222 7741 356 750 903 968 81 97 128 149 

800 233388 173169 94075 91432 2106 8976 10587 11448 1053 697 1262 1478 200 206 200 231 

900 334125 149173 143130 129653 7993 16879 14036 16306 1284 1028 1750 2112 259 253 250 284 

1000 309296 230572 168135 176303 8178 10025 19302 22409 1659 2281 2365 2872 331 337 322 365 
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TABLE. V. BEST ACCURACY RESULTS OF INITIAL RANDOM GRAPH NODE SELECTION AND RANDOM MOLECULE SELECTION (RR) IN EACH ITERATION 

ON 20%, 60%, 80%, AND 90% CONNECTIVITY DEGREE GRAPHS WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95) 

Connectivity Degree 20% 60% 80% 90% 

Size/Collision Ratio 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 

100 32 58 63 74 57 71 86 71 67 67 67 67 50 75 75 75 

200         44 56 56 67 80 80 100 80 75 75 75 75 

300         42 58 50 67 67 67 67 83 60 60 80 80 

400         45 55 64 55 57 57 57 71 60 60 80 80 

500         50 70 60 70 43 57 57 57 60 60 60 80 

600         36 43 57 50 57 57 57 71 80 80 80 80 

700         45 64 64 64 57 57 71 71 60 80 60 80 

800         36 50 57 57 38 63 50 63 80 80 80 80 

900         46 54 62 62 50 63 75 63 50 50 67 83 

1000         31 44 44 56 56 44 56 56 50 67 67 67 

 

Fig. 10. Average Execution Time for All Tested CRO Algorithm Versions with (Collision Ratios 0.25, 0.5, 0.75, and 0.95). 

In Table VI, we demonstrate the accuracy of CRO 
algorithm running using full random selection of initial and 
iteration molecules, where the accuracy is calculated using 
equation (20) according to Modified Wilf algorithm results. In 
20% connectivity degree, Modified Wilf algorithm can obtain 
an MIS from a graph of up to 150 nodes in an acceptable time. 
While in the higher connectivity degrees (60%, 80%, and 
90%) the solutions are obtained in a graph of up to 1000 
nodes.  The results show that the accuracy is dropping when 
the number of nodes is going up. When the connectivity 
degree increases, the accuracy becomes more stable and near 
to constant regardless of graph size. Moreover, when CRO 
algorithm is run using 95% inter-molecules to on-wall 
collision ratio, it provides better results. This is a result of 
performing more inter-molecule collisions, which provides 
more combinations of nodes (solutions), so that better 
solutions could be discovered. 

Table VII demonstrates the accuracy of CRO algorithm 
using random selection of iteration molecules, while starting 
with minimum molecule (minimum connected node), where 
the accuracy is calculated using equation (20) according to 
Modified Wilf algorithm results. The results show that the 

accuracy is dropping when the number of nodes is growing 
up. When the connectivity degree increases, the accuracy 
becomes more stable and near to constant regardless of graph 
size. Moreover, when CRO algorithm is run using 95% inter-
molecules to on-wall collision ratio, it provides better results. 

Table VIII shows accuracy results of CRO algorithm using 
random selection of initial iteration molecules and picking 
minimum connectivity node in each iteration, where the 
accuracy is calculated using equation (20) according to 
Modified Wilf algorithm results. In the higher connectivity 
degrees (60%, 80%, and 90%), the solutions are obtained from 
graph of up to 1000 nodes.  The results show that the accuracy 
is dropping when the number of nodes is growing up. This is a 
normal result of increasing the number of nodes, where the 
size of MIS becomes greater, so that the percentage won’t be 
affected by low number of nodes, not like small solutions, 
where a single node could increase the percentage of accuracy 
by a significant value. 

Table IX shows the accuracy results of CRO algorithm 
using minimum connectivity molecule and selecting minimum 
connectivity molecule in each iteration, where the accuracy is 
calculated using equation (20) according to Modified Wilf 
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algorithm results. In the higher connectivity degrees (60%, 
80%, and 90%), the solutions are obtained up to 1000 nodes 
graph size. The results show that the accuracy is dropping 
when the number of nodes is going up. Moreover, the 
algorithm shows almost identical accuracy regardless of inter-
molecule to on-wall collisions ratio. This indicates that the 
best results are obtained early at the beginning of execution, 
so that it doesn’t differ if the collisions between the molecules 
are increased or not. This indication can be used to decrease 
the number of iterations in case of higher ratio; but the 
problem is how to obtain stopping condition? 

Fig. 11 shows the average accuracy of each type of 
algorithms along with inter-molecule to on-wall collisions 
ratio. The figure shows that random selection of molecules in 
CRO iterations provides better accuracy results, especially, 
when the ratio of inter-molecule to on-wall collisions 
increases. The algorithm performance on graph with95% ratio 
provides better results in case of random selection. These 
results represent the worst results in term of accuracy among 
all tests. This is a result of using minimum number of 
neighbors as selection criteria for initial base molecule and 
other molecules in each iteration, so that static selection of 
colliding nodes is performed, and less nodes combinations are 
discovered. 

Extra experiments have been done to test proposed 
implementation on benchmark datasets, such as Graph50_10, 
Graph100_10, Hamming6_2, Hamming6_4, Hamming8_4, 
and Hamming10_4 obtained from [43,44,45]. The results 
listed in Table X show that the CRO algorithm provides 
optimal solution in some cases, specially, when the selection 
of molecules is done in random and the inter-molecular to on-
wall collisions ratio is high, such as (75% or 95%). On the 
other hand, the results show that minimum degree molecule 
selection criteria provide lower accuracy, which tends to be 
the result of selecting special molecules each time of collision, 
which could deviate from the correct path of optimal solution 
that may contain higher degree nodes. The results show that 
optimal solution (Exact solution) of MIS could be achieved by 
CRO. But, the main problem is that this result is not 
guaranteed. CRO should be executed many times (in our case 
10 times) to have more solutions that may contain the optimal 
one. So, if the execution of CRO is finished within 1 second, 
and the re-execution is done 10 times, this means that the total 
execution time is 10 seconds, which is the actual time to be 
compared with. This makes Modified-Wilf better choice and 
more worthy to use in case of small problems (lower graph 
size and higher connectivity), since the difference of achieved 
performance is low with guaranteed results. 

TABLE. VI. BEST ACCURACY RESULTS OF INITIAL MINIMUM GRAPH NODE SELECTION AND RANDOM MOLECULE SELECTION (MR) IN EACH ITERATION 

ON 20%, 60%, 80%, AND 90% CONNECTIVITY DEGREE GRAPHS WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95) 

Connectivity Degree 20% 60% 80% 90% 

Size/Collision Ratio 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 

100 42 58 74 68 43 71 86 100 50 67 67 67 50 75 75 100 

200         44 56 67 67 60 80 80 80 75 75 75 75 

300         42 50 58 58 67 83 83 67 80 60 80 80 

400         45 55 64 64 57 71 71 71 60 60 60 80 

500         50 60 70 70 43 57 71 71 60 80 80 80 

600         36 50 50 57 57 57 71 71 60 60 80 80 

700         55 55 73 73 57 57 71 71 80 60 60 80 

800         43 43 50 57 50 63 63 63 80 80 60 80 

900         38 54 62 62 50 75 63 75 50 67 50 67 

1000         38 44 50 56 44 56 56 78 50 50 67 67 

TABLE. VII. EXPERIMENTAL EXECUTION TIME IN MSEC. FOR 20%, 60 %, 80%, AND 90% CONNECTIVITY DEGREES’ GRAPHS WITH INITIAL MINIMUM 

GRAPH NODE SELECTION AND MINIMUM MOLECULE SELECTION (MM) IN EACH ITERATION WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95) 

Connectivity 

Degree 
20% 60% 80% 90% 

Size/Collision 

Ratio 
0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 

100 602 385 266 209 127 84 75 50 27 18 12 12 16 15 15 6 

200 1002 1493 1562 1616 622 427 293 262 54 46 62 68 36 31 21 22 

300 13926 8450 6857 5362 299 403 719 912 384 275 206 200 53 40 43 43 

400 38450 23482 13688 11688 2965 2118 1897 1776 600 440 331 319 87 62 75 81 

500 49903 36941 26663 23738 972 1603 2972 3635 1228 837 671 653 215 200 128 131 

600 113015 70506 47772 40013 15934 10204 7210 6739 1650 1290 937 802 87 121 159 190 

700 90279 80873 63352 66949 2159 4441 7888 9837 362 794 1084 1406 153 187 284 293 

800 138417 97888 83193 98044 29062 19616 15420 15520 3347 2821 2600 2434 221 268 322 447 

900 384084 229520 160319 139371 3503 9079 16972 22223 772 1409 2290 2816 1187 737 615 525 

1000 27344 79701 140458 187492 41688 37861 27133 26490 959 2088 3381 4256 225 400 603 718 
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TABLE. VIII. BEST ACCURACY RESULTS OF INITIAL RANDOM GRAPH NODE SELECTION AND MINIMUM MOLECULE SELECTION (RM) IN EACH ITERATION 

ON 20%, 60%, 80%, AND 90% CONNECTIVITY DEGREE GRAPHS WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95) 

Connectivity Degree 20% 60% 80% 90% 

Size/Collision Ratio 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 

100 37 37 42 26 57 43 57 43 50 50 67 50 75 100 100 75 

200         56 44 44 44 60 80 60 40 75 100 100 100 

300         33 33 33 33 67 50 33 50 60 60 60 80 

400         27 36 36 36 43 43 43 43 60 60 60 60 

500         30 40 30 40 43 43 29 43 40 60 60 80 

600         36 21 29 21 43 29 29 43 60 60 60 60 

700         27 27 36 27 43 57 57 43 40 40 80 60 

800         21 21 29 21 38 25 50 38 60 60 60 40 

900         23 23 31 23 38 25 50 50 50 50 33 33 

1000         19 13 19 25 33 44 33 33 50 50 33 50 

TABLE. IX. BEST ACCURACY RESULTS OF INITIAL MINIMUM GRAPH NODE SELECTION AND MINIMUM MOLECULE SELECTION (MM) IN EACH 

ITERATION ON 20%, 60%, 80%, AND 90% CONNECTIVITY DEGREE GRAPHS WITH (COLLISION RATIOS 0.25, 0.5, 0.75, AND 0.95) 

Connectivity Degree 20% 60% 80% 90% 

Size/Collision Ratio 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 

100 32 32 32 21 43 43 43 43 33 33 33 33 75 75 75 75 

200         33 33 33 33 40 40 40 40 75 75 100 75 

300         17 17 17 17 50 50 50 50 40 40 40 40 

400         27 27 27 27 43 43 43 43 40 40 40 40 

500         20 20 20 20 43 43 43 43 60 60 60 60 

600         29 29 29 29 57 57 57 57 40 40 40 40 

700         18 18 18 18 29 29 29 29 40 40 40 40 

800         21 21 21 21 50 50 50 50 40 40 40 40 

900         15 15 15 15 25 25 25 25 83 83 83 83 

1000         25 25 25 25 22 22 22 22 33 33 33 33 

 

Fig. 11. Average Accuracy for the Tested CRO Algorithm Versions with (Collision Ratios 0.25, 0.5, 0.75, and 0.95). 
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TABLE. X. SIZES OF MIS RESULTED FROM EXECUTING CRO ALGORITHM ON A SELECTED SET OF BENCHMARK DATASETS 

CRO Algorithm Optimal 

MIS 

CRO-RR CRO-RM CRO-MR CRO-MM 

Benchmark/Collision Ratio 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 

Graph50_10 15 7 11 14 15 14 15 15 15 8 12 14 15 14 14 14 14 

Graph100_10 30 25 30 30 30 30 30 30 30 22 30 30 30 30 30 30 30 

Hamming6_2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Hamming6_4 12 10 10 12 12 9 10 10 9 8 10 12 12 8 10 9 9 

Hamming8_4 16 8 13 16 16 10 12 12 11 8 14 16 16 10 10 10 12 

Hamming10_4 20 7 11 20 20 11 12 12 11 8 11 17 20 11 11 11 11 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, scenarios of CRO algorithm have been 
implemented and applied to solve the MIS problem. The CRO 
algorithm is applied and evaluated on a set of randomized 
graphs and the accuracy of the results has been compared 
against exact solutions obtained by Modified Wilf algorithm. 

The algorithm mainly converts graph nodes into a set of 
molecules. After that, it picks one of the molecules to be its 
main molecule for reaction. Then, it iterates while picking 
another interacting molecule to collide with initial one. In this 
paper, the selection of molecule was implemented using 
random one and minimum connected one. 

The algorithm is tested with variety of parameters, and 
provides good results in some cases; such as the results of 
executing RR version with higher collision ratio of the 
algorithm, as shown in Tables VI and X. This shows that CRO 
technique can be used to find the solution of MIS problem, 
and it can be modified to provide better results. The random 
technique of selecting initial molecule and selecting molecules 
that are involved in the reaction iterations achieves better 
accuracy, while guided technique that depends on the degree 
of connectivity achieves better execution time. This can lead 
to look for a combination of both techniques to achieve better 
results in term of execution time and accuracy. Note that the 
average accuracy of random approach is about 75%, and 
achieves exact solution in some cases, while minimum 
approach outperforms random approach by decreasing the 
execution time by at least 25%. 

As future work, this algorithm will be adapted to run on a 
parallel architecture, just like in [46,47], where a parallel 
heuristic local search is used to solve travelling salesman 
problem using four parallel architectures (e.g. “OTIS-
Hypercube”, “OTIS-Mesh”, OTIS hyper hexa-cell, and OTIS 
mesh of trees optoelectronic architectures) and testing against 
other architectures, such as “The optical chained-cubic tree 
interconnection network” which is illustrated in [48]. 
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