
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

92 | P a g e

www.ijacsa.thesai.org

DLBS: Decentralize Load-Balance Scheduling

Algorithm for Real-Time IoT Services in Mist

Computing

Hosam E. Refaat
1

Dept. of Information System

Faculty of Computers and Informatics

Suez Canal University, Egypt

Mohamed A.Mead
2

Dept. of Computer Science

Faculty of Computers and Informatics

Suez Canal University, Egypt

Abstract—Internet of Things (IoT) has been industrially

investigated as Platforms as a Services (PaaS). The naive design

of these types of services is to join the classic centralized Cloud

computing infrastructure with IoT services. This joining is also

called CoT (Cloud of Things). In spite of the increasing resource

utilization of cloud computing, but it faces different challenges

such as high latency, network failure, resource limitations, fault

tolerance and security etc. In order to address these challenges,

fog computing is used. Fog computing is an extension of the cloud

system, which provides closer resources to IoT devices. It is

worth mentioning that the scheduling mechanisms of IoT services

work as a pivotal function in resource allocation for the cloud, or

fog computing. The scheduling methods guarantee the high

availability and maximize utilization of the system resources.

Most of the previous scheduling methods are based on

centralized scheduling node, which represents a bottleneck for

the system. In this paper, we propose a new scheduling model for

manage real time and soft service requests in Fog systems, which

is called Decentralize Load-Balance Scheduling (DLBS). The

proposed model provides decentralized load balancing control

algorithm. This model distributes the load based on the type of

the service requests and the load status of each fog node.

Moreover, this model spreads the load between system nodes like

wind flow, it migrates the tasks from the high load node to the

closest low load node. Hence the load is expanded overall the

system dynamically. Finally, The DLBS is simulated and

evaluated on truthful fog environment.

Keywords—Cloud computing; fog computing; mist computing;

IoT; load balancing; reliability

I. INTRODUCTION

Cloud computing is presented as an ongoing innovation,
which is totally dependent on the web. The engineering of the
Cloud computing depends on a focal server that keep up a
tremendous measure of sharing database, various assets and an
enormous number of business applications. Then again, a
colossal number of remote customers that has a place with
various associations can profit by the various administrations
given by the focal server. Every remote client has its own,
working framework and internet browser that work
autonomously on the substance of the cloud server [1, 2]. The
association of the client to the web is the main prerequisite
from the client to use the cloud server capacities. Along these
lines, the IT business and any little association can get these
services from the cloud without spending tremendous measure

of cash in equipment or software. As a matter of fact, the
execution of the cloud introduces a few related ideas. These
ideas manage virtualization, resource allocation, computing
distribution, utilization of bandwidth, load balancing, fault
tolerance, high availability and dynamic scalability for various
classifications of data and applications. The administration of
the operations identified with every one of these concepts is
performed by the cloud service provider.

The cloud providers allocate the resources to the end clients
as a service relying upon the uniqueness of the service models
and furthermore dependent on the client needs. The service
models may incorporate Software as a service known as
SAAS, Platform as a service known as PAAS, Infrastructure as
a service known as IAAS. These services are inclined on one
another and in a pool way.

By and large, the executions of the various procedures on
the cloud present a few advantages to the end clients. At First,
the data is shared more than one stage, so better services are
conveyed to every user. Also, the end user can get the services
resources on-demand, flexible, reliable and portable way as
indicated by his need as it were.

In spite of these advantages that can be offered by cloud
computing to enormous applications, it faces a lot of
challenges [3]. The first challenge happens when the number of
the clients is increased. For this situation, the requests are
broadened to increase the number of services than the cloud
capacities. As client requests is increased, as the responses time
is increased unless the available resources and the available
bandwidth are upraised to acquire all the extra requests. The
second challenge happens when the created data by the cloud
services is migrated through a long distance from the cloud to
the clients. The far distance creates additional challenge about
the data security. Moreover, an unpredictable abundance in the
workload may cause the need to create a novel load balancing
strategy. The load balancing is the reasonable assignment of
the task among the parallel resources such as networking, hard
drives and computers [4]. In this way, it will be required to
achieve the improvement in the distribution of the computation
resources and storage devices. So as to beat these challenges,
another innovation of profoundly virtualized processing model
has been displayed known as Fog computing. The model [5] is
proposed by CISCO to be held as cloud edge of an enterprise

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

93 | P a g e

www.ijacsa.thesai.org

organizes. The control of the fog computing isn't a substitution
of the cloud computing. In reality, it fills in as a steady domain
that can give high QoS to the diverse client requests of the
close distances. In this way, the entire fog-cloud colony
comprises of a set of fogs computing servers and a set of the
clouds computing centers.

For the most part, the activities of the Fog processing are
like the cloud computing with two fundamental differences.
The principal difference is identified with the area of the fog
computing that is put near the clients. Subsequently, the fog
computing can be envisioned as a nearby cloud. The second
difference related to the resources capacities of the fog that
have fewer capacities contrasted with the capacities of the
cloud assets. In any case, each fog computing incorporates its
very own server that is bolstered by its own resources.
Furthermore, each fog server is involved by the vital software
or firmware to set up the required VMs, for example, the
hypervisor. Whilst Cloud computing exhibits big data
processing at the data center level, fog computing provides
data processing and actuation capability at the network edges
[6, 7]. Also, Fog computing expand the same capability in the
middle at edge gateways. In another word, fog computing
provides the closed resources to many services, which cannot
be realized with alternative strategies [8, 9].

The scattered IoT devices create the need to spread the fog
nodes to cover the IoT environment. As of late, mist computing
has been rise to capture a more extreme edge [10]. In other
words, the nodes in the fog environment are classified as mist
and middle edge node, as shown in Fig. 1. The mist computing
model depicts scattered computing at the extreme edge. It has
proposed with future self-aware and autonomic systems in
mind [11]. The Mist server can exist with the Internet Service
Provider (ISP) or separately in the network. Mist computing is
proposed as the first computing node in the IoT-fog-cloud
colony; it can be called as “IoT computing” or “things
computing”. An IoT device may be portable like smart watch,
a mobile device, or stationary like a smart AC.

Generally, the Load balancing seems to assume an
imperative for scheduling the various types of the users’ tasks.
Load balancing can be characterized [12] into different
categories such as the applied state that maybe static or
dynamic, the load balancer techniques which is hardware or
software and the policies rules such as resource, information,
selection, location and transfer. The workload in the static load
balancing approach is based on the current performance of the
processing nodes with careless about future changes.
Moreover, in this approach the waiting tasks can't migrate from
its processing nodes [13]. Also, the static load balancing
methods treat the tasks in non-preemptive manner. Otherwise,
the dynamic load balancing decides the tasks distribution
during the run time based on the information of system status
[14]. In this way, the task scheduling algorithm is employed to
reserve the resources to the IoT devices on servers to satisfy
the fair distribution. The satisfaction of the fairness will reduce
the task waiting time. Furthermore, it will enhance the tasks
execution speed using the free resources and optimum
consumption of storage to minimize the turnaround time of the
submitted tasks.

Fig. 1. IoT with Edge Computing and Cloud.

The proposed model in this paper is based on a dynamic
load balancing algorithm. This model gives the real tasks the
first priority to fit its deadline. Also, the real tasks can migrate
from mist node to the others to avoid missing the deadline
time. On other hand, the system preserves a specific quality of
service (QoS) for each type of soft task requests. Moreover, the
proposed load balancing algorithm is acting as a wind flow. It
migrates the load of service requests from the high load nodes
to the low load nodes. This strategy minimizes the
communication overhead in spite of the user task migration.
Hence, each node cooperates with the others nodes to maintain
balanced load among them.

In the following, the rest of the paper is organized as
follows. Section II; discuss the related work of the load
balancing algorithms and techniques that are proposed for
working with the cloud systems. In section III, the architecture
of the proposed model is presented. In addition, the
performance evaluation and the results of the simulations are
introduced in sections IV and V. Section VI conclude the paper
and provide the venues for the future work.

II. RELATED WORK

In this segment, Several Load Balancing algorithms are
presented for different authors. These algorithms are
investigated dependent on the diverse parameters, for example,
due date, execution time, data transmission, cost, need,
dependability, adaptability, task length and throughput.
Basically, the effective load balancing algorithms have been
implemented in the cloud system.

Generally, the load balancing mechanisms in both of the
cloud and Fog is same with just principle distinction. In the fog
computing, the load balancing should maintain system more
feasible and effective with in spite of resources limitation. It
offers access to the assets of less transmission capacity and
time. In this way, the mist computing has fulfilled the
requirements for the closest IoT at a gigantic rate with no
disarray like what may happen for the network traffic.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

94 | P a g e

www.ijacsa.thesai.org

In this area, the first load balancing technique is introduced
in [15]. This method is intended to achieve good services by
increasing the resource utilization based on two parameters,
which are the task priority and its length. The choice of the
tasks for the scheduling might be gotten from both of the first
and last indexed queue to accomplish an all the more relentless
framework.

The tasks are scheduled dependent on the total credit
system sponsored from grouping of credit length computed
from task length and credit priority computed from the task
priority. Finally, the priority of processing is given to the high
credit task. However, this algorithm suffers from certain
shortcomings when the absolute credits of several tasks
became indistinguishable. For this situation, the FCFS has to
be added without guarantee of tasks to be completed earlier or
to its deadline.

Another algorithm depends on comparable to conduct of
honey bee model (HBB-LB) is proposed by Dhinesh babu L.D
et al. [16]. In this algorithm, the priority is taken as a
fundamental QoS factor to Bar any procedure from hanging
tight for quite a while in the line to diminish the execution time
and augment the throughput. Similarly, the tasks can be acted
as the Honey bees and the Virtual Machines can be acted as
sustenance sources. Moreover, The VMs are classified
according to three circumstances, balanced overload, high
overload and low overload. When the VMs are overloaded, the
tasks are evacuated and act as a honey bee. So, these tasks are
migrated to the low load VMs. These duties are depending on
how many high priority tasks are executed on those VMs. It
should be noticed that the VM is chosen based on the low
overload and the least number of the executed priority tasks.
After proper tasks on VM, data is refreshed with the goal that
the rest of the assignments can acquire their needs under load
VM. This algorithm has presented certain advantages
represented in the proper resource utilization; maximizing the
throughput while keeping different QOS parameters which are
built on the task priority. On the other hand, the disadvantages
are introduced for the low need priority tasks which suffer
from idle state or long time waiting in the queue. These tasks
may be dismissed causing the unbalancing of the workload
balancing.

For an enormous scale condition, e.g., cloud computing
framework, there had been also various scheduling approaches
proposed with the objective of accomplishing the better task
execution time for cloud resources [17]. Independent task
scheduling algorithms mainly include MCT algorithm [18],
MET algorithm [15], MIN-MIN algorithm [15], MAX-MIN
algorithm [19], PMM algorithm, and genetic algorithm. The
MCT (Minimum Completion Time) algorithm assigns each
task in any order to the processor core that causes the task to be
completed at the earliest time. It prohibits some tasks to be
allocated to the fastest processor core. The MET (Minimum
Execution Time) algorithm allocates each task to a processor
core in any order that minify the task execution time. As
opposed to the MCT algorithm, the MET algorithm does not
consider the processor core’s ready time, which may prompt
genuine burden unevenness crosswise over processor cores.
The MIN-MIN algorithms calculates the minimum completion
time of all unscheduled tasks firstly, and then chooses the task

with the minimum turnaround time and allocate the task to the
processor core that can minimize its turnaround time, repeating
the process many times until all tasks are allocated. The same
as the MCT algorithm, the MIN-MIN algorithm is also based
on the minimum completion time. The MIN-MIN algorithm
proposes all tasks that are not scheduled, but the MCT
algorithm considers unique task at a time. The MAX-MIN
algorithm is similar to the MIN-MIN algorithm, which also
computes minimum completion time without scheduled tasks
firstly and then selects the task with the largest minimum
completion time and assigns the task to the processor core with
the minimum completion time.

Mondala et at. use an optimized approach algorithm to have
load balancing scheduling system [20]. This model is based on
a centralized load balancing algorithm. In another words, the
system is based on a central node that distributes the workload
tasks. Hence, the main drawback is of this model is that if the
central node fails, the whole working of the system will fail.
This means that the central node is represent the system
bottleneck. So here, using decentralized load balancing strategy
solves this bottleneck. Resource utilization can be done
effectively to enhance the throughput, accordingly decreasing
the cost of an application running in a SAAS environment
without break service level agreements [21].

Actually, the different scheduling algorithms based on QoS
parameters have been introduced for different environments in
[22]. The scheduling is performed to achieve the huge service
requests and to enhance the efficiency of the workload.
Subsequently, there are numerous modules that are
implemented in each kind of the scheduling algorithms, for
example, Min-Min, FCFS, Max-Min, Round-Robin algorithm.

Nevertheless, the one of the efficient methods among them
is the heuristic method. Its allocating the tasks includes three
stages in a cloud computing. At first, the VMs are located.
Hence, the best target VM is chosen. At last, the task is
assigned to the target VM. Lately, the Real Efficient Time
Scheduling (RETS) is investigated in [23]. The main goal of
RETS is to process the real-time tasks without delay.
Therefore, it keeps one tenth of the available resources for the
real-time tasks. Although, this ratio can be insufficient if the
real-time tasks exceed this ratio. On the other hand, one tenth
of the available resources will be idle if there are no real-time
tasks.

Moreover, Anju et al. introduces multilevel of priority-
based task scheduling algorithm (PBATS)[24, 25]. This
algorithm has three levels of priorities, which prioritizes the
tasks based on the length of the instructions. Also, to enhance
performance of PBATS, it migrates the tasks under the
minimum migration time policy. This policy can cause
overload of node, which has low network overhead. Also, this
policy doesn't distinguish between the real and soft tasks.

Also, Wang et al. proposed a task scheduling algorithm in
the fog computing, which is called “hybrid heuristic (HH)”
algorithm [26]. HH algorithm is mainly focus in solving high
energy consumption in case of using limited computing
resources. Unfortunately, HH method isn’t distinguish between
the mist and middle fog nods. Hence, this algorithm is not
efficient method for real-time services.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

95 | P a g e

www.ijacsa.thesai.org

III. PROPOSED MODEL

In a Fog computing environment, the load balancing is a
pivot point for effective and efficient resource utilization,
bandwidth and to achieves desired quality of service (QoS).
Fog Computing system is divided virtually in two type of
nodes, namely; mist and middle edge node. Actually, both
types of fog nodes can have the same structure and resources.
Nevertheless, the most closed node to IoT is called mist. Each
Mist computing server is centered in the specific location
mainly to receive the clients or/and IoT requests in a specific
region. The fog colony is connected to a cloud system in the
case of fog resources shortage to overcome the fulfillment of
task requests.

In this paper, the new scheduling model (DLBS) is
proposed in the cloud-fog-mist environment. The structure of
this model is shown in Fig. 2. First of all, the Service Listener
(SL) receives the user/IoT service request. Hence, SL creates a
task for the service request and sends it to Load Balancing
Allocator (LBA) module with required software from service
container. Also, SL send task-metadata like, task type (real
time or soft), expected execution time, etc. So, each Mist server
is supplied by its own Load Balancing Allocator module
(LBA). LBA is responsible for allocating the clients and/or IoT
service requests into the fog resources. There two types of
user/IoT request; real time and soft-tasks. The proposed model
is designed to handle both types of tasks.

Mist node gives the real time task queue in resources
allocation. The tasks in the real time queue will be allocated
into one of idle local VMs in the node. If there is no idle, LBA
preempt one of soft task VMs. In the worst case scenario, if
there are no idle or soft VMs, Fog explorer module suggest the
resources in the closest mist/middle edge node. Fog explorer
detects the status of the other fog node by getting the status
flags. The status flags are set by LBA module and broadcasted
by the fog explorer. Each Mist node has four types of status
flags, which determine the status of the node, namely, load
lock, real task lock, receive status, and send status. Load lock
flag, which is soft task waiting, is set by zero if the expected
waiting time will not exceed QoS threshold (λ). In another
word, λ grantees that the service of the soft tasks will be
provided in a reasonable delay. If load lock flag is set by one,
this fog node can't receive a soft task from other fog and its soft
tasks will migrate outside the node. Also, real-time task lock is
set by one if all VMs are allocated by real-time tasks. For any
fog node if one of VMs is processing a soft task, the real-time
task lock is set by zero. Finally, according to task migration the
fog node blocks the receiving tasks from other nodes if its
receive status or send status has value one. Obviously, the
status flags are used to maintain the system balanced and
available.

Mist node gives the real time task queue in resources
allocation. The tasks in the real time queue will be allocated
into one of idle local VMs in the node. If there is no idle, LBA
preempt one of soft task VMs. In the worst case scenario, if
there are no idle or soft VMs, Fog explorer module suggest the
resources in the closest mist/middle edge node. Fog explorer
detects the status of the other fog node by getting the status
flags. The status flags are set by LBA module and broadcasted
by the fog explorer. Each Mist node has four types of status
flags, which determine the status of the node, namely, load
lock, real task lock, receive status, and send status. Load lock
flag, which is soft task waiting, is set by zero if the expected
waiting time will not exceed QoS threshold (λ). In another
word, λ grantees that the service of the soft tasks will be
provided in a reasonable delay. If load lock flag is set by one,
this fog node can't receive a soft task from other fog and its soft
tasks will migrate outside the node. Also, real-time task lock is
set by one if all VMs are allocated by real-time tasks. For any
fog node if one of VMs is processing a soft task, the real-time
task lock is set by zero. Finally, according to task migration the
fog node blocks the receiving tasks from other nodes if its
receive status or send status has value one. Obviously, the
status flags are used to maintain the system balanced and
available.

Example in Fig. 3 shows the closer fog region for Mist Y
by dotted line, and the closer region for middle edge node C by
the dashed line. In this example, Mist Y receives two service
requests from IoT devices. The first request is real- time
request, which come from Pacemaker device. This type of
request is classified by the Fog Explorer as real-time request.
Hence, this request must be handled in the local fog (nod Y).
On the contrary, Mist Y is forwarding the soft request to
middle edge server C. Also, for the node C the load is
migrating to D. This strategy makes the load spread over all
system nodes.

Fig. 2. DLBS Model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

96 | P a g e

www.ijacsa.thesai.org

Fig. 3. DLBS Node Region.

A. Load Balancing Allocator (LBA)

The main objective of LBA is to allocate the task requests,
which is received by Service Listener (SL). Also, LBA should
allocate the real-time tasks to be executed before they met their
deadline. Also, it guarantees an efficient response time for the
soft tasks. LBA is maintaining to allocate the real-time task
trivial waiting time. This accomplished by allocate the real-
time task locally or to allocate the task in one of the closed
server. In case of soft service is requested, the soft task should
be exceeded waiting time threshold (λ). To maintain this
condition, the following steps should be computed. First, the
total expected execution time of the soft-waiting tasks can be
computed as follows.





i

itot ttimeexeexe)(

Also, the total processing power of the mist node can be
formulized as summation of MIPS (million instructions per
second processor) for all VMs.





j

jtot VMMIPSp)(

Hence, the total expected waiting time should not
exceeding λ by achieving the follows equation.

 
tot

tot
x

p

exe
w

Where,  is the constant depending on the ratio of the real-

time tasks  and the average size of real-time task services .

)(
avgp


 

Where, avgp is the average of VMs processing power of

the mist node. In the following the pseudo code of LBA
function is introduced. The following algorithm represents the
general steps of load balancing allocator procedure.

Load Balancing Allocator (LBA) Algorithm

Input:

 kt // receive task from the service listener or from other LBA

1.
If (realtypetk .)

2. freeVM = findIdleVM() // find the idle VM

3. If ( idel_VM)

4.
 allocateTask(kt, freeVM)

5. ElseIf(realTaskLock = 0) // all machines are busy in soft

tasks

6. freeVM = PreemptSoftTask()

7.
 allocateTask(kt, freeVM)

8. If all VM.tasks=real

9. realTaskLock = 1

10. Else // all VMs are busy in real tasks

11.
))((Re iix VMmainTimeMinVM  /* find a VM

with

 the minimum remaining time */

12.

().exp.turnaround. remainTimeVMectExeTimett xkk 

13.
 If (deadlinett kk .turnaround. )

14.
 allocateTask(kt, VM x)

15. Else //find VM in the closest Mist node

16.
 RF =FogExplorer.getFog(RealTask) //find closest unlock

fog for real task

17. SendStatusFlag=1

18.
 SendRealTask(kR tF ,)

19. SendStatusFlag = 0

20. End if

21. End if

22. Else //the second case; soft task type

23.
 




i

itot ttimeexeexe)(/* Compute the total expected

 execution time of the soft-waiting tasks */

24.

 
tot

tot
x

p

exe
w // Compute the total expected waiting

time

25.
 If(xw)

26.
 InSoftQueue(kt)

27. Else

28. loadLock=1

29.
 RF =FogExplorer.getFog(SoftTask) /* find closest unlock

 fog for soft task*/

30. SendStatusFlag=1

31.
 SendSoftTask(kR tF ,)

32. SendStatusFlag = 0

33. End if

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

97 | P a g e

www.ijacsa.thesai.org

34. End if

B. Fog Explorer, Service Container and Flags

Finally, fog explorer module is responsible for determine
the closer fog region for each node. This region is defined as
set of nodes which has minimum communication overhead. If
any of the status flags is change in each node, the node
broadcast this information to its closed region. Also, Fog
explorer is responsible for broadcasting a copy of the Service
Container to all fog and mist computing nodes. Moreover, it
should send up-to-date a copy of additional changes in Service
Container.

IV. SIMULATION SETUP

As a mist landscape, we propose a fog-mist colony of 100
nodes. Half of the colony nodes are mist nodes, which receive
the user requests. The fog-mist colony is connected to a cloud
system in circumstance of shortage in the fog-mist sources to
the fulfillment of soft task requests. Of these 100 fog-mist
colony, 10 are concurrently issuing 1,000 task requests to the
mist colony. Furthermore, IoT applications are characterized
by two types (real and soft).

The proposed DLBS algorithm, have been implemented on
simulator CloudSim [27, 28] 3.0.2 to execute tasks along with
Window 7 OS, core i5 2.3 GHz processor and NetBeans IDE
7.2.1. CloudSim computes the execution time of a service
request to fulfill a task requirement, hence computes the
waiting time for soft task by aggregating the number of
instructions necessary to execute the waiting soft tasks. In this
experiment, the soft-task request and real-task requests
required 0.05, and 0.03 million of instructions per second
(mips) respectively. Both task types have 300 MB of incoming
and 300 MB of outgoing data. Fog/Mist nodes able to able to
handle 250 MIPS. Each fog node can create 10 VM’s have the
processing power 500 MIPS. The bandwidth between fog
nodes is set to 100 Mbit/s, and between the cloud and fog
nodes to 10 Mbit/s. All experiments are repeated for 10 times
and the mean values are taken.

DLBS model is compared with four models. The first
model is FCFS, which serve the tasks based the arrival time.
Moreover, the others compared models was created for the
cloud computing system, namely the Max-Min, the PBATS
and the RETS. The Max-Min maintains a task status table to
envision the real loads of the VMs and the evaluated finishing
time of tasks, which can distribute the workload among nodes
[29]. The Priority Based Autonomic Task Scheduling (PBATS)
that schedule its tasks according to three different priorities
levels [25, 30]. Furthermore, the Real Time Efficient
Scheduling (RETS) depends on reserving a one tenth of the
resources for the real-tasks [23]. All these scheduling
techniques are matched by the proposed techniques to evaluate
the load balancing in the proposed model.

V. RESULTS AND DISCUSION

The performance evaluations have been performed in three
dimensions. The first dimension evaluates the performance of
the system on the soft-tasks load. On another hand, the second
dimension measures the system reliability for the real-time
tasks. The performance evaluation based on three parameters,

namely; turnaround time, the average waiting time and the
throughput. Finally, the third diminution measures the
suitability of the model for the real-time services by evaluating
the number of failed tasks in the compared algorithms.

This section is organized into three subsections. Each
subsection is concerned to evaluate a performance dimension.
Hence, the following subsection evaluates the performance of
the system using all types of tasks. Moreover, the second
subsection evaluates the effect of the system on the real time
tasks only. Finally, the failure in the real-service requests is
measured in third Subsection.

A. System Performance using Real-Time and Soft Service

Requests

In this section three tests are done. The first test measures
the response time of variant number of tasks. The second test
evaluate the waiting time of the system. Finally, the last test in
this section measures the throughput.

1) Turnaround time performance test: The first experiment

measure the system performance based on the Turnaround time

parameter. DLBS is compared with previous mentioned four

algorithms. The experiments are done using different number

of workloads from 1000 to 10,000 tasks. The real time tasks

will represent 20% from all of the inserted workload in each

experiment. Obviously, we can notice that the FCFS curve is

rapidly increased by increasing the number of service requests.

The bad performance of FCFS is due to the non-preemptive

property. Also, Max-Min curve is closed to the FCFS curve.

Since, the Max-Min is allocating the longest tasks to VMs

which has lest remaining execution time. In another word, in

Max-Min scheduling algorithms the short tasks will wait a long

time to get the resources, which increase the average of waiting

time. In addition, the PBATS curve is keep a less in the

average turnaround time results when compared to the FCFS

and Max-Min. Indeed, the tasks in the PBATS algorithm are

classified into three levels of priorities and underestimate the

quality of services. Furthermore, the curve of the RETS refer to

acceptable results with a light load up to 1,500 tasks, as shown

in Fig. 4(A). Also, RETS gives an inefficient performance if

compared by the proposed algorithm (DLBS). The

performance of RETS is decreased as increasing the work load.

The performance deterioration of RETS algorithm is due to

static reservation for the real tasks. It assign one tenth of the

resources for the real requests. Reserving a static ratio of the

resources can cause problem if there are no proper real tasks.

Actually, it is a dilemma if the real tasks exceed the reserved

resources. Actually, the DLBS overcome these problems. It

gives high priority to the real tasks for satisfy its deadline.

Also, it maintains a specific response time for the soft tasks.

Subsequently, the DLBS is the most efficient algorithm among

all of the compared algorithms in the Mist-fog environment.

2) The waiting time performance test: This experiment

measures the waiting time for the service request tasks. As

shown in Fig. 4(B), the waiting time of the DLBS curve has the

best performance. Moreover, for having a certain QoS the

expected waiting time for the soft tasks parameter λ is set by 10

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

98 | P a g e

www.ijacsa.thesai.org

second. Hence, the DLBS curve values are very close to ten

second after 5,000 tasks. It is worth noting that the FCFS curve

has the worst performance. This bad performance is caused by

the same reasons that increase the average turnaround times.

Also, the Max-Min curve is the closest one to the FCFS curve.

In the PBATS curve the tasks allocation is depending on three

levels of priorities, which increase the waiting time for tasks

according to their levels. Furthermore, the RETS algorithm has

an acceptable performance until the workload less than or

equal to 3,000 tasks. Unfortunately, as increasing the services

requests, as the average of waiting time is rapidly increased for

the RETS. All of these problems have been solved by DLBS

algorithm as shown by the performance curve. DLBS

maintains an upper bound of the waiting time for each soft task

in mist node and send the exceeding load to the closest low

load node or to the middle edge node.

3) The throughput performance test: This test measure the

performance based on the average of system throughput. The

throughput is defined as the total number of finished tasks per

time. Additionally, the experiment is done based on the same

workload of the past examination. The performance of the

compared algorithms is shown in Fig. 4(C). We can notice that,

the throughput of DLBS has the best throughputs enhancement

compared by the other algorithms. The performance

enhancement of DLBS is caused by the balanced distribution

of the tasks that satisfy QoS. Also, the worst performance

curve is the FCFS. Moreover, the RETS throughput curve is

successor to DLBS curve. Since RETS gives the highest

priority to the real tasks, which is the lightest processing tasks,

then it increases the number of the finished tasks.

B. System Performance using Real-Time Service Requests

This experiment evaluates the effect of the proposed system
on the real time tasks compared with other algorithms. Each
experiment is completed on the real task ratio 25% of
workload. Through the experiments, the workloads for all the
tasks types are changed from 1,000 to 10,000 tasks. Hence, the
real time tasks are changed from 250 to 2,500 tasks. However,
all the experiments of the Real-Time tasks are performed in the
existence of the soft tasks load. This section is organized as
follows. The following subsection measures the turnaround
time. Subsection (2) measures the waiting time and Subsection
(3) measures the throughput. Finally, the Subsection (4)
measures the suitability of the system for real service.

1) Turnaround Time performance Test: The turnaround

time performance comparison of the compared algorithms is

shown in Fig. 5(A). The worst performance is obtained by the

curves that represent the FCFS, PBATS and the Max-Min

algorithms respectively. The essential shortage of these

algorithms is the disability to handle the requests of the real

time service according to their deadline. Actually, these

algorithms are not indeed to handle the real-time tasks. Hence,

the real times tasks are treated as the soft tasks. On other hand,

the RETS gives an acceptable performance when the number

of the Real-Tasks are not exceed one tenth of the system

resources. As obtained the figure, the performance of RETS

result is acceptable until 1,000 real-tasks and is decay after this

point. Furthermore, the RETS algorithm preserve the response

time of the real time tasks to be less than their deadline times.

In other words, the real-time tasks are not presented to any

postpone, which limits the turnaround time. Moreover, the real-

time tasks are migrated from fog node to another one to avoid

waiting time.

2) The waiting time performance test: The averages of

waiting time curves that expose the impact of the DLBS model

on the duration time of the real tasks are shown in Fig. 5(B). In

this figure, the lower mean waiting time is implied for DLBS.

As mentioned before, the DLBS model is designed to give the

first priority for the Real-Time tasks. Hence, the reserved

resources for the soft tasks are released to allocate the real

tasks. However, the RETS is the closest curve among all the

compared algorithms to the DLBS. Unfortunately, as the real

requests load in RETS is increased, as the average waiting time

is increased. Hence, the deadline times of the real tasks will be

exceeded in RETS model.

3) The throughput performance test: The throughputs

curves, in Fig. 5(C), show the performance comparison

between the competitive algorithms. Unmistakably, the highest

throughput is accomplished by DLBS. The RETS throughput

becomes consistent after satisfying the reserved ratio of the real

tasks. Also, the DLBS throughput is increased as increasing the

real time tasks. Since DLBS algorithm can assign the whole

mist node resources and borrows additional resources to satisfy

the real-time service requests. Moreover, FCFS has the worst

performance because it isn't careless about the deadline of the

real-time task.

4) Real-time task failure test: To judge about the

suitability of the algorithm for real time services, the task

failure should be concerned. To judge about the suitability of

the algorithm for real time services, the task failure should be

considered. Fig. 5(D) measures real task failure for the

proposed and the compared algorithms. The number of task

failure for the DLBS model is trivial if compared with the other

models. RETS model gives a good performance in low load of

the real time tasks. Unfortunately, RETS model doesn't

supports flexibility in the reserved resources for the real time

tasks. Also, it doesn't support task migration to provide the

desired resources. The other algorithms failure values indicate

inaptitude for real time services.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

99 | P a g e

www.ijacsa.thesai.org

Fig. 4. Performance Comparision using Soft and Real-Time Service Requests.

Fig. 5. Real-Tasks Turnaround Time Test.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

100 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION AND FUTURE WORK

In this paper, DLBS model is designed for managing soft
and real time services in fog computing environments. The
DLBS model introduces decentralize scheduling algorithm.
Fog computing consists of two type of nodes, namely; mist and
middle edge nodes. Mist nodes are the closer nodes to IoT
devise, which receive its services requests. The DLBS model
provides an efficient solution for having IoT service response
time. This model is providing an efficient load balancing
strategy for IoT service requests. Also, this model manages the
IoT services requests load for each fog node in decentralize
manner. The decentralize load management avoids the
bottleneck problem, which exists in the majority of the other
solution. Moreover, this model is designed to fit the real-time
serves requests. The experiments show that our methods
outperform the compared methods. In future work, this model
will be developed to manage the heterogeneous Mist nodes.

REFERENCES

[1] Chandrasekhar S. Pawar, Rajnikant B. Wagh, Priority Based Dynamic
resource allocation in Cloud Computing with modified Waiting Queue,
Proceeding of the IEEE 2013 International Conference on Intelligent
System and Signal Processing(ISSP) Pages 311-316.

[2] Yusen Li, Xueyan Tang, Wentong Cai, Dynamic Bin packing for on
demand cloud resource allocation, Proceedings of the IEEE Transactions
on Parallel and Distributed Systems ,2015,Paged 1-14.

[3] Savani Nirav M, Prof. Amar Buchade,―Priority Based Allocation in
Cloud Computing, International Journal of Engineering Research &
Technology (IJERT) ISSN: 2278-0181 IJERTV3IS051140 Vol. 3 Issue
5, May – 2014.

[4] Brototi Mondala, Kousik Dasguptaa, Paramartha Duttab”Load
Balancing in Cloud Computing using Stochastic Hill Climbing-A Soft
Computing Approach”, Elsevier, Procedia Technology 4(2012) pp. 783
–789.

[5] Ivan Stojmenovic, sheng Wen, “The Fog Computing Paradigm:
Scenarios and security issues” Proceedings of the IEEE International
Fedrerated Conference on Computer Science and Information Systems,
2014, pp.1-8.

[6] Mahmood A., Zen H. (2018) Toward Edge-based Caching in Software-
defined Heterogeneous Vehicular Networks. In: Mahmood Z. (eds) Fog
Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-94890-
4_13.

[7] Sari A. (2018). Context-Aware Intelligent Systems for Fog Computing
Environments for Cyber-Threat Intelligence. In Fog Computing (pp.
205–225). Cham: Springer. 10.1007/978-3-319-94890-4_10.

[8] Nanxi Chen, Yang Yang, Tao Zhang, Ming-Tuo Zhou, Xiliang Luo,
John K. Zao, "Fog as a Service Technology", Communications
Magazine IEEE, vol. 56, no. 11, pp. 95-101, 2018.

[9] Luthra, M., Koldehofe, B. & Steinmetz, R. "Transitions for Increased
Flexibility in Fog Computing: A Case Study on Complex Event
Processing" Informatik Spektrum (2019).
https://doi.org/10.1007/s00287-019-01191-0.

[10] [7] A. Davies, Cisco pushes IoT analytics to the extreme edge with mist
computing. [Online]. Available: http://rethinkresearch.biz/articles/cisco-
pushes-iotanalytics-extreme-edge-mist-computing-2, Blog, Rethink
Research.

[11] J.S.Preden, K.Tammemäe, A.Jantsch, M.Leier, A.Riid, E.Calis, The
benefits of self-awareness and attention in fog and mist computing,
Comput. (Long Beach Calif) 48(7)(2015)37–45.

[12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, Sateesh Addepalli “Fog
Computing and its Role in the internet of things”,
http://conferences.sigcomm.org/sigcomm/2012/pa per/mcc/p13.pdf.

[13] Manisha Verma, Neelam Bhardwaj Arun Kumar Yadav,” An
architecture for load balancing techniques for Fog computing

environment”, International Journal of Computer Science and
Communication, Vol. 8 • Number 2 Jan - Jun 2015 pp. 43-49.

[14] S. F. El-Zoghdy and S. Ghoniemy, “A Survey of Load Balancing In
High-Performance Distributed Computing Systems”, International
Journal of Advanced Computing Research, Volume 1, 2014.

[15] Mohsen and Hossein Delda, “Balancing Load in a Computational Grid
Applying Adaptive, Intelligent Colonies of Ants”, Informatica 32 (2008)
327–335.

[16] Brototi Mondala, Kousik Dasguptaa, Paramartha Duttab”Load
Balancing in Cloud Computing using Stochastic Hill Climbing-A Soft
Computing Approach”, Elsevier, Procedia Technology 4(2012) pp. 783
–789.

[17] W. Lin, C. Zhu, J. Li, B. Liu, and H. Lian, “Novel algorithms and
equivalence optimisation for resource allocation in cloud
computing,”International Journal of Web and Grid Services,vol. 11, no.
2, pp. 69–78, 2015.

[18] M.Maheswaran,S.Ali,H.J.Siegel,D.Hensgen,andR.F. Freund, “Dynamic
mapping of a class of independent tasks onto heterogeneous computing
systems,”Journal of Parallel and Distributed Computing, vol. 59, no. 2,
pp. 107–131, 1999.

[19] T.D.Brauny,H.Siegely,N.Beckyetal.,“AComparison Study of Static
Mapping Heuristics for a Class of Meta-tasks on Heterogeneous
Computing Systems,”parallel & distributed computing, vol.61, no.6,
pp.810–837,2001.

[20] Brototi Mondala, Kousik Dasguptaa, Paramartha Duttab”Load
Balancing in Cloud Computing using Stochastic Hill Climbing-A Soft
Computing Approach”, Elsevier, Procedia Technology 4(2012) pp. 783
–789.

[21] Atul Vikas Luthra and Dharmendra Kumar Yadav,”MultiObjective
Tasks Scheduling Algorithm for Cloud Computing Throughput
Optimization”, International Conference on Intelligent, Communication
& Convergence, Procedia Computer Science 48(2015) 107- 113.

[22] Mohamed A. Elsharkawey, Hosam E. Refaat,"CVSHR: Enchantment
Cloud-based Video Streaming using the Heterogeneous Resource
Allocation", International Journal of Computer Network and
Information Security (IJCNIS), Vol.9, No.9, pp.1-11, 2017.DOI:
10.5815/ijcnis.2017.09.01.

[23] M.Verma, N. Bhardwaj and A. Kumar, "Real Time Efficient Scheduling
Algorithm for Load Balancing in Fog Computing Environment",I.J.
Information Technology and Computer Science, April, 2016, 4, 1-10.

[24] B.Anju and C.Inderveer (2016), "Multilevel Priority-Based Task
Scheduling Algorithm for Workflows in Cloud Computing
Environment". In Proceedings of International Conference on ICT for
Sustainable Development: Volume.

[25] Swati Agarwal, Shashank Yadav, Arun Kumar Yadav,"An Efficient
Architecture and Algorithm for Resource Provisioning in Fog
Computing", International Journal of Information Engineering and
Electronic Business(IJIEEB), Vol.8, No.1, pp.48-61, 2016. DOI:
10.5815/ijieeb.2016.01.06.

[26] Wang J, Li D. Task Scheduling Based on a Hybrid Heuristic Algorithm
for Smart Production Line with Fog Computing. Sensors (Basel).
2019;19(5):1023. Published 2019 Feb 28. doi:10.3390/s19051023.

[27] W. Chen and E. Deelman,―Workflowsim: A toolkit for simulating
scientific workflows in distributed environments, in 2012 IEEE 8th
International Conference on E-Science, ser. eScience, 2012, pp. 1–8.
[Online]. Available:https://github.com/WorkflowSim.

[28] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R.
Buyya,―CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms, Software: Practice and Experience, vol. 41, no. 1, 2011.

[29] Xiaofang Li, Yingchi Mao, Xianjian Xiao, "An improved Max-Min
task-scheduling algorithm for elastic cloud", Computer, Consumer and
Control (IS3C), 2014 International Symposium on.

[30] B.Anju and C.Inderveer (2016), "Multilevel Priority-Based Task
Scheduling Algorithm for Workflows in Cloud Computing
Environment". In Proceedings of International Conference on ICT for
Sustainable Development: Volume.

