
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

159 | P a g e  

www.ijacsa.thesai.org 

Optimal Control and Design of Electrical Machines 

Wissem BEKIR
1
 

Research Laboratory Smart Electricity and ICT 

SEICT, LR18ES44 

National Engineering School of Carthage 

Université de Carthage 

Tunis, Tunisia 

Univ. Lille, Arts et Metiers 

ParisTech, Centrale Lille, HEI, EA 

2697, L2EP, F-59000 

Lille, France 

Lilia EL AMRAOUI
2
 

Research Laboratory Smart Electricity and ICT 

SEICT, LR18ES44 

National Engineering School of Carthage 

Université de Carthage, Tunis, Tunisia 

Frédéric GILLON
3
 

Univ. Lille, Arts et Metiers 

ParisTech, Centrale Lille, HEI, EA 

2697, L2EP, F-59000, Lille, France

 

 
Abstract—This paper presents a global optimization approach 

aiming to improve the energy efficiency of electrical machines. 

The process is made on a hybrid stepper motor allowing to 

simultaneously optimize design and command. This approach is 

axed around Pontryagin's maximum principle, which is applied 

to a magnetodynamic model based on permeances network 

model. The originality of the proposed approach is to obtain in 

the same process, the minimization of the energy by optimal 

control and the minimization of the energy by optimal sizing. 
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I. INTRODUCTION 

Currently, improving the energy efficiency of electric 
machines is a subject of high interest. Indeed electrical 
machines are widely used in industries, transportation and 
home applications. Thus, electric machines consume the largest 
amount of energy in the world (i.e. 46% of global consumption 
resulting in about 6040 megatonnes of CO2) [1,2]. 

The energy efficiency problem is studied in two different 
areas that require different skills. Firstly, automaticians deal 
with this problem as an optimal control issue. They seek to find 
the optimal control that allows minimizing either the energy 
consumption, subject to some constraints on the control, and/or 
the performances. Among the performance constraints, we can 
mention the constraints on the torque or for displacement 
problems, the constraints of positioning and speed [3]. Thus, 
the optimal control theory, which is a part of applied 
mathematics and automatic, is used in dynamic operation of 
the machine to find the trajectory of the command. However, 
the machine models used in the automatic field are coarse 
models [4-7] that do not take into consideration the geometric 
design parameters or not fully the magnetic phenomena. 

Secondly, design specialists tackle the energy efficiency 
problem as an optimal design issue. Therefore, they seek to 
find the optimal design to achieve the required performance 
while minimizing also energy consumption. Thus, the models 
used are more complex and take into account with more 
accuracy the magnetic phenomena [8], the nature of the 

materials and the design parameters [9]. However, the models 
are quite complicated, the number of design parameters may be 
high and the search for optimality is carried out through 
optimization algorithms. Nevertheless, it would be absurd to 
seek for the optimal design of an electric machine without 
studying his command. Therefore, the command is one more 
parameter that is added to the optimization problems [10]. To 
overcome this difficulty the machine is optimized for operating 
points and imposing a form of control [11]. For example, by 
imposing a sinusoidal current control for a given machine, the 
problem is to find the optimum amplitude and angle of the 
control to have a certain torque and speed for a given operating 
point. The solution of this type of problem requires significant 
computation time, because of the extended model and the 
optimization algorithms used. Therefore, the difficulty is major 
if it is to find the optimal value of the command at any time, 
and in this case, the calculation time will be dissuasive. 

In this paper, a method is proposed to solve this difficult 
problem. The idea is to merge the two domains and to develop 
a global optimization approach for design and control by 
applying optimal control theory [12-16] and nonlinear 
optimization algorithms on magnetodynamic models of an 
electric machine. This work is applied on a hybrid stepper 
motor [17-22], to prove the feasibility of the approach on a 
realistic case. 

The paper is organized as follow; in the first part, a 
magnetic model of the machine is developed based on a 
permeances network. This model is coupled thereafter to a 
dynamic model that describes the electrical and mechanical 
behavior of the motor. In the second part, an optimal control 
theory is implemented, based on Pontryagin's maximum 
principle to this coupled magnetodynamic model. At first, an 
optimal control problem is posed. Then the optimality 
conditions are exploited to conclude on a Hamiltonian model 
that presents a two point boundary value problem. After that, a 
numerical method is proposed to solve this problem. Finally, 
optimal controls are calculated for a positioning problem. 
Results are then compared with a classical control. In the third 
part, a global optimization approach is proposed. The link 
between the different models and the resolution loops are 
presented. Then a global optimization problem is proposed 
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followed by a study on the design parameter influence on the 
energy consumption of the machine. Finally, the global 
optimization problem is solved and the results are discussed. 

II. MODÉLIZATION 

The study is applied to a two-phase hybrid stepper motor, 
with 1024 steps per revolution illustrated in Fig. 1. This motor 
is composed of two rings; each one has 50-tooth. The two rings 
are angularly offset by a tooth half step. They are 
interconnected by a permanent magnet. The stator has 8 plots 
each having Zs teeth. The motor flux distribution is three-
dimensional. 

A. Magnetic Model 

The magnetic model is based on a permeances network 
method, which consists in decomposing the magnetic device 
into a set of flux sources and passive elements. Fig. 2 shows a 
front view and a rear view of the MPPH. Pα, Pβ, Pα

’, and Pβ’ 

represents the permeances between the different stator plots 
and the two rotor rings. As the structure is symmetrical, this 
model focuses on the half of the machine. 

Fig. 3 shows the equivalent magnetic circuit. The 
reluctance of iron is assumed infinite and the magnet is 
modeled by an ideal flux source Fm. The phases are modeled 
by the flux sources Fα and Fβ. 

The magnetic circuit resolution aims to determine the flux 
flowing in the branches. Equations are performed using 
Kirchhoff's laws; the fluxes generated are multiplied by 2 to 
represent the entire machine and by the number of coil, Ns, to 
describe the flux seen by the coils. The analytical expressions 
of the phases flux fed by currents Iα and Iβ generated are given 
by: 

   22 ' '

s s mN I N F         P P P P
           (1) 

   22 ' '

s s mN I N F         P P P P
           (2) 

The inductance Lα (resp. Lβ) of the phases α (resp. β) is then 
deduced: 

  22 '

sL N   P P
             (3) 

  22 '

sL N   P P
             (4) 

As well as the mutual flux between the phases and the 
magnet which are expressed by: 

 '

s mN F    P P
             (5) 

 '

s mN F    P P
             (6) 

The magnetomotive force expression of a magnet as a 
function of the length of the magnet lm and the coercive field 
Hc is given by: 

m m cF l H
              (7) 

An analytic method is used to calculate air gap 
permenances in order to have a fairly fast model. The method 

aims to represent flux lines by tubes formed with straight lines 
and arcs and to calculate the permeance of each flux tube as a 
function of displacement. Calculations are performed for a 
tooth step, the displacement is assumed linear since the length 
of the angular displacement of a step is negligible in front of 
the rotor radius. Fig. 4 describes the tooth structure and the 
approximation of the flux tubes for a given position. In this 
figure, g represents the gap length, tw the width of a tooth, lr the 
ring length, Pi the permeances of flux tubes and x is the linear 
displacement. 

A linear displacement x=2tw is equivalent to a rotation of a 
mechanical angle θ=7.2°. In [22] the permeance expressions 
are available and the results of this method have been validated 
by finite element method. 

 

Fig. 1. Structure of the Hybrid Stepper Motor. 

 

Fig. 2. HSM, Front and Rear View. 

 

Fig. 3. Equivalent Magnetic Circuit. 

 

Fig. 4. Tooth Structure and the Approximation of the Flux Tubes. 
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B. Dynamic Model 

The equations of the voltages induced by the phases are 
expressed by: 

     
 

 
   dL dI t d

V t RI t I t L
dt dt dt

  

   

  
   

          (8) 

     
 

 
   dL dI t d

V t RI t I t L
dt dt dt

  

   

  
   

          (9) 

where R is the resistance of the phases. 

The fundamental principle of dynamics gives the following 
mechanical equation of motion (10): 

 
   

2

2r em r

t
J C t C t

t


 

            (10) 

With: 

Jr     : The rotor inertia, 

Cem   : electromagnetic torque, 

Cr    : resistant couple. 

The inertia Jr is bounded to the ring length lr and the 
magnet length lm as expressed in equation (11). 

4 41
2

2
r r r m mJ r l r   

           (11) 

With: 

ρ   : Density of motor iron, 

ρm  : density of neodymium magnet, 

rr    : rotor radius, 

rm   : magnet radius. 

The fundamental principle of energy conservation allows to 
find the expression of the power absorbed and to deduce the 
expression of the electromagnetic torque (12): 

2 21 1
( )

2 2
em

dL ddL d
C t I I I I

d d d d

  
   



   
   

         (12) 

Equations (8), (9), (10) and (12) allow us to write the 
following state model (13): 

2 2

1 1

1 1

1 1 1

2 2

01

1

0

0 0

0 0

r

r

dI L
R

dt L L

dI L
Rdt L L

d
LL

dt I I I I C
Jd

dt

L

L

  

 


 

 

  
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





 



 



   

     
        

    
     
        

      
   

     
             

      

 
 
 
 
 


 

V

V





 
  
 



        (13) 

with Ω is the rotation speed. 

C. Coupled Model 

The coupling is carried out as follows: first the air gap 
permeances are calculated, then the magnetic circuit is solved 
to find the vectors of the variations of the inductances and flux 
as a function of the mechanical angle. These vectors are then 
injected into the solver of the dynamic model. The inductances 
and flux values for each instant are then generated with an 
interpolation on the vectors considering the value of the 
instantaneous mechanical angle. Fig. 5 describes the 
magnetodynamic coupling. 

 

Fig. 5. Magnetodynamic Coupling. 

III. OPTIMAL CONTROL 

The motor is now in load, driving a wheel having an inertia 
noted Jroue and a viscous friction coefficient, kroue. The main 
purpose is to turn the wheel (initially in a position θ0 at time t0) 
to reach the position θf at a speed Ωf and in a time tf with a 
minimum energy. The problem could be formulated as 
following: 

 

   
   
   
   

0( ), ( )

min max

min max

0 0

0 0

0 0

0 0

min ( )

:

,

,

,

,

ft

tV t V t

f f

f f

f

f

Obj t V V dt

With

V V V

V V V

t t

t t

I t I I t

I t I I t

 
 

  

  

  

  

   

 

 

 

 

     

 

 



          (14) 

In equation (14),     represents the objective function to be 
minimized. This problem can be solved using the Pontryagin’s 
maximum principle. 

A. Hamiltonien and Costate Vector 

The Hamiltonian of the system is given by: 

  1

2

2 2

3

4

1

1

1 1 1

2 2

L
H V V RI I V

L

L
RI I V

L

LL
I I I I k

J

 
    



 

  



  
   




 




 




   



  
      

  

  
    

  

   
      

    
 

   (15) 
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With ѱ1, ѱ2, ѱ3 and ѱ4 are costate variables, J is the sum of 
the rotor and wheel inertia, and k is the sum of the viscous 
friction coefficient of the rotor and the wheel. 

According to the maximum principle, the costate vector 
must verify the following relation: 

1

2

3

4

Hd

Idt

Hd

Idt

d H

dt

d H

dt















      
  
  
     
   
  
  

                    (16) 

These relations give the first optimality condition. 

B. Optimal Control Expresssion 

The second optimality condition of the maximum principle 
indicates that the optimal control minimizes the Hamiltonian. 
Therefore, to find the command expression the sign of the 
functions corresponding to each command and derived from H 
has been studied. For example, the function derived from H 
with respect to Va is given by: 

1

1
V

V
H

V L




 

 

           (17) 

For ψ1(1/Lα)>0, HVα is strictly positive, then H(Vα) is 
strictly increasing and the minimum of the Hamiltonian is 
reached in Vα=Vmin. Thus, studying the sign of the derivative 
allowed to obtain optimal command expressions. For Vαmin=-
Vαmax we get the expressions of the optimal controls Vα

*
 and Vβ

*
 

are: 

min 1 1

*

1

1 1
1

1
0 1

V sign if
L L

V

if
L



 





 



  
  

  
 



          (18) 

min 2 2

*

2

1 1
1

1
0 1

V sign if
L L

V

if
L



 





 



  
   

  
 



          (19) 

The command with a minimum of energy for this problem 
involving constraints on the commands is therefore Bang-off-
bang type. In (18) and (19) the command is expressed in terms 
of the costate variables ѱ1, ѱ2 which in turn are expressed as a 
function of all the parameters of the machine according to the 
relation (16). The control is expressed explicitly according to 
all the parameters taken into account by the model. 

The equations (16), (18), (19) and the machine state allow 
(13) us to obtain the Hamiltonian model (20): 

1
1 3

2
2 3

3
1 2 3 4

2 2

4
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1 1
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d L L
R I

dt L J

L Ld
R I

dt L J

Ld L k
I I

dt L L J

d L L
I I

dt L L

  




  





  
 

 

 
 

 

 
 

  


 

  

 
   

   




 

     
       

     

     
       

     

    
       

      

  
    

  

2

2 2

*

1

2 2 2

2 2 2

*

2

22
2 2

3 2 2

1

1 1 1

1 1 1

1 1 1

1 1 1

2 2

L

L

L L
RI V

L L L

L L L
I I

L L L

L L
RI V

L L L

LL
I I

J

  



 
 

  

    

 

  

 

 

  


 

 

  


 

 


    


 


 

   
  

    

  
   

  

      
              

  
   

   


 

 

22

2 2

*

*

2 2

1 1 1

1 1 1

1 1 1

2 2

I I

dI L
I R V

dt L L L

dI L
I R V

dt L L L

Ld L
I I I I k

dt J

d

dt


 

  
 

  

  

 

  

  
   



 



 



 



   




























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    
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





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
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The Hamiltonian model obtained is a two point boundary 
value problem. Indeed, it is necessary to find the initial 
conditions of the costate variables allowing bringing the 
system from its initial state to the desired final state. As for the 
final state of the current, it was left free. This implies 
transversality conditions on the costate vector. In fact, if the 
final state is free, the corresponding costate vector must be 
equal to zero: 

 

 
1

2

0

0

f

f

t

t





   
    
                 (21) 

To solve this kind of problem of boundary condition type, 
the so-called shooting method has been used, which aims to 
create a function S that takes as inputs the initial conditions of 
the variables and returns the difference between the final state 
obtained and the desired final state and the transversality 
conditions. 
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            (22) 

The root of the S function should be determined. This can 
be done with an algorithm based on the newton method, the 
fsolve routine of Matlab

®
. However, one must be able to 
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estimate the initial conditions to converge towards the solution. 
In our case, initial conditions chosen at random will give a 
solution to a displacement problem that we note Pb0 with an 
error at startup. Indeed, a differential equation solver, such as 
ode15s of Matlab

®
, tends to correct the initial condition error 

and to find a trajectory. Moreover, since the system is 
repetitive (step by step) the pace of the variation of the costate 
variables allows finding a good estimate of the initial 
conditions for Pb0. Fig. 6 and Fig. 7 show the variation of the 
costate variables for randomly chosen conditions and the 
estimation of the initial conditions. 

The shooting method is subsequently launched with the 
estimated initial conditions to get the solution of the problem 
Pb0. From this solution, a dichotomy technique is applied to the 
most influential costate variables and allow us to find the 
solution to this displacement problem, in our case it is the 
variable ѱ4(t0). This solution is fast and well adapted to our 
study. The following problem has been considered (23). 
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         (23) 

The resolution of this problem takes about 10 minutes. 
Fig. 8 and Fig. 9 describe respectively the optimal commands 
Vα

*
 and Vβ

*
 and the corresponding switching functions. 

The pulse widths gradually decrease until reaching the end 
position. This behavior is due to the effect of inertia, which has 
a great impact on energy consumption. Considering thus inertia 
the motor consumes less and less energy to reach the final 
position. Table I gives the different values of the positive and 
negative pulse widths of the optimal control Vα

*
 of Fig. 8. 

 

Fig. 6. Costate Variables ѱ1(t) and ѱ2(t) and Estimation of the Initial 

Conditions. 

 

Fig. 7. Costate Variables ѱ3(t) and ѱ4(t) and Estimation of the Initial 

Conditions. 

 

Fig. 8. Optimal Control Vα*(t). 

 

Fig. 9. Optimal Control Vβ*(t). 

TABLE. I. PULSE WIDTH 

Pulse width Value [s] 

t1 0.1082 

t2 0.1060 

t3 0.1052 

t4 0.1038 

t5 0.1013 

t6 0.0979 

t7 0.0943 

t8 0.0903 

t9 0.0878 
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Fig. 10. Evolution of Mechanical Angle for Both Methods. 

Fig. 10 shows the evolution of the mechanical angle 
obtained with the optimal control, in continuous line and a 
conventional control in dashed line. In the conventional 
control, the pulses have the same width, optimized to have a 
minimum pulse width. 

The variation of the mechanical angle for the optimal 
control presents a curvature, which is due to the effect of the 
taking into account of the inertia. For the classic control, the 
position is reached more quickly but the motor in this case 
consume more energy. The obtained optimal control offers a 
gain of absorbed power of 5,6%. 

Fig. 11 presents the evolution of the costate variables ψ3(t)  
and ψ4(t) related respectively to the speed  Ω(t) and to the 
position θ (t). The costate variables ψ1(t) and ψ2(t) will have the 
same pace as the switch functions with a difference in 
amplitude due to the terms 1/Lα and 1/Lβ in (8) and (9). 

 

Fig. 11. Costate Variables ψ3(t) and ψ4(t). 

IV. GLOBAL OPTIMIZATION APPROACH 

The application of the Pontryagin's maximum principle 
gives a formulation that allows the automatic generation of the 
optimal control through costate equations. This optimal control 
takes into account all input machine dynamic model 
parameters. Therefore, it is possible to vary the design inputs of 
the machine and find the optimal control for each geometric 
configuration. The idea is to add an optimization loop on 
design parameters. This will give an overall optimization 
approach to design and control. 

A. Global Model and Optimisation Loop 

Fig. 12 describes the interaction between the different 
models, the dichotomy approach and the optimization loop 
whenever both the rotor rings length and the magnet length 
should be opimized. The magnetic model is now coupled to the 
Hamiltonian model. The dichotomy method allows finding 
initial conditions of the costate model. Then an optimization 
loop is applied on the design parameters. 

B. Effet De La Longeur De L’aimant Et Des Coronnes 

In this section, the influence of the rings and magnet length 
on both the energetic performances machine and on the optimal 
control has been studied. 

Fig. 13 describes a section of the rotor and the two design 
parameters that we study. 

An unloaded machine has been simulated for a 5 steps 
displacement, i.e. θ(tf)=0.157[rd], and a final time tf=0.1s. The 
objective function and the constraints on the controls, speed 
and currents have been kept as in the equation (23). However, 
we vary the length of the crown between 8 mm and 22mm, and 
the magnet length between 0.5mm and 1.6mm. An objective 
function denoted Obj’ is defined such that: 

 
0.1

2 2

0
'( ) ( ) ( )

s

Obj t V t V t dt  
          (24) 

Minimizing the objective function Obj’ is the minimization 
of the Obj function. The only difference is that the Obj’ 
function would have a smoother evolution and would be more 
efficient we use a gradient descent. 

Fig. 14 describes the evolution of the function Obj’ as a 
function of lm and lr. 

 

Fig. 12. Resolution Process. 

 

Fig. 13. Rotor Section. 
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Fig. 14. Evolution of Objective Function Obj. 

The evolution of the surface is inversely proportional to the 
magnet thickness. This is explained by the fact that a thicker 
magnet provides a larger magnetomotive force and thus the 
machine needs less energy to turn. 

In the direction of the increase of the length of the crowns, 
the surface is decreasing then increasing this is explained by 
two phenomena. Taking the cases where lm = 0.5mm, there 
exists a value of lr that we note lr

*
 for which the function Obj’ 

is minimal. From this value if the value of lr is decreased there 
will be less interaction between the rotor and the stator and 
therefore the motor will need more energy to turn. In the other 
hand, if from lr

*
,  the value of lr is increased, the inertia of the 

rotor increases and the motor will need more energy to turn. So 
for each value of the magnet thickness there exists a value of 
lm for which the Obj’ function is minimal. This minimum 
presents a compromise between rotor-stator interaction and 
rotor inertia. Fig. 15 describes the evolution of optimal control 
Vβ

*
 as a function of lr Note that the pulse widths are minimal 

for the value lr
*
 which explains the behavior of Obj’. 

C. Global Optimisation Problem 

The purpose here is to find the optimal values of lr and lm 
that minimize the consumption consideration that minimizing 
Obj’ is minimizing Obj. The global optimization problem 
could be written as follows: 
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Fig. 15. Evolution of Optimal Control Vβ*(t). 

The optimization loop is launched on the design with the 
fmincon routine of Matlab

®
. Table II shows the initial and the 

optimal sizing. 

Table III illustrates the objective function and the input 
power for both configurations. 

The optimal sizing provides a gain of 34.6% for input 
power compared to the initial configuration. The obtained gain 
is significant mainly because of the magnet length that has 
increased. 

TABLE. II. INITIAL AND OPTIMAL SIZING 

 Initial sizing Optimal sizing 

Length of rings [mm] 13 11.7 

Length of magnet [mm] 1 1.6 

TABLE. III. OBJECTIVE FUNCTION AND INPUT POWER 

 Objective function Input power [w] 

Initial sizing 13250 5.43 

Optimal sizing 10650 3.55 

V. CONCLUSION 

The main contribution of this paper is to obtain in the same 
process, the minimization of the energy by optimal control and 
the minimization of the energy by optimal sizing. First, a 
magnetodynamic model based on a permeances network was 
developed. Then the Pontryagin Maximum Principle was 
applied to the magnetodynamic model in order to find the 
optimal control minimizing the energy. The application of the 
PMP allows us to explicitly express the command according to 
all model parameters and to have a Hamiltonian model that 
automatically generates optimal control. The study has shown 
that boundary value problem encountered at the resolution 
level of the Hamiltonian model can be solved by a simple 
dichotomy when it is a control problem of an electric machine. 
The results showed a gain of 5.7% compared to a conventional 
control for a given positioning problem. Finally, adding an 
optimization loop on design inputs to give an overall 
optimization approach. 
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