
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 9, 2019

Prediction of Academic Performance Applying NNs:
A Focus on Statistical Feature-Shedding and

Lifestyle

Shithi Maitra1, Sakib Eshrak2, Md. Ahsanul Bari3,
Abdullah Al-Sakin4, Rubana Hossain Munia5, Nasrin Akter6, Zabir Haque7

Dept. of Computer Science and Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh1,2,3,4,5,7

Dept. of Electronics and Telecommunication Engineering, Daffodil International University, Dhaka, Bangladesh6

Abstract—Automation has made it possible to garner and
preserve students’ data and the modern advent in data science
enthusiastically mines this data to predict performance, to the
interest of both tutors and tutees. Academic excellence is a
phenomenon resulting from a complex set of criteria originating
in psychology, habits and according to this study, lifestyle and
preferences–justifying machine learning to be ideal in classifying
academic soundness. In this paper, computer science majors’
data have been gleaned consensually by surveying at Ahsanullah
University, situated in Bangladesh. Visually aided exploratory
analysis revealed interesting propensities as features, whose
significance was further substantiated by statistically inferential
Chi-squared (χ2) independence tests and independent samples
t-tests for categorical and continuous variables respectively, on
median/mode-imputed data. The initially relaxed p-value retained
all exploratorily analyzed features, but gradual rigidification
exposed the most powerful features by fitting neural networks
of decreasing complexity i.e., having 24, 20 and finally 12 hidden
neurons. Statistical inference uniquely helped shed off weak
features prior to training, thus optimizing time and generally
large computational power to train expensive predictive models.
The k-fold cross-validated, hyper-parametrically tuned, robust
models performed with average accuracies wavering between
90% to 96% and an average 89.21% F1-score on the optimal
model, with the incremental improvement in models proven by
statistical ANOVA.
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I. INTRODUCTION

The research field of Educational Data Mining (EDM) ap-
plies statistics and machine learning to information stemming
from educational environments and is thus contributing to edu-
cational psychology. EDM leverages precise, fine-grained data
to discover types of learners, examine effectiveness/suggest
improvements of instructional learning environments, predict
students’ learning behavior and advance learning sciences.
Baker, Yacef [1] critically identified learners, educators, re-
searchers and administrators to be the four stakeholders of
EDM.

The bulk of the academic literature, while addressing
problems from the domain of EDM, has taken past aca-
demic credentials into account. Fewer academicians resorted to

mental health and personality traits. However, the application
of features related to students’ lifestyle and preferences, as
done in this study to predict academic excellence, is a novel
approach to the field. In this study, we choose ten such features
and apply an evidential function—mapping them to students’
expertise in the respective field. The study shows that attributes
apart from academic track-records alone can predict academic
success which can help institutions to foresee the aptitude of
the graduates they are producing, admitting, strategizing for
hiring or educating.

Systematic collection of educational data and ML method-
ologies enable researchers to explore the similarities and dis-
similarities among academically sound and unsound students.
Recent such researches in the EDM arena have gained momen-
tum using Neural Networks (NNs). NNs are surpassing tradi-
tional learning models such as Logistic Regression, Support
Vector Machines in performance—characteristically having
multiple hidden layers with different activation functions. NNs
are versed in fitting complex functions spread through many
dimensions featuring multiple independent variables. Back-
propagation allows refinement of its initial parameters through
numerous epochs, with derivatives showing the direction and
learning rate indicating the magnitude of refinement. The
weights represent a hierarchical mapping from lower (learns
comparatively simpler features) layers to the higher (learns
sophisticated features) layers.

The research work addresses a binary classification prob-
lem in categorizing final-year Computer Science (CS) students
from Ahsanullah University, Bangladesh as of their academic
performance, following the four EDM phases [2]:

• It is generally held that if a CS student is able to
maintain a CGPA ≥ 3.40 until the final semester,
he/she is faring academically well. First, we explorato-
rily choose unconventional, unique features by finding
their consistent relations with CGPA.

• Then the best use of available data is made by imput-
ing both categorical and continuous variables.

• Third, NN models are proposed to predict academic
status.

• The models and features are statistically cross-
validated and finer conclusions are drawn.
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The sequencing of this paper renders the second section as
a review of existing literature, the third section as descriptions
of methods followed, the fourth section as a depiction of
experimental results and the final section as concluding notes.

II. RELATED WORKS

Artificial intelligence-based and statistically analytical
methods (Fig. 1) applied in classifying academic performance
can be discussed in light of three prototypical dimensions as
below.

Fig. 1. Comparison among related researches.

A. Conventional Statistics and Decision Trees

Wilkinson, Zhang et al. [3] conducted a study on 706
undergraduate medical students in three consecutive years at
the University of Queensland with their objective of modestly
determining how precisely each of prior academics, admission
tests and interviews accounted for students’ performance at
post-graduation. These altogether served as the selection crite-
ria which accounted for 21.9% variation in overall scores. They
explored GPA to correlate most strongly with performance (p-
value < 0.001), followed by interviews (p-value = 0.004) and
admission tests (p-value = 0.08), respectively.

Chamorro-Premuzic et al. [4] established through two
longitudinal studies (sample size, n = 70, 75 respectively)
that personality-measures could testify for students’ academic
ability. The setting examined students over three academic
years at two British universities along academic behavior
and personality traits. Sample-1 proved that neuroticism neg-
atively and conscientiousness positively impacted students’
academics, accounting for 10% variance. Sample-2 used EPQ-
R showing three personality factors were instrumental in
predicting academic performance and accounted for 17% vari-
ance.

Yadav et al. [5] explored C4.5, ID3 and CART decision
trees on engineering students’ data to predict final exam’s
scores. They obtained a true positive rate (TPR) of 0.786
on the ‘fail’ class using ID3 and using C4.5 decision trees,
the highest accuracy of 67.77%. Ahmad et al. [6] proved the
impact of demographic information of students spanning eight
educational years in predicting academic success. They found
rule-based classification techniques to fit the data best with
71.3% accuracy.

B. Unsupervised Clustering Approaches

Oyelade et al. [7] analyzed students’ data at a private
Nigerian institution using k-means clustering. The cluster
analysis was combined with standard statistical methods and
a deterministic model was k = 3-fold cross-validated using
different cluster sizes. The study clustered students labeling
them in 5 categories depending on marks’ thresholding. How-
ever, the study utilized typical academic indicators. Shovon et
al. [8] utilized k-means clustering to analyze learning behavior
in terms of quizzes, mids and finals in three classes.

C. Supervised, Parametric Learning Approaches

Bhardwaj et al. [9] applied a Naive Bayes classifier on the
data of 300 students by preprocessing and transforming the
features of raw data. They selected features with probabilities
> 0.5. They classified among four classes: first, second, third
and fail. The study succeeded in finding interesting features
such as living location, mother’s qualifications etc. Naser et al.
[10] devised an NN based on multilayer perceptron topology
and trained it using sophomores’ data of five consecutive engi-
neering intakes. They considered high school scores, scores at
math and circuitry-based courses during freshman-year, gender
among the predictors—gaining 80% accuracy on test-set.

Arora et al. [11] proposed a fuzzy probabilistic NN model
for generating personalized prediction which outperformed
traditional ML models. The personalized results showed cross-
stream generalization capabilities and produced 90%, 96%
and 87.5% accuracies on three ranks upon training over 570
instances. The model converged to an error of 0.0265 and
included interest, belief, family etc. among eighteen features.
Taylan et al. [12] designed an adaptive neuro-fuzzy inference
system (ANFIS), a combination of NN and fuzzy systems,
to enhance speed and adaptability. The new trend in soft
computing produced predictions of students’ academics with
crisp numerics. Mueen et al. [13] took into account academic
participation and scores of two courses and modeled them
to Naive Bayes, NN and decision tree—finding the Bayesian
classifier to provide the highest accuracy of 86%.

III. IMPLEMENTED METHODOLOGY

Ethical collection of students’ data, followed by ex-
ploratory analysis, preprocessing, predictive modeling and
methodical estimation of metrics led to interesting findings
(Fig. 2).

A. Preparation of AUST CS Students’ Data

1) Collection of Final Semester’s Data:

• Questionnaire: Students’ responses were gathered via
a survey containing questions of multifarious forms
including numerical entries, multiple choices and sen-
tential expressions.

• Environmental setting: The subjects were surveyed
using Google forms and the responses were recorded
as structured data. There were multiple phases of data-
collection either in the labs of AUST or within the
comfort of home. No time-constraint allowed subjects
to amply think before responding.
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Fig. 2. Workflow of the proposed prediction of academic performance

• Representativeness: The sample size (also the popu-
lation) of 103 subjects represent the whole CS-batch
and thus the findings may be generalized among
educated youth.

• Consensual usage: A pattern recognition lab-project
was afoot and students contributed with conscious
knowledge and consent to any research thereof.

2) Extraction of Features using Exploratory Data Anal-
ysis (EDA): EDA is the statistical process of summariz-
ing tendencies within different attributes of a dataset, as-
sisted by visualizations. The outcome of data-collection,
AUST CS students.csv, had above 30 features and EDA ex-
tracted insights beyond predictive analysis to hypothesize
features underpinned by data.

A bivariate exploratory visualization (Fig. 3) exposes that
pupils with a high attendance rate are the top-scorers (CGPA:
3.3069) and this gradually falls along low and medium atten-
dance. A multivariate observation shows that learners with the
strongest passion for both sessional and theory are the highest
achievers (CGPA: 3.4398) in terms of academia.

A univariate box-and-whisker exploration (Fig. 4) shows
that learners have a median CGPA of 3.25 and programmers
investing five or more hours daily in coding are rare. In-
terestingly, seniors with lower-than-threshold CGPA tend to
spend more time (2.261 hours) on social media than their
counterparts. The lighter shades of violet tell that either family

Fig. 3. Relationship of interest in theoretical/sessional CS and attendance
(both categorical) with CGPA (continuous)
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Fig. 4. Univariate and multivariate analyses of lifestyle-factors with CGPA

or happiness should probably be present for a brighter CGPA.

Fig. 5. Thresholded CGPA with respect to preferences (class note,
motivation), facts (gender), figures (income)

In another discovery (Fig. 5), class-note taking shows
promise in not only that this being high holds the highest
CGPA-holders but also in that even the lower-than-threshold
students are the highest scorers in their respective category
(CGPA < 3.40). More than half (51.72%) of the females hold
high CGPA, contrary to their male counterparts.

It is a tendency among students to engage in tutoring and
other part-time jobs for self-sufficiency. We find that academi-
cally high-achievers tend to earn more than their peers (Fig. 5).
Another unintuitive but intriguing cross-tabular finding is that
lower-threshold students assert to remain more loyal to their
passion (35.11%) even if motive (money, parents’ satisfaction,
social status) is fulfilled in some other way.

The analyzed attributes clearly show correlations with aca-
demic performance and are thus initially justified as features.
Data has been visualized according to the best practices,
admitting that statistical findings may not always map absolute
reality.

3) Performing Class-specific Data Imputation: The statis-
tical process of assigning inferred values to absent fields in
accordance with existing fields and summary of the dataset
is known as imputation. The AUST CS students.csv file had
numerous blank entries both at categorical and continuous
fields, which were eventually filled with class-specific modes
and medians respectively (Fig. 6).

Fig. 6. Class-specialized mode/median imputation algorithm

4) Feature-validation and Generation of Three Variants of
Dataset: Inferential statistics is generating statistical models
to test hypotheses about a population by producing additional
data and eventually deducing propositions using the said
model. Most statistical inferences signify p-value < 0.05 (a
95% probability of the alternative hypothesis being true), we,
however, relax this condition initially and gradually solidify.

To determine if the association between two qualita-
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TABLE I. INFERRED STATISTICAL SIGNIFICANCE OF FEATURES

Pearson’s χ2-test

discrete features χ2
degrees

of
freedom

p-value

daily hours on FB,
state of CGPA 45.254 1 1.73E-11

classnote-taking tendency,
state of CGPA 18.553 2 9.36E-05

interest in theory,
state of CGPA 4.956 2 8.39E-02

living with family,
state of CGPA 2.7991 1 9.43E-02

interest in sessional,
state of CGPA 2.7272 2 2.56E-01

attendance in class,
state of CGPA 1.978 2 3.72E-01

gender,
state of CGPA 0.2086 1 6.48E-01

motive fulfilled motivation,
state of CGPA 0.59718 2 7.42E-01

Welch Two Sample t-test

continious feature t-score
degrees

of
freedom

p-value

daily programming hours,
state of CGPA 0.21972 36.864 8.27E-01

monthly income,
state of CGPA -0.63789 24.137 5.30E-01

tive variables is statistically significant, we conduct the χ2-
independence test. Firstly, we define the null hypothesis, H◦:
no significant association exists between daily hours spent on
social media and CGPA. Conversely, the alternative hypothesis
is Ha. To find evidence against H◦, we compare the observed
counts with the expected counts using,

χ2 =
∑ (observed− expected)2

expected
(1)

Looking up 45.254 in the χ2-table for 1 degree of freedom,
we find the p-value: 1.731E-11, highly statistically significant.
Other features are analyzed the same way (Table I). The
independent samples t-test is a test to determine whether the
difference between two groups’ (CGPA above or below 3.40)
means are significant. If so, an attribute can constitute a feature,
where the t-statistic is calculated as:

t =
x̄1 − x̄2√
s12

n1
+ s22

n2

(2)

where,
x̄1 = mean of sample-1
x̄2 = mean of sample-2
n1 = number of subjects in sample-1
n2 = number of subjects in sample-2

s1
2 = variance of sample-1 =

∑
(x1−x̄1)2

n1

s2
2 = variance of sample-2 =

∑
(x2−x̄2)2

n2

Not all exploratorily extracted features show a strong
rejection of the null hypothesis. We start out by retaining all
features and gradually drill down to the more significant ones
(e.g., p-value < 0.4 and p-value < 0.1), thus generating three
variants.

5) Normalization of Input Features: Preprocessing man-
dates inputs and parameters to belong to the same range
and scale for fair comparison and for the gradient descent to
converge following an aligned orientation.

Xnew =
X −Xmin

Xmax −Xmin
(3)

The above formula rescaled all numerics (both categorical:
gender, attendance, interest, etc. and continuous: income, daily
hours) within the range [0, 1].

6) Maintained Division of Data and k-fold Datasets:
Standard ML practices have been followed by assigning a
larger set of 80% (83 examples) of total examples for training
and the rest 20% (20 examples) for cross-validation. The
original distribution of data, i.e., 22.33% positive and 77.67%
negative examples, have been maintained throughout training
and test data, in order to eliminate any bias during training or
cross-validation (Fig. 7).

Fig. 7. R script to divide data into an 80%-20% ratio, with the original
distribution as inset

K-fold cross-validation is an independent analysis of a
model’s consistent performance on k different training and val-
idation sets. Running the R script k times provided k differently
permuted datasets due to shuffle before each binding, thereby
allowing the generation of k-fold data.

B. Fitting the Models

1) Determining Suitable NNs and Hyperparameter Tuning:
Continuous and categorical features’ numeric representations
were fed to the input layer, with weighted inputs eventually
propagating through two ReLU-activated hidden layers to the
probabilistic SoftMax output layer (Fig. 8).

Hyperparameters, upon which the most favorable outcome
of a learning model depends besides learnable weights, have
been tuned to the following values.
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Fig. 8. Proposed three-layer neural network models

• Number of layers, neurons: A scarce 83 training
examples demanded a simple two hidden-layered net-
work to avoid overfitting. An identical number of
hidden neurons were chosen to preclude underfitting.
Narrowing the scope to features of greater signifi-
cance, the complexity reduces; e.g. from 24 (Fig. 8(a))
to 20 (Fig. 8(b)), 12 (Fig. 8(c)).

• Number of epochs: 150 for models Fig 8(a, b) and
a larger 550 for Fig. 8(c), to converge to an optimum
set of parameters.

• Learning rate: Depending on epochs, 0.02 for models
Fig. 8(a, b) and as small as 0.001 for Fig. 8(c), in order

to avoid overshooting across minima.

• Size of minibatch: Given the availability of 3.78
GB physical memory, batch gradient descent has been
used.

2) Xavier Initialization of Chosen Models: Xavier initial-
ization was used for delicate initialization of weights in order
to keep them reasonably ranged across multiple layers as:

V ar(W ) =
1

nin
(4)

Where W is the initialization distribution with zero mean
for the neuron in question and nin is the number of neurons
feeding in. The distribution is typically Gaussian or uniform.

3) Defining the Cross-Entropy Loss Function: The cross-
entropy loss has been optimized for the classification problem
with a view to obtaining most optimally refined parameters.
Here we represent the precise cross-entropy [14], summed over
all training examples:

−logL({y(n)}, {ŷ(n)}) =
∑
n

[−
∑
i

yi log ŷ
(n)
i ]

=
∑
n

H(y(n), ŷ(n))
(5)

where n denotes the number of training examples, y(n)

indicates the ground-truth for a separate example, ŷ(n) is
prediction generated by the model and i renders the sequence
of activation within a layer.

4) Minimization of Loss using Gradient Descent: A set of
parameters θ was to be selected in order to minimize loss J(θ).
Gradient descent algorithm [14] initialized θ, then repeatedly
performed the following update.

θj := θj − α
∂

∂θj
J(θ) (6)

This update was parallelly performed for all features, i.e.,
j = 0, 1, ..., n with α being the learning rate. This is a
quite natural algorithm that iteratively took steps towards the
steepest decrease of J(θ). Its implementation required the
partial derivative term to be computed. Considering only one
training example (x, y), we have:

∂

∂θj
J(θ) =

∂

∂θj

1

2
(hθ(x)− y)2

= 2.
1

2
(hθ(x)− y).

∂

∂θj
(hθ(x)− y)

= (hθ(x)− y).
∂

∂θj
(

n∑
i=0

θixi − y)

= (hθ(x)− y)xj

Therefore, θj := θj + α(y(i) − hθ(x(i)))x
(i)
j (7)
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To modify the above for a set of more than one examples,
the statement should be replaced by the algorithm below:

Repeat until convergence {

θj := θj + α

m∑
i=1

(y(i) − hθ(x(i)))x
(i)
j (for every j) (8)

}
5) Adam Optimization to Gradient Descent: Adam is a

first-order gradient-based optimization algorithm for stochastic
objective functions, using adaptive estimates of lower-order
moments. The parameters used for Adam in this study are as
follows:

• α : The learning rate or step size, whose decay is
permissible for Adam, but has not been used.

• β1 : The exponential decay for first-order moment
estimates (e.g. 0.9).

• β2 : The exponential decay for second-order moment
estimates (e.g. 0.999).

• ε : An infinitesimal number to prevent division by 0
in the implementation (e.g. 10E-8).

C. Estimation of Metrics

1) Creation of Computation Graphs: A computation graph
is a collective mathematical function represented using the
frameworks of graph theory. The round nodes indicate op-
erations while the rectangular ones denote operands, with
the directed edges delineating the sequence of mathematical
operations performed.

Fig. 9. (a) Generalized computational graph to determine entries associated
with confusion matrix; (b) Computation graph portraying computation of

accuracy.

TensorFlow’s NN framework requires a computation graph
to be devised before running a session to refine numerics. The
one-hot Boolean representation of class labels has been used

to concoct two bottom-up graphs in order to determine entries
associated (Fig. 9(a)) with confusion matrices and accuracy on
cross-validation set.

After equality-checking, the boolean vector of outputs gave
‘high’s against the examples identified correctly and ‘low’s
against the converse as to having a CGPA above the threshold.
The mean of this data structure rendered the fraction of correct
identification (Fig. 9(b)).

2) Determination of Metrics from Confusion Matrix: In the
domain of statistical classification, a confusion matrix (Fig.
10(a)) is a special type of contingency table with identical
sets of classes in both dimensions—used to account for the
performance of a classification model on cross-validation data
for which the actual labels are available.

Fig. 10. Confusion matrices of our models for some random k-th
cross-validation

Rows of the tabular layout (Fig. 10) represent instances
in an actual class and columns represent predicted labels.
The name originates from its making viable to verify if the
system is confusing the classes. For our binary classification,
we select the popular accuracy, precision, recall and F1-score
as evaluative metrics.

• Accuracy: proportion of actually correct predictions
(both upper and lower-threshold),

accuracy = (TP + TN)/(P +N)

• Precision: proportion of actually correct
CGPA>=3.40 identifications,

precision = TP/(TP + FP )

• Recall: proportion of actual CGPA>=3.40 was iden-
tified correctly,

recall = TP/(TP + FN)
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• F1-score: a trade-off between accuracy and precision,
their harmonic mean,

F1-score = (2 ∗ TP )/(2 ∗ TP + FP + FN)

3) K-fold, ANOVA-tested Validation of Improvement in
Models: Hypothesis-testing technique ANOVA (Analysis of
Variance) tested the incremental improvement of proposed
models’ mean accuracies by examining their variances (each
having k = 5 instances). The samples are random and inde-
pendent, to the fulfillment of ANOVA’s assumptions.

Equality of all sample means is the null hypothesis of
ANOVA. Hence, H◦: µ1 = µ2 = µ3. Thus, the alternative
hypothesis is given as, Ha: The mean accuracies are reliably
unequal. It essentially calculates the ratio:

F = variance between groups / variance within groups

The greater the ratio, the more the likelihood of rejection of
H◦. The results of ANOVA is written in the format F (b, w)
where b and w are degrees of freedoms between and within
groups, respectively.

Here,
b = number of groups – 1
w = total number of observations – number of groups

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The results originating from fitting three models using the
CS students’ data are transcending in that even the lowest
achieved accuracy surpassed orthodox learning algorithms
reviewed in the literature. Application of class-specific median
and mode imputation ensured no shrinkage of the already small
dataset of 103 tuples, leading to the best use of already existing
and further inferred data. Features have been cut down and
models’ complexity has been gradually reduced, all statistically
validated.

For some random k, the cross-entropy loss fell with each
epoch during training the first two models through 150 epochs
with a learning rate of 0.02 (Fig. 11(a, b)). The training was
stopped when the error plateaued to a reasonably small value.
The third model was trained for 550 epochs with a 0.001
learning rate, whose k-fold (k = 5) cooling down of error from
warmer-shaded greater errors are shown in (Fig. 11(c)).

Firstly, we present the 5-fold consistent results fitting the
10-feature model (Fig. 8(a)) on different cross-validation sets
(Fig. 12). The k = 5 cases of a consistent 90% test-accuracy
can be differentiated by optimized training errors. The model
seems to fit training data impressively and is already surpassing
traditional models in accuracy (Fig. 14). All cross-validations
are consistently giving promising F1-scores (greater or equal
to 0.75).

Secondly, we fit another model (Fig. 8(b)) with the same
hyperparameters except that now we extract out 6 most sig-
nificant features as per Table I instead of retainment of all ex-
ploratorily discovered features. This scaled down the model’s
complexity from 24 hidden units to 20. The 5-fold cross-
validations resemble training and testing accuracies closely,

Fig. 11. 10, 6-Feature models’ learning curves and 4-feature model’s
lessening of error with epochs

TABLE II. 5-FOLD CROSS-VALIDATED RESULTS UPON TRAINING THE
4-FEATURED 3-LAYER FINAL MODEL

k-fold
optimized
training

loss

test
accuracy precision recall F1-score

1 0.251543 0.95 1 0.75 0.857143
2 0.247627 1 1 1 1
3 0.258734 0.95 1 0.75 0.857143
4 0.24039 0.95 0.8 1 0.888889
5 0.265609 0.95 1 0.75 0.857143

leading to perfect fitting with test-accuracies as impressive as
the former model (Fig. 12).

Finally, we become more selective by cherrypicking fea-
tures with more stringent p-values < 0.1 (90% chance of the
alternative hypothesis to be true). The network (Fig. 8(c)) thus
deprecated its complexity to just 12 hidden neurons, yielding
comparatively the most promising (Fig. 13) and consistent
(Fig. 12) metrics.

TABLE III. ANOVA-TEST RESULTS VERIFYING THE INCREMENTAL
IMPROVEMENT OF MODELS

ANOVA (Analysis of Variance) test metrics Values
degrees of freedom for numerator (ind) 2

degrees of freedom for denominator (residuals) 12
sum of squares of numerators (ind) 0.012

sum of squares of denominators (residuals) 0.002
mean of squares of numerators (ind) 0.006

mean of squares of denominators (residuals) 0.000167
analysed value 36

p-value, Pr(>F) 8.50E-06

Applying ANOVA on test-accuracy data from Fig. 12 and
Table II, we attempt to test whether the mean accuracies of
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Fig. 12. 5-Fold cross-validated results upon training 10, 6-featured 3-layer models (6-featured 3-layer model better fitting the data by overcoming overfitting)

Fig. 13. Comparison among proposed models’ average performance
measures

the architectures are systematically different or are just due to
sampling errors. The ANOVA results (Table III) show:

F (2, 12) = 36, p-value = 8.50E-06 < 0.05,

leading us to safely conclude, the models have a systematic
effect on the accuracy and similar results can be expected if
further data-points are added.

A comparative analysis (Fig. 13) reveals that the most

Fig. 14. Comparison between our methodology and reviewed literature

optimized model does brilliantly in accuracy, precision and
F1-score. The 6-feature model performs best in terms of
average recall. Deployment of the suitable model should be
done carefully as different models excel differently. Another
comparative study (Fig. 14) manifests that the 3-layer NNs
proposed in this paper outsmart many existing methods utilized
to solve similar problems.

V. CONCLUSION

The curious problem of predicting students’ perfor-
mance has, till date, been addressed using direct predictive
modeling—this paper proves the effectiveness of visually ex-
ploratory and statistical analysis prior to that objective, leading
to the following landmarks.

www.ijacsa.thesai.org 569 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 10, No. 9, 2019

• The study avoids random, carefree, holistic selection
of features by first examining their relevance through
hypothesis testing, thus establishing the importance of
statistical preprocessing.

• The research endorses data-engineered median and
mode imputation in handling missing values, intro-
ducing no outside noise to training data.

• The paper testifies robustness of the incrementally
developed proposed models through k-fold cross-
validated, ANOVA-tested, significant results.

It is recognized that setting the threshold to a CGPA of 3.40
may not epitomize aptitude, which depends on factors external
to the scope of this endeavor. However, this study approves
and incentivizes further researches to consider lifestyle and
personal preferences as useful features towards that end.
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model for prediction of student’s academic performance. Computers &
Industrial Engineering, 57(3):732–741, 2009.

[13] Ahmed Mueen, Bassam Zafar, and Umar Manzoor. Modeling and
predicting students’ academic performance using data mining techniques.
International Journal of Modern Education and Computer Science,
8(11):36, 2016.

[14] Ng, A., 2000. CS229 Lecture notes. CS229 Lecture notes, 1(1), pp.1-3.

www.ijacsa.thesai.org 570 | P a g e


