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Abstract—The trade-off between Energy consumption and 

SLA violation presents a serious challenge in cloud computing 

environments. A non-aggressive virtual machine consolidation 

algorithm is a good approach to reduce the consumed energy as 

well as SLA violation. A well-known strategy to deal with the 

virtual machine consolidation problem consists of four steps: host 

overloading detection, host under-loading detection, virtual 

machine selection and virtual machine placement. In this paper, 

the previous strategy is modified by merging the last two steps 

virtual machine selection and virtual machine placement, to 

avoid any poor solutions caused by solving both steps separately. 

In the host overloading/under-loading detection steps, we 

classified host status into five classes: Over-Utilized, Nearly 

Over-Utilized, Normal Utilized, Under-Utilized and Switched 

Off, then an algorithm, based on the Naive Bayesian Classifier, 

was introduced in order to detect the future host state for 

minimizing the number of virtual machine migrations; as a 

result, the energy consumption and performance degradation 

due to migrations will be minimized. In the virtual machine 

selection and placement steps, we introduced an algorithm based 

on the Random Key Cuckoo Search to reduce the energy 

consumption and enhance the SLA violation. To assess the 

algorithm, real data traces for 10 days, were used to verify the 

proposed algorithms. The experimental results proved that the 

proposed algorithms can significantly reduce the consumed 

energy as well as the SLA violation in data centers. 

Keywords—Cloud computing; Naive Bayesian classifier; 

Random Key Cuckoo Search; Energy-efficiency; SLA-aware; 
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I. INTRODUCTION 

Pay-as-you-go basis [1] [2] has increased demand in Cloud 
computing (CC), especially after the important role played by 
big data and the internet of things (IOT). In addition, Cloud 
datacenters consume huge energy, which is mostly produced 
by non-green energy, resulting in a lot of carbon emissions as 
well as a high service cost. According to the United States 
Data Center Energy Usage Report in 2016, in 2010, the energy 
consumed by U.S data centers constituted about 2% of the 
global energy consumption [3]. Additionally, a six-month 
study that was conducted by Barroso & Hölzle (2007) showed 
that 5000 physical machines (PMs) used nearly around 10-
50% of their total capacity [4]. 

A non-aggressive virtual machine (VM) consolidation is a 
good approach for reducing energy consumption with 

attention to the SLA violation (SLAV). VM consolidation is 
the technique of reallocating virtual machines (VMs) on PMs, 
subject to minimizing the used resources while keeping the 
other resources in the sleep mode. Nonetheless, one problem 
arises, i.e. the VM consolidation issue is an NP-Hard problem 
[5]. To solve the VM consolidation problem Beloglazov & 
Buyya (2012) proposed an effective strategy, consisting of 
four steps [6]: host overloading detection (HOD), host under-
loading detection (HUD), VM selection (VMS) and VM 
placement (VMP). This strategy has been used by most 
researchers to handle the VM consolidation problem. 
However, this research found that the week point of this 
strategy is that it solves both VMS and VMP problems 
separately, which ultimately produces a poor solution. 
Therefore, in this study, the aforesaid strategy has been 
modified through merging the steps of VMS and VMP into a 
single step. The work in [7], [8] has shown that there is a 
linear relationship between CPU utilization and power 
consumption. Thus, in the HOD & HUD detection, it is 
proposed, using the PM State detection based on the Naive 
Bayesian classifier (PMSDNBC) [9], to detect the future state 
of the PM, based on the past CPU historical usage. 

Within this study, the PM status is classified into five 
classes: Over-Utilized (OU), Nearly Over-Utilized (NOU), 
Normally Utilized (NU), Under-Utilized (UU) and Switched 
off (SO). The proposed prediction model will help in 
minimizing the VM migration, resulting in minimizing the 
energy consumption as well as performance degradation due 
to migrations. For VMS and VMP, a new algorithm called 
VM selection and placement using Random Key Cuckoo 
search (VMSPRKCS), was proposed to handle both VMS and 
VMP steps. Random Key Cuckoo Search (RKCS) [10] is a 
novel approach using Cuckoo Search (CS) [11], based on 
random keys encoding schema (RKES) [12]. CloudSim [13], 
with a real data set presented from PlanetLab [14], has been 
used to evaluate the proposed algorithm, and the experimental 
results showed that the proposed algorithm significantly 
reduces the consumed energy as well as SLAV. 

The rest of the paper is organized as follows: the related 
work is to be discussed in Section II, a power consumption 
model in Section III, the Random Key Cuckoo Search concept 
in Section IV, the proposed overload detection as well as VM 
selection and placement algorithms in Section V, Simulation 
Setup and Results in Section VI. 
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II. RELATED WORK 

Since VM consolidation problem is regarded as an NP-
Hard problem, it remains an interesting area for researchers, 
who need to work a lot more towards achieving optimization. 
Some approaches have used bin-packing optimization 
algorithms to handle the problem. Shi, Furlong and Wang [15] 
proposed a greedy algorithm based on the First-fit Decreasing 
(FFD) algorithm in attempts to reduce the energy consumed 
by datacenters. FFD has been widely used to find a near 
optimal solution to the vector pin backing problem. However, 
the proposed algorithm has a high performance, it can easily 
be stuck in a local optimum. 

Keller, Tighe, Lutfiyya and Bauer [8], proposed new six 
placement policies based on combinations of order strategies 
for VMs and PMs. For PMs, they used 3 order strategies: (1) 
Increasing, which orders the partially-utilized and 
underutilized PMs in an increasing order according to the 
CPU utilization; (2) Decreasing, which orders the partially-
utilized and underutilized PMs in a decreasing order according 
to the CPU utilization; and (3) Mixed, which orders the 
underutilized PMs in a decreasing order and the partially-
utilized hosts in an increasing order according to the CPU 
utilization. For VMs, they only used two strategies: (1) the 
Decreasing strategy to order all VMs in a decreasing order 
according to the CPU load; and (2) the Increasing strategy to 
order all VMs in an increasing order according to the CPU 
load. The DCSim simulator [16], [17] has been used to 
evaluate the proposed policies, and the results showed that 
ordering PMs in a decreasing order and VMs in an increasing 
order according to the CPU utilization performs better in 
terms of the energy reduction than the other proposed policies. 

Some other approaches have used Artificial Intelligence 
(AI) prediction models to predict the future PM state in 
attempts to reduce the energy consumption, the number of VM 
migrations and performance degradation due to migration. Lei 
Qiao,Bo Liu,Yang Hua,Qing Zhao & Xiong Fu [18], presented an 
algorithm based on the Genetic Expression Programming 
(GEP) [19] to consolidate VMs according to historical data. 
The algorithm focuses only on 2 steps, VM selection and VM 
placement. The algorithm carries out dynamic VM migrations 
for overloaded PMs and under loaded PMs, taking into 
consideration the proposed prediction model. The algorithm is 
compared to the most common algorithm Power- aware Best-
fit Decreasing (PABFD) algorithm [6], and the results showed 
that the presented algorithm has a significant improvement in 
Service Level Agreement Time per Active Host (SLATAH) 
and in minimizing the number of virtual machine consolidations. 

Lianpeng Li,Jian Dong,Decheng Zuo & Jin Wu [20] built a 
prediction model based on Robust Simple Linear Regression 
(RobustSLR) to detect the future CPU utilization of hosts; 
then, they proposed overload/under load detection and VMP 
algorithms based on the proposed prediction model. In the 
VMP, they modified the PABFD algorithm in order to check 
the future host state using the proposed prediction model; in 
case, PM future state will be overloaded, and thus no VMs 
will be migrated to it. The proposed algorithm was assessed 
by the CloudSim toolkit with a real data presented from 
PlanetLab, and the results showed that the presented algorithm 
could reduce the energy consumption by at most 25.43% and 

SLA violations by at most 99.16%, compared with PABFD 
and the most common VM state detection & selection policies. 

Lianpeng Li,Jian Dong,Decheng Zuo & JIaxi Liu [21] 
proposed a prediction model based on the Simple Bayesian 
Classifier to detect the future host state. They used the mean 
function to convert the CPU utilization history for the last 
hour, and then used them as the Bayes features and the host 
states (overloaded or not overloaded) as Bayesian Classifier 
labels. Then, they calculated the posterior probability using 
the prior probability and condition probability, and then the 
classifier predicted that that input vector belonged to the class 
having the highest posterior probability. The algorithm has 
been compared with the most common PDFA algorithm, and 
the results showed that the proposed algorithm performed 
better in terms of energy consumption and SLAV than did PDFA. 

Other approaches have used meta-heuristic algorithms to 
find a near optimal solution. Dabiah Ahmed Alboaneen, 
Huaglory Tianfield & Yan Zhang [22], applied the Glowworm 
Swarm Optimization (GSO) Algorithm for the VMP problem. 
They used a CloudSim toolkit with real data presented from 
PlanLab to assess the algorithm. The results showed that GSO 
can perform better than many common placement policies. 
Khaoula BRAIKI & Habib YOUSSEF [23], proposed a multi-
objective algorithm based on the Particle Swarm Optimization 
(PSO) algorithm to improve resource utilization while 
minimizing the energy consumption. Sanaz Tavakoli-Someh 
& Mohammad Hossein Rezvani [24], proposed a multi-
objective NSGA-II meta heuristic algorithm to handle the 
objectives of: (1) maximizing the resources utilization; and 
(2) minimizing the number of used PMs. The experimental 
result showed that the proposed algorithm performed better 
than such basic approaches as the FFD algorithm and the best-
fit decreasing (BFD) schemes. 

Another statistical analysis approach, based on historical 
data, has been proposed by Beloglazov and Buyya [6]. It 
provides four overload host detection policies: Local 
Regression (LR), Median Absolute Deviation (MAD), Robust 
Local Regression (RLR) and Interquartile Range (IQR), in 
addition to 3 selection policies: Minimum Migration Time 
(MMT), Random Selection (RS) and Maximum Correlation 
(MC). The CloudSim simulator with PlanetLab traces has 
been used to evaluate the proposed overload state detection 
and VM selection policies. As shown by the results, the LR 
overload detection policy with MMT selection policy 
significantly surpasses the other policies in reducing SLAV 
and the number of VM migrations. That is why we considered 
LR_MMT 1.2 as the benchmark and compared the proposed 
approach in this research with it using the same traces 
provided from PlanetLab. 

III. POWER CONSUMPTION MODEL 

According to different studies, the most energy consumed 
by servers is mostly consumed by the CPU rather than other 
resources [7], [25]. Hence, for simplicity, we can represent the 
PM energy consumption with its CPU utilization. We used a 
real power consumption data model, illustrated in Table I 
provided by SPEC power [26] for two servers, HP ProLiant 
ML110 G4 and HP ProLiant ML110 G5, to calculate the 
energy consumption. 
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TABLE. I. SPECPOWER POWER CONSUMPTION OF TWO SERVERS: HP 

PROLIANT G4 & G5 AT DIFFERENT LOAD LEVELS IN WATTS 

CPU  HP ProLiant G4 HP ProLiant G5 

0% 

10% 

20% 
30% 

40% 

50% 
60% 

70% 

80% 
90% 

100% 

86 

89.4 

92.6 
96 

99.5 

102 
106 

108 

112 
114 

117 

93.7 

97 

101 
105 

110 

116 
121 

125 

129 
133 

135 

IV. THE RANDOM KEY CUCKOO SEARCH (RKCS) CONCEPT 

The RKCS is a novel approach of Cuckoo Search Meta-
heuristic algorithms based on a random key encoding schema. 
It is very effective in the combinatorial problems, as it will be 
used to apply Lévy flight on the old solution to generate a new 
cuckoo solution from it. 

A. Cuckoo Search (CS) 

The CS is a population based meta-heuristic optimization 
algorithm inspired by the natural behavior of cuckoo birds. It 
was presented by Xin-She Yang and Suash Deb in 2009. 
When cuckoo birds want to lay eggs, they do not build their 
own nests, but they rather use some other birds’ nest. In case 
that other bird discovered that those eggs were not their own, 
it would either throw them or abandon its nest and build 
another one elsewhere. Below are the laws CS: 

1) Number of hosts is fixed. 

2) A nest can host only one egg. 

3) Each parasitic egg represents a solution in the search 

space. 

4) The transaction of generating a new solution (Cuckoo 

one) from old solution is accomplished using Lévy flight. 

5) Height quality solutions with good fineness values will 

be carried forward to the next generation. 

6) There is a probability pa [0, 1] to discover the parasitic 

foreign egg by the host bird. 

7) For a cuckoo i, the new parasitic cuckoo (solutions) 

Xi(t+1) generated by using Lévy flight using Equation #1 

where α > 0 is the step size, and product ⊕ means entry-wise 

multiplication. 

8) Lévy flight is a random step length in a random angle in 

which the random step length is generated from the Lévy 

distribution using equation #2. 

x(t+1) = x(t) + α ⊕  Levy(λ)                (1) 

Lévy ~ u =  x−λ, (1 < λ < 3)                (2) 

B. Random-Key Encoding Scheme (RKES) 

The RKES is a transformation technique which is used to 
represent a vector in a continuous search space in a 
combinatorial form. The conception of RKES is to generate a 
random weight value from [0, 1] to each item in the array 
vector, and then order it in an ascending order according to the 
weight values. Table II illustrates a sample RKES. 

TABLE. II. RANDOM-KEY ENCODING SCHEME (RKES) 

WEIGHTS 0.8 0.6 0.7 0.3 0.1 0.4 

DECODED AS 6 3 4 2 4 7 

V. PROPOSED OVERLOAD / UNDERLOAD DETECTION, VM 

SELECTION AND VM PLACEMENT ALGORITHMS 

An effective strategy proposed by Beloglazov and Buyya 
(2012) [6] to deal with the VM consolidation problem consists 
of the following four steps: 

1) Host Overloading Detection (HOD): to detect the 

overloaded PMs; some VMs must be migrated from them to 

eliminate SLAV. 

2) Host Under-loading Detection (HUD): to detect PMs 

with low utilization resources; all VMs must be migrated from 

them if possible, and switch them into the sleep mode. 

3) Virtual Machine Selection (VMS): responsible for 

selecting some VMs from overloaded PMs in order to migrate 

them to another suitable PMs. 

4) Virtual Machine Placement (VMP): responsible for 

finding a new suitable PMs for the selected VMs. 

In this research, we merged the steps, VMS and VMP into 
one to avoid any poor solution resulting from solving both 
separately. In the HOD & HUD steps, a prediction algorithm 
based on the Naive Bayesian Classifier is proposed to predict 
the future host state for minimizing the VMs migrations. In 
the VMS and VMP steps, we proposed an algorithm based on 
the RKCS to reduce the energy consumption and SLAV. 
Solution construction, host state prediction model, and the 
proposed VM selection as well as placement policy are 
discussed in the following sections. 

A. Solution Construction 

Assume that we have n VMs and m PMs; in the context of 
VM consolidation problem and RKCS, a single egg solution Si 
is represented by: the VMs random Keys (VMRKi), the PMs 
random keys (PMRKi) and the VM migrations mappings 
(VMMMi), which are constructed as shown in Tables III, IV 
and V, respectively. 

Each element in VMRKi will have a VM index (VMIi) and 
VM weight value (VMWi). Each item in PMRKi will have: 
PM Index (PMIi), PM Status weigh value (PMSWi) and PM 
weight value (PMWi). Finally, VMMMi represents the 
placement mappings; each value in the array represents a PM 
index to which will the VM will be placed. For instance, if the 
second element of array is 7, then the second VM will be 
migrated to PM of index 7. 

TABLE. III. VIRTUAL MACHINES RANDOM KEY 

VMI1 VMI2  VMI3 VMI4 … VMIn 

VMW1 VMW2  VMW3 VMW4 … VMWn 

TABLE. IV. PHYSIAL MACHINES RANDOM KEYS 

PMI1 PMI2 PMI3 PMI4 … PMIm 

PMSW1 PMSW2 PMSW3 PMSW4 … PMSWm 

PMW1 PMW2 PMW3 PMW4 … PMWm 
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TABLE. V. VIRTUAL MACHINES MIGRATION MAPPINGS 

VM1 VM2 VM3 VM4 … VMn 

PMI1 PMI2 PMI3 PMI4 … PMIn 

B. Physical Machine State Prediction Model using Naive 

Bayesian Classifier (PMSDNBC) 

The study presented by Haikun Liu, Hai Jin, Cheng-Zhong 
Xu & Xiaofei Liao [27], stated that live migration is not free, 
and that is why predicting the PM future state will play a 
significant role in minimizing the number of VM migrations, 
resulting in minimizing energy consumption and performance 
degradation due to the migration. In this research, a new 
algorithm called PM state predection using Naive Bayesian 
classifier (PMSDNBC) was introduced to detect the future 
host state. The Naive Bayesian classifier is an AI machine 
learning model used to classify different objects based on 
certain features. In the current research, the model is used to 
predict the PM future state according to the past CPU 
utilization history. For the classifier features, we constructed 
n+1 dimensional feature vector using the latest CPU 
utilization history CPUt, CPUt-1, CPUt-2, CPUt-3, CPUt-4.. 
CPUt-n+1 in the time t, t-1, t-2, t-3, t-4 … t-n+1 for the last n 
preceding points. Then, we got input vector F = [CPUt, CPUt-

1, CPUt-2, CPUt-3, CPUt-4... , CPUt-n+1], and basically, as we 
need to detect the future state of PM, we used the PM states as 
the Bayes classifier labels. In most researches the PM status is 
classified into the following three states: (1) Over-Utilized, (2) 
Under-Utilized and (3) Switched Off. For the Over-Utilized 
PMs, some VMs must be migrated from them to other non 
Over-Utilized PMs in order not to elimnate the SLA. For the 
Under-Utilized PMs, all PMs must be migrated from them, if 
possible, in order to switch them to the sleep mode. In this 
reserach we found the below weak points in this classification: 

 PMs which will accept migrations from the Over-
Utilized PMs and PMs from which all VMs must be 
migrated, if possible, are both treated as "Under-
Utilized". 

 In the previous classification, there is no state to 
describe the PMs which are not Over-Utilized and are 
not able to accept new migrations, as they are near to be 
Over-Utilized. 

For this reason, in this research we classified the PM 
statuses into the below five classes: 

1) Over-Utilized (OU): PMs which are over utilized, so 

some VMs must be migrated from them in order not to violate 

SLA. 

2) Nearly Over-Utilized (NOU): PMs which are near to be 

over-utilized. These types of PM will not accept any 

migrations nor migrate VMs from them. 

3) Normal Utilized (NU): PMs which fall between nearly 

over-utilized and underutilized thresholds. These types of PMs 

will accept new migrations but not VMS will be migrated from 

them. 

4) Under-Utilized (UU): PMs which are underutilized; all 

VMs hosted on these PMs should be migrated away to other 

suitable PMs if possible, then switch these UU PMs to the 

sleep mode. 

5) Switched Off (SO): Switched off PMs. 

Accordingly, classifier labels will be L = {OU, NOU, NU, 
UU, SO}. Static threshold values based on the experimental 
results have been used to identify: OU, NOU, NU, UU and SO 
thresholds; the values are illustrated in Table VI. Classifier 
dataset is constructed according to the below rules: 

1) In case the CPU utilization value equals 0, the value of 

“SO” label will be set to 1 and the other labels will be set to 

minimum product effect value (MPEV). 

2) In case the CPU utilization value is greater than the 

over-utilized threshold, the value of the “OU” label will be set 

to 1 and the other labels will be set to MPEV. 

3) Otherwise, we will calculate the percentage of how far 

the current state from the upper and lower thresholds using 

equations #3 & #4 and the reset labels are set to MPEV. 

VUTi =  
(UPT−LWT)−(UPT−CPUi)

(UPT−LWT)
                (3) 

VLTi =  
(UPT−LWT)−(CPUi−LWT)

(UPT−LWT)
                (4) 

Where UPT is the upper threshold value, LWT is the lower 
threshold value, VUTi is the value of state i for the upper label 
and VLTi is the value of state i for the lower label. 

Algorithm 1: PMSDNBC 

Input: CPU Utilization History 

Output: Host State 

1. n = 10; minValue=0.0001; 

2. For i =0 to n − 1 do 

3. F[i] = cpuUtilizationHistory [n − i − 1]; 

4. IF F[i] == 0 Then 

5. Set switchedOffValues[i] =1; 

6. Set Other Values to minValue; 

7.  Else If F[i] > overUtilizedThreadShold Then 

8.   Set overUtilizedValues [i] =1; 

9.   Set Other Values to minValue; 

10. Else  

11. Calculate VUTi value equation #1; 

12. Calculate VLTi value equation #2; 

13.   Set other labels values to minValue; 

14.  End If; 

15. Calculate P(x | OU), P(x | NOU), P(x | NU), P(x | UU) 

& P(x | SO) using equation #5. 

16. Return state of highest probability 

TABLE. VI. STATIC THRESHOLDS VALUES 

THRESHOLD RANGE 

OVER-UTILIZED CPU >= 0.8 

NEARLY OVER-UTILIZED 0.8 > CPU >=0.78 

NORMAL UTILIZED 0.78> CPU >=0.5 

UNDER-UTILIZED 0.5> CPU > 0 

SWITCHED OFF CPU = 0 
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The value 0.00001 has been used as MPE, first, to avoid 
zero values generated from product operation and second, 
because it has lower effect in the product operation. 

Finally, for each label l in L, the probability of P (x|l) is 
calculated using equation #5 and according to the Naive 
Bayesian Classifier, PM state will be classified as the state 
with the highest probability. 

 p(x|l) =  ∏ P(fi|l)n
i=1                      (5) 

P(fi|l) =  
P(fi ⋂ l)

P(l)
                        (6) 

C. Virtual Machine Selection and Placement using Random 

Key Cuckoo Search (VMSPRKCS) 

VMS & VMP is the process of selecting some VMs from 
over-utilized and under-utilized PMs and finding a new 
placement for them. In this research, an algorithm based on 
RKCS is proposed to handle the two steps VMS & VMP into 
one step to avoid producing a poor solution resulting from 
solving both steps separately. First, we detect the state of all 
PMs using the proposed algorithm PMSDNBC. Then, we 
added all VMs of over-utilized and under-utilized PMs into 
one dimensional vector VMs = [V1, V2, V3 … Vn]. For the 
over-utilized PMs, we will migrate some VMs from them in 
order to not to violate SLA; for the under-utilized PMs, all 
VMs will be migrated from them if possible in order to switch 
them to the sleep mode. Since RKCS is a population based 
algorithm, we will have n solutions S = [s1, s2, s3 … sn], and 
for each solution si, we will have VMRKi and PMRKi. The 
idea behind VMSPRKCS is consists of the below steps: 

1) Detect the status of all PMs using PMSDNBC 

algorithm. 

2) Add all VMs of over-utilized & under-utilized PMs into 

one dimensional array SVMs = [VM1,VM2,….VMn]. 

3) Assigning a weight value for each VM in SVMs, either 

generated randomly between [0-1] or by Lévy using equation 

#1 when generating a cuckoo egg from an old one. 

4) Assigning a weight value and a status weight value for 

each PM. The PM weight value is either generated randomly 

between [0-1] or by Lévy using equation #1 from an old 

solution. The PM status weight value is generated according to 

Table VII. 

5) Sorting VMs in SVMs array in an ascending order by 

the weight value 

6) Sorting PMs in an ascending order by the status weight 

value then by the weight value. 

7) Each VM will be allocated to the first PM fitting for it, 

which will not be overloaded after the migration. 

8) In case the status of the old PM, from which the VM is 

migrated, changed from “Over-Utilized” to any new status, 

then the remaining VMs on the old PM added to an excluded 

list in order to skip their migration. 

9) In case the status of the new PM, to which the VM is 

migrated, changed to any new status, then new PM status 

weight value is recalculated based on PMSDNBC algorithm 

and Table VII, then all PMs are reordered in an ascending 

order by their status weight value then by the weight value. 

TABLE. VII. PM STATUS WEIGHT INDEX MAPPINGS 

STATUS STATUS WEIGHT VALUE 

NORMAL UTILIZED 1 

UNDER-UTILIZED 2 

SWITCHED OFF 3 

NEARLY OVER-UTILIZED 4 

OVER-UTILIZED 5 
 

Algorithm 2: VMSPRKCS 

Input: PmList, VmList 

Output: VMs migration mappings 

1. For i=0 to PmList.length Do 

2. Let pmStatus = getHostStatus(pmList [i]) 

3. If pmStatus==’Over-Utilized’ or pmStatus==’Under-

Utilized’ then 

4. vms.add(pmList [i].getVmList()); 

5.  End If 

6. End for 

7. return FindBestAllocation(PmList, vms); 
 

Algorithm 3: FindBestAllocation 

Input: PMs, VMs 

Output: VMs migration mapping 

1. n=10; 

2. Generate an initial population of n host nests; 

3.  While (iterations < maxIteration) do 

4. Get a cuckoo randomly solution Si by L´evy flights 

5. ApplyPlacement (pms, vms, Si) 

6. Calculate Fi quality of Si  

7. Choose a nest among n (say, j) randomly  

8. If (Fi > Fj ) then 

9. replace j by the new solution;  

10. end 

11.   A fraction (pa) of worse nests is abandoned and new ones 

are built. 

12.   Keep the best solutions  

13.   Rank the solutions and find the current best 

14.  End while 

15. Return best; 
 

Algorithm 4: ApplyPlacement 

Input: PMs, VMs, S 

1. Sort S.VMRK in ascending order by Weight Value 

2. Sort S.PMRK in ascending order according by Status 

Weight value then by Weight Value 

3. Let VMRK = S.VMRK 

4. For i=0 to VMRK .length do 

5. Let vm = VMs[VMRK[i].index]; 

6. If ExcludedVMs .contains(vm) then 

7. Continue; 

8. End If 

9. Let pm = vm.getHost(); 

10. Let pmPreStatus = PMSDNBC(pm); 

11. pm.vmDestroy(vm) 

12. Let pmPostStatus = PMSDNBC(pm); 

13. IF pmPreStatus == "Over Utilized" and 

pmPostStatus!=  "OverUtilized" then 

14. ExecludedVms.addAll(pm.getVmList()); 

15. End If  

16. FindFirstFittingPm(PMs, vm, S) 

17.  End For 

 End For 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 1, 2020 

86 | P a g e  

www.ijacsa.thesai.org 

Algorithm 5: FindFirstFittingPm 

Input: PMs, VM, S 

Output: PM 

1. Let selectedPm = null; 

2. Let PMRK = S. PMRK; 

3. For j=0 to PMRK .length do 

4. Let pm = pms[PMRK[i].index]; 

5. If isHostOverUtilizedAfterAllocation(pm,VM) then 

6. continue; 

7. Else 

8. Let pmPreStatus = PMSDNBC(pm);  

9. pm.vmCreate(vm); 

10. Let pmPostStatus = PMSDNBC (pm); 

11. If pmPreStatus!= pmPostStatus then 

12. Get pm  weight status value using PMSDNBC 

and Table VII; 

13. Sort PMRK in ascending order according by 

Status Weight then by Weight Value; 

14. End If 

15. selectedPm  = PM; 

16. break; 

17. End If 

18. End For 

19. Return selectedPm  ; 

VI. SIMULATION SETUP AND RESULTS 

Performance metrics, Simulation setup & Experimental 
results are discussed in the following sections. 

A. Performance Metrics 

The following metrics have been considered to evaluate 
the proposed algorithm: 

1) Energy consumption: it refers to the total energy 

consumed by all PMs in the datacenter, where the PM energy 

consumption is calculated according to a real data power 

consumption model provided by the SPEC power benchmark. 

Table I illustrates the energy consumption of two different 

PMs, HP G4 and HP G5, at different CPU load levels. 

2) Service Level Agreement Violation (SLAV): As 

proposed in [6], SLAV can be measured in IaaS for two main 

factors: (1) SLA violation time per active host (SLATAH) 

resulting from the CPU utilization is of 100% and (2) the SLA 

violations resulting from performance degradation due to 

migration (PDM). The SLAV factors can be calculated using 

equations #7. 

SLAV = SLATAH ∗ PDM                   (7) 

SLATAH =
1

m
∑

Tok

Tak

m

k=0
                     (8) 

Where m is the number of PMs, Tok is the total time in 
which the PM had an over-utilized status, resulting from the 
100% CPU utilization and Tak is the total time of the PM for 
being in the active state. 

PDM =
1

n
∑

Cdk

Crk

n

k=0
                      (9) 

Where n is the number of VMs, Cdk is the estimated 
performance degradation of the VM k due to migrations and 
Crk is the total requested CPU capacity by the VM j. 

1) ESV: as the research target is to balance the trade-off 

between the SLA violation and energy consumption, it is 

important to consider this metric. It is simply calculated as the 

product of SLAV and energy consumption 

𝐸𝑆𝑉 = 𝑆𝐿𝐴𝑉 ∗ 𝐸𝑛𝑒𝑔𝑟𝑦_𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛          (10) 

2) Number of VM migrations: it refers to the total number 

of VM migrations occurred over all the datacenter. 

3) Shutdown hosts: it refers to the total number of PMs 

switched to the switched off mode over all the datacenter. 

B. Simulation Setup 

To evaluate the proposed algorithm, we used the 
CloudSim 3.0.3 toolkit simulator. Cloudsim is a well-known 
common simulator that supports different policies for host 
overload detection, VM selection and VM placement. It also 
provides different types of workload as well as several cloud 
metrics calculation, such as: Energy Consumption, SLAV, 
number of VM migrations, PDMA, SLATAH and number of 
host shutdowns. Furthermore, we used real workload traces 
from a real system (PlanetLab data). PlanetLab is the 
monitoring part of the CoMon project. It monitored CPU 
utilizations for more than thousand VMs hosted at more than 
500 PMs which were collected during March and April 2011. 
Each day in the traces has a file for each VM, containing 288 
values which represent the VM CPU utilization value [0-100] 
every 5 minutes during the day. Traces characteristics are 
represented in Table VIII. A datacenter comprising 800 
heterogeneous PMs and more than 1000 VMs was simulated; 
half of the PMs were HP ProLiant ML110 G4 (Intel Xeon 
3040, dual-core 1860 MHz, 4 GB, 1 Gbps) and the rest are HP 
ProLiant ML110 G5 (Intel Xeon 3075, dual-core 2660, 4 GB, 
1 Gbps). For the VMs, four types were used, corresponding to 
Amazon EC2 [27] illustrated below: 

1) Micro instance (613MB, 500 MIPS). 

2) Small Instance (1.7 GB, 1000 MIPS). 

3) Extra-large Instance (3.75 GB, 2500 MIPS). 

4) High-CPU Medium Instance (0.85 GB, 2500 MIPS). 

C. Experimental Results 

Traces with heterogeneous states for real cloud datacenter 
presented from PlanetLab illustrated in Table VIII have been 
used to evaluate the algorithm. A study presented by 
Beloglazov and Buyya [6], stated that lr_MMT 1.2 performs 
better than other dynamic VM consolidation algorithms, so we 
considered it as the benchmark and compared our proposed 
algorithm with it. The results are illustrated in Fig. 1, 2, 3, 4, 
5, 6 and 7. The experimental results show that the proposed 
algorithm can highly reduce the below metrics: 

1) Energy consumption reduced by minimum 17.7%, by 

maximum 28.6% and with average 24.23%, compared with 

lr_MMT 1.2. 
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2) SLAV reduced by minimum 93.52%, by maximum 

96.89% and with average 95.35%, compared with lr_MMT 

1.2. 

3) ESV reduced by minimum 95.5%, by maximum 

97.56% and with average 96.5%, compared with lr_MMT 1.2. 

4) The number of VM migrations reduced by minimum 

88.07%, by maximum 90.85% and with average 89.3%, 

compared with lr_MMT 1.2. 

5) PDM reduced by minimum 77.78%, by maximum 

88.89% and with average 86.3%, compared with lr_MMT 1.2. 

6) SLATAH reduced by minimum 60.08%, by maximum 

81.9% and with average 71.07%, compared with lr_MMT 1.2. 

7) Number of host shutdowns reduced by minimum 

80.27%, by maximum 88.31% and with average 84.38%, 

compared with lr_MMT 1.2. 

Finally, we ran the experiment for 10 times and calculated 
the median value, displaying it in terms of each performance 
metrics. 

TABLE. VIII. PLANETLAB WORKLOAD TRACES CHARACTERISTICS 

Date No of Virtual Machines Mean-Load (%) 

03/03 

06/03 
09/03 

22/03 

25/03 
03/04 

09/04 

11/04 
12/04 

20/04 

1052 

898 
1061 

1561 

1078 
1463 

1358 

1233 
1054 

1033 

12.31 

11.44 
10.70 

9.26 

10.56 
12.39 

11.12 

11.56 
11.54 

10.43 

 

Fig. 1. Comparison of Energy Consumption. 

 

Fig. 2. Comparison of SLAV*0.0001. 

03/03 06/03 09/03 22/03 25/03 03/04 09/04 11/04 12/04 20/04
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Fig. 3. Comparison ESV. 

 

Fig. 4. Comparison of Number of VM Migrations. 

 

Fig. 5. Comparison of PDM. 

03/03 06/03 09/03 22/03 25/03 03/04 09/04 11/04 12/04 20/04
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Fig. 6. Comparison of SLATAH. 

 

Fig. 7. Comparison of Number of Host Shutdowns. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, a hybrid algorithm based on the Naive 
Bayesian Classifier and the Random Key Cuckoo Search is 
introduced to balance the tradeoff between the energy 
consumption and SLA violation. In addition, we modified the 
most common strategy for handling the VM consolidation by 
merging VM selection and placement steps into one to avoid 
any poor solution that may arise due to solving each of the two 
steps alone. We used Naive Bayesian Classifier to detect the 
future PM state in order to minimize the VMs migration, 
resulting in reducing energy, SLAV as well as performance 
degradation due to migration. We used Random Key Cuckoo 
Search to handle the VM selection and placement steps. In 
addition, CloudSim has been used with real traces provided 
from PlanetLab to evaluate the proposed algorithm compared 
with the benchmark algorithm lr_MMT 1.2 and the results 
have shown that the proposed algorithm can reduce the energy 
consumption by 24.23%, SLAV by 95.35%, ESV by 96.5%, 

the number of VM migrations by 89.3%, PDM by 86.3%, 
SLATAH by 71.07% and the number of host shutdowns by 
84.38%. In this research, the objective function was 
considered based data center energy consumption only; in the 
future we are interested in calculating the objective function 
according to multiple objective metrics and comparing it with 
other meta-heuristic algorithms as well as more real datasets.  
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