
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

81 | P a g e

www.ijacsa.thesai.org

Hybrid Algorithm Naive Bayesian Classifier and

Random Key Cuckoo Search for Virtual Machine

Consolidation Problem

Yasser Moaly1

Department of Computer Science

Faculty of FCAI Cairo University, Cairo, Egypt

Basheer A.Youssef2

Doctor, Department of Computer Science

Faculty of FCAI Cairo University, Cairo, Egypt

Abstract—The trade-off between Energy consumption and

SLA violation presents a serious challenge in cloud computing

environments. A non-aggressive virtual machine consolidation

algorithm is a good approach to reduce the consumed energy as

well as SLA violation. A well-known strategy to deal with the

virtual machine consolidation problem consists of four steps: host

overloading detection, host under-loading detection, virtual

machine selection and virtual machine placement. In this paper,

the previous strategy is modified by merging the last two steps

virtual machine selection and virtual machine placement, to

avoid any poor solutions caused by solving both steps separately.

In the host overloading/under-loading detection steps, we

classified host status into five classes: Over-Utilized, Nearly

Over-Utilized, Normal Utilized, Under-Utilized and Switched

Off, then an algorithm, based on the Naive Bayesian Classifier,

was introduced in order to detect the future host state for

minimizing the number of virtual machine migrations; as a

result, the energy consumption and performance degradation

due to migrations will be minimized. In the virtual machine

selection and placement steps, we introduced an algorithm based

on the Random Key Cuckoo Search to reduce the energy

consumption and enhance the SLA violation. To assess the

algorithm, real data traces for 10 days, were used to verify the

proposed algorithms. The experimental results proved that the

proposed algorithms can significantly reduce the consumed

energy as well as the SLA violation in data centers.

Keywords—Cloud computing; Naive Bayesian classifier;

Random Key Cuckoo Search; Energy-efficiency; SLA-aware;

Virtual Machine consolidation

I. INTRODUCTION

Pay-as-you-go basis [1] [2] has increased demand in Cloud
computing (CC), especially after the important role played by
big data and the internet of things (IOT). In addition, Cloud
datacenters consume huge energy, which is mostly produced
by non-green energy, resulting in a lot of carbon emissions as
well as a high service cost. According to the United States
Data Center Energy Usage Report in 2016, in 2010, the energy
consumed by U.S data centers constituted about 2% of the
global energy consumption [3]. Additionally, a six-month
study that was conducted by Barroso & Hölzle (2007) showed
that 5000 physical machines (PMs) used nearly around 10-
50% of their total capacity [4].

A non-aggressive virtual machine (VM) consolidation is a
good approach for reducing energy consumption with

attention to the SLA violation (SLAV). VM consolidation is
the technique of reallocating virtual machines (VMs) on PMs,
subject to minimizing the used resources while keeping the
other resources in the sleep mode. Nonetheless, one problem
arises, i.e. the VM consolidation issue is an NP-Hard problem
[5]. To solve the VM consolidation problem Beloglazov &
Buyya (2012) proposed an effective strategy, consisting of
four steps [6]: host overloading detection (HOD), host under-
loading detection (HUD), VM selection (VMS) and VM
placement (VMP). This strategy has been used by most
researchers to handle the VM consolidation problem.
However, this research found that the week point of this
strategy is that it solves both VMS and VMP problems
separately, which ultimately produces a poor solution.
Therefore, in this study, the aforesaid strategy has been
modified through merging the steps of VMS and VMP into a
single step. The work in [7], [8] has shown that there is a
linear relationship between CPU utilization and power
consumption. Thus, in the HOD & HUD detection, it is
proposed, using the PM State detection based on the Naive
Bayesian classifier (PMSDNBC) [9], to detect the future state
of the PM, based on the past CPU historical usage.

Within this study, the PM status is classified into five
classes: Over-Utilized (OU), Nearly Over-Utilized (NOU),
Normally Utilized (NU), Under-Utilized (UU) and Switched
off (SO). The proposed prediction model will help in
minimizing the VM migration, resulting in minimizing the
energy consumption as well as performance degradation due
to migrations. For VMS and VMP, a new algorithm called
VM selection and placement using Random Key Cuckoo
search (VMSPRKCS), was proposed to handle both VMS and
VMP steps. Random Key Cuckoo Search (RKCS) [10] is a
novel approach using Cuckoo Search (CS) [11], based on
random keys encoding schema (RKES) [12]. CloudSim [13],
with a real data set presented from PlanetLab [14], has been
used to evaluate the proposed algorithm, and the experimental
results showed that the proposed algorithm significantly
reduces the consumed energy as well as SLAV.

The rest of the paper is organized as follows: the related
work is to be discussed in Section II, a power consumption
model in Section III, the Random Key Cuckoo Search concept
in Section IV, the proposed overload detection as well as VM
selection and placement algorithms in Section V, Simulation
Setup and Results in Section VI.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

82 | P a g e

www.ijacsa.thesai.org

II. RELATED WORK

Since VM consolidation problem is regarded as an NP-
Hard problem, it remains an interesting area for researchers,
who need to work a lot more towards achieving optimization.
Some approaches have used bin-packing optimization
algorithms to handle the problem. Shi, Furlong and Wang [15]
proposed a greedy algorithm based on the First-fit Decreasing
(FFD) algorithm in attempts to reduce the energy consumed
by datacenters. FFD has been widely used to find a near
optimal solution to the vector pin backing problem. However,
the proposed algorithm has a high performance, it can easily
be stuck in a local optimum.

Keller, Tighe, Lutfiyya and Bauer [8], proposed new six
placement policies based on combinations of order strategies
for VMs and PMs. For PMs, they used 3 order strategies: (1)
Increasing, which orders the partially-utilized and
underutilized PMs in an increasing order according to the
CPU utilization; (2) Decreasing, which orders the partially-
utilized and underutilized PMs in a decreasing order according
to the CPU utilization; and (3) Mixed, which orders the
underutilized PMs in a decreasing order and the partially-
utilized hosts in an increasing order according to the CPU
utilization. For VMs, they only used two strategies: (1) the
Decreasing strategy to order all VMs in a decreasing order
according to the CPU load; and (2) the Increasing strategy to
order all VMs in an increasing order according to the CPU
load. The DCSim simulator [16], [17] has been used to
evaluate the proposed policies, and the results showed that
ordering PMs in a decreasing order and VMs in an increasing
order according to the CPU utilization performs better in
terms of the energy reduction than the other proposed policies.

Some other approaches have used Artificial Intelligence
(AI) prediction models to predict the future PM state in
attempts to reduce the energy consumption, the number of VM
migrations and performance degradation due to migration. Lei
Qiao,Bo Liu,Yang Hua,Qing Zhao & Xiong Fu [18], presented an
algorithm based on the Genetic Expression Programming
(GEP) [19] to consolidate VMs according to historical data.
The algorithm focuses only on 2 steps, VM selection and VM
placement. The algorithm carries out dynamic VM migrations
for overloaded PMs and under loaded PMs, taking into
consideration the proposed prediction model. The algorithm is
compared to the most common algorithm Power- aware Best-
fit Decreasing (PABFD) algorithm [6], and the results showed
that the presented algorithm has a significant improvement in
Service Level Agreement Time per Active Host (SLATAH)
and in minimizing the number of virtual machine consolidations.

Lianpeng Li,Jian Dong,Decheng Zuo & Jin Wu [20] built a
prediction model based on Robust Simple Linear Regression
(RobustSLR) to detect the future CPU utilization of hosts;
then, they proposed overload/under load detection and VMP
algorithms based on the proposed prediction model. In the
VMP, they modified the PABFD algorithm in order to check
the future host state using the proposed prediction model; in
case, PM future state will be overloaded, and thus no VMs
will be migrated to it. The proposed algorithm was assessed
by the CloudSim toolkit with a real data presented from
PlanetLab, and the results showed that the presented algorithm
could reduce the energy consumption by at most 25.43% and

SLA violations by at most 99.16%, compared with PABFD
and the most common VM state detection & selection policies.

Lianpeng Li,Jian Dong,Decheng Zuo & JIaxi Liu [21]
proposed a prediction model based on the Simple Bayesian
Classifier to detect the future host state. They used the mean
function to convert the CPU utilization history for the last
hour, and then used them as the Bayes features and the host
states (overloaded or not overloaded) as Bayesian Classifier
labels. Then, they calculated the posterior probability using
the prior probability and condition probability, and then the
classifier predicted that that input vector belonged to the class
having the highest posterior probability. The algorithm has
been compared with the most common PDFA algorithm, and
the results showed that the proposed algorithm performed
better in terms of energy consumption and SLAV than did PDFA.

Other approaches have used meta-heuristic algorithms to
find a near optimal solution. Dabiah Ahmed Alboaneen,
Huaglory Tianfield & Yan Zhang [22], applied the Glowworm
Swarm Optimization (GSO) Algorithm for the VMP problem.
They used a CloudSim toolkit with real data presented from
PlanLab to assess the algorithm. The results showed that GSO
can perform better than many common placement policies.
Khaoula BRAIKI & Habib YOUSSEF [23], proposed a multi-
objective algorithm based on the Particle Swarm Optimization
(PSO) algorithm to improve resource utilization while
minimizing the energy consumption. Sanaz Tavakoli-Someh
& Mohammad Hossein Rezvani [24], proposed a multi-
objective NSGA-II meta heuristic algorithm to handle the
objectives of: (1) maximizing the resources utilization; and
(2) minimizing the number of used PMs. The experimental
result showed that the proposed algorithm performed better
than such basic approaches as the FFD algorithm and the best-
fit decreasing (BFD) schemes.

Another statistical analysis approach, based on historical
data, has been proposed by Beloglazov and Buyya [6]. It
provides four overload host detection policies: Local
Regression (LR), Median Absolute Deviation (MAD), Robust
Local Regression (RLR) and Interquartile Range (IQR), in
addition to 3 selection policies: Minimum Migration Time
(MMT), Random Selection (RS) and Maximum Correlation
(MC). The CloudSim simulator with PlanetLab traces has
been used to evaluate the proposed overload state detection
and VM selection policies. As shown by the results, the LR
overload detection policy with MMT selection policy
significantly surpasses the other policies in reducing SLAV
and the number of VM migrations. That is why we considered
LR_MMT 1.2 as the benchmark and compared the proposed
approach in this research with it using the same traces
provided from PlanetLab.

III. POWER CONSUMPTION MODEL

According to different studies, the most energy consumed
by servers is mostly consumed by the CPU rather than other
resources [7], [25]. Hence, for simplicity, we can represent the
PM energy consumption with its CPU utilization. We used a
real power consumption data model, illustrated in Table I
provided by SPEC power [26] for two servers, HP ProLiant
ML110 G4 and HP ProLiant ML110 G5, to calculate the
energy consumption.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

83 | P a g e

www.ijacsa.thesai.org

TABLE. I. SPECPOWER POWER CONSUMPTION OF TWO SERVERS: HP

PROLIANT G4 & G5 AT DIFFERENT LOAD LEVELS IN WATTS

CPU HP ProLiant G4 HP ProLiant G5

0%

10%

20%
30%

40%

50%
60%

70%

80%
90%

100%

86

89.4

92.6
96

99.5

102
106

108

112
114

117

93.7

97

101
105

110

116
121

125

129
133

135

IV. THE RANDOM KEY CUCKOO SEARCH (RKCS) CONCEPT

The RKCS is a novel approach of Cuckoo Search Meta-
heuristic algorithms based on a random key encoding schema.
It is very effective in the combinatorial problems, as it will be
used to apply Lévy flight on the old solution to generate a new
cuckoo solution from it.

A. Cuckoo Search (CS)

The CS is a population based meta-heuristic optimization
algorithm inspired by the natural behavior of cuckoo birds. It
was presented by Xin-She Yang and Suash Deb in 2009.
When cuckoo birds want to lay eggs, they do not build their
own nests, but they rather use some other birds’ nest. In case
that other bird discovered that those eggs were not their own,
it would either throw them or abandon its nest and build
another one elsewhere. Below are the laws CS:

1) Number of hosts is fixed.

2) A nest can host only one egg.

3) Each parasitic egg represents a solution in the search

space.

4) The transaction of generating a new solution (Cuckoo

one) from old solution is accomplished using Lévy flight.

5) Height quality solutions with good fineness values will

be carried forward to the next generation.

6) There is a probability pa [0, 1] to discover the parasitic

foreign egg by the host bird.

7) For a cuckoo i, the new parasitic cuckoo (solutions)

Xi(t+1) generated by using Lévy flight using Equation #1

where α > 0 is the step size, and product ⊕ means entry-wise

multiplication.

8) Lévy flight is a random step length in a random angle in

which the random step length is generated from the Lévy

distribution using equation #2.

x(t+1) = x(t) + α ⊕ Levy(λ) (1)

Lévy ~ u = x−λ, (1 < λ < 3) (2)

B. Random-Key Encoding Scheme (RKES)

The RKES is a transformation technique which is used to
represent a vector in a continuous search space in a
combinatorial form. The conception of RKES is to generate a
random weight value from [0, 1] to each item in the array
vector, and then order it in an ascending order according to the
weight values. Table II illustrates a sample RKES.

TABLE. II. RANDOM-KEY ENCODING SCHEME (RKES)

WEIGHTS 0.8 0.6 0.7 0.3 0.1 0.4

DECODED AS 6 3 4 2 4 7

V. PROPOSED OVERLOAD / UNDERLOAD DETECTION, VM

SELECTION AND VM PLACEMENT ALGORITHMS

An effective strategy proposed by Beloglazov and Buyya
(2012) [6] to deal with the VM consolidation problem consists
of the following four steps:

1) Host Overloading Detection (HOD): to detect the

overloaded PMs; some VMs must be migrated from them to

eliminate SLAV.

2) Host Under-loading Detection (HUD): to detect PMs

with low utilization resources; all VMs must be migrated from

them if possible, and switch them into the sleep mode.

3) Virtual Machine Selection (VMS): responsible for

selecting some VMs from overloaded PMs in order to migrate

them to another suitable PMs.

4) Virtual Machine Placement (VMP): responsible for

finding a new suitable PMs for the selected VMs.

In this research, we merged the steps, VMS and VMP into
one to avoid any poor solution resulting from solving both
separately. In the HOD & HUD steps, a prediction algorithm
based on the Naive Bayesian Classifier is proposed to predict
the future host state for minimizing the VMs migrations. In
the VMS and VMP steps, we proposed an algorithm based on
the RKCS to reduce the energy consumption and SLAV.
Solution construction, host state prediction model, and the
proposed VM selection as well as placement policy are
discussed in the following sections.

A. Solution Construction

Assume that we have n VMs and m PMs; in the context of
VM consolidation problem and RKCS, a single egg solution Si
is represented by: the VMs random Keys (VMRKi), the PMs
random keys (PMRKi) and the VM migrations mappings
(VMMMi), which are constructed as shown in Tables III, IV
and V, respectively.

Each element in VMRKi will have a VM index (VMIi) and
VM weight value (VMWi). Each item in PMRKi will have:
PM Index (PMIi), PM Status weigh value (PMSWi) and PM
weight value (PMWi). Finally, VMMMi represents the
placement mappings; each value in the array represents a PM
index to which will the VM will be placed. For instance, if the
second element of array is 7, then the second VM will be
migrated to PM of index 7.

TABLE. III. VIRTUAL MACHINES RANDOM KEY

VMI1 VMI2 VMI3 VMI4 … VMIn

VMW1 VMW2 VMW3 VMW4 … VMWn

TABLE. IV. PHYSIAL MACHINES RANDOM KEYS

PMI1 PMI2 PMI3 PMI4 … PMIm

PMSW1 PMSW2 PMSW3 PMSW4 … PMSWm

PMW1 PMW2 PMW3 PMW4 … PMWm

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

84 | P a g e

www.ijacsa.thesai.org

TABLE. V. VIRTUAL MACHINES MIGRATION MAPPINGS

VM1 VM2 VM3 VM4 … VMn

PMI1 PMI2 PMI3 PMI4 … PMIn

B. Physical Machine State Prediction Model using Naive

Bayesian Classifier (PMSDNBC)

The study presented by Haikun Liu, Hai Jin, Cheng-Zhong
Xu & Xiaofei Liao [27], stated that live migration is not free,
and that is why predicting the PM future state will play a
significant role in minimizing the number of VM migrations,
resulting in minimizing energy consumption and performance
degradation due to the migration. In this research, a new
algorithm called PM state predection using Naive Bayesian
classifier (PMSDNBC) was introduced to detect the future
host state. The Naive Bayesian classifier is an AI machine
learning model used to classify different objects based on
certain features. In the current research, the model is used to
predict the PM future state according to the past CPU
utilization history. For the classifier features, we constructed
n+1 dimensional feature vector using the latest CPU
utilization history CPUt, CPUt-1, CPUt-2, CPUt-3, CPUt-4..
CPUt-n+1 in the time t, t-1, t-2, t-3, t-4 … t-n+1 for the last n
preceding points. Then, we got input vector F = [CPUt, CPUt-

1, CPUt-2, CPUt-3, CPUt-4... , CPUt-n+1], and basically, as we
need to detect the future state of PM, we used the PM states as
the Bayes classifier labels. In most researches the PM status is
classified into the following three states: (1) Over-Utilized, (2)
Under-Utilized and (3) Switched Off. For the Over-Utilized
PMs, some VMs must be migrated from them to other non
Over-Utilized PMs in order not to elimnate the SLA. For the
Under-Utilized PMs, all PMs must be migrated from them, if
possible, in order to switch them to the sleep mode. In this
reserach we found the below weak points in this classification:

 PMs which will accept migrations from the Over-
Utilized PMs and PMs from which all VMs must be
migrated, if possible, are both treated as "Under-
Utilized".

 In the previous classification, there is no state to
describe the PMs which are not Over-Utilized and are
not able to accept new migrations, as they are near to be
Over-Utilized.

For this reason, in this research we classified the PM
statuses into the below five classes:

1) Over-Utilized (OU): PMs which are over utilized, so

some VMs must be migrated from them in order not to violate

SLA.

2) Nearly Over-Utilized (NOU): PMs which are near to be

over-utilized. These types of PM will not accept any

migrations nor migrate VMs from them.

3) Normal Utilized (NU): PMs which fall between nearly

over-utilized and underutilized thresholds. These types of PMs

will accept new migrations but not VMS will be migrated from

them.

4) Under-Utilized (UU): PMs which are underutilized; all

VMs hosted on these PMs should be migrated away to other

suitable PMs if possible, then switch these UU PMs to the

sleep mode.

5) Switched Off (SO): Switched off PMs.

Accordingly, classifier labels will be L = {OU, NOU, NU,
UU, SO}. Static threshold values based on the experimental
results have been used to identify: OU, NOU, NU, UU and SO
thresholds; the values are illustrated in Table VI. Classifier
dataset is constructed according to the below rules:

1) In case the CPU utilization value equals 0, the value of

“SO” label will be set to 1 and the other labels will be set to

minimum product effect value (MPEV).

2) In case the CPU utilization value is greater than the

over-utilized threshold, the value of the “OU” label will be set

to 1 and the other labels will be set to MPEV.

3) Otherwise, we will calculate the percentage of how far

the current state from the upper and lower thresholds using

equations #3 & #4 and the reset labels are set to MPEV.

VUTi =
(UPT−LWT)−(UPT−CPUi)

(UPT−LWT)
 (3)

VLTi =
(UPT−LWT)−(CPUi−LWT)

(UPT−LWT)
 (4)

Where UPT is the upper threshold value, LWT is the lower
threshold value, VUTi is the value of state i for the upper label
and VLTi is the value of state i for the lower label.

Algorithm 1: PMSDNBC

Input: CPU Utilization History

Output: Host State

1. n = 10; minValue=0.0001;

2. For i =0 to n − 1 do

3. F[i] = cpuUtilizationHistory [n − i − 1];

4. IF F[i] == 0 Then

5. Set switchedOffValues[i] =1;

6. Set Other Values to minValue;

7. Else If F[i] > overUtilizedThreadShold Then

8. Set overUtilizedValues [i] =1;

9. Set Other Values to minValue;

10. Else

11. Calculate VUTi value equation #1;

12. Calculate VLTi value equation #2;

13. Set other labels values to minValue;

14. End If;

15. Calculate P(x | OU), P(x | NOU), P(x | NU), P(x | UU)

& P(x | SO) using equation #5.

16. Return state of highest probability

TABLE. VI. STATIC THRESHOLDS VALUES

THRESHOLD RANGE

OVER-UTILIZED CPU >= 0.8

NEARLY OVER-UTILIZED 0.8 > CPU >=0.78

NORMAL UTILIZED 0.78> CPU >=0.5

UNDER-UTILIZED 0.5> CPU > 0

SWITCHED OFF CPU = 0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

85 | P a g e

www.ijacsa.thesai.org

The value 0.00001 has been used as MPE, first, to avoid
zero values generated from product operation and second,
because it has lower effect in the product operation.

Finally, for each label l in L, the probability of P (x|l) is
calculated using equation #5 and according to the Naive
Bayesian Classifier, PM state will be classified as the state
with the highest probability.

 p(x|l) = ∏ P(fi|l)n
i=1 (5)

P(fi|l) =
P(fi ⋂ l)

P(l)
 (6)

C. Virtual Machine Selection and Placement using Random

Key Cuckoo Search (VMSPRKCS)

VMS & VMP is the process of selecting some VMs from
over-utilized and under-utilized PMs and finding a new
placement for them. In this research, an algorithm based on
RKCS is proposed to handle the two steps VMS & VMP into
one step to avoid producing a poor solution resulting from
solving both steps separately. First, we detect the state of all
PMs using the proposed algorithm PMSDNBC. Then, we
added all VMs of over-utilized and under-utilized PMs into
one dimensional vector VMs = [V1, V2, V3 … Vn]. For the
over-utilized PMs, we will migrate some VMs from them in
order to not to violate SLA; for the under-utilized PMs, all
VMs will be migrated from them if possible in order to switch
them to the sleep mode. Since RKCS is a population based
algorithm, we will have n solutions S = [s1, s2, s3 … sn], and
for each solution si, we will have VMRKi and PMRKi. The
idea behind VMSPRKCS is consists of the below steps:

1) Detect the status of all PMs using PMSDNBC

algorithm.

2) Add all VMs of over-utilized & under-utilized PMs into

one dimensional array SVMs = [VM1,VM2,….VMn].

3) Assigning a weight value for each VM in SVMs, either

generated randomly between [0-1] or by Lévy using equation

#1 when generating a cuckoo egg from an old one.

4) Assigning a weight value and a status weight value for

each PM. The PM weight value is either generated randomly

between [0-1] or by Lévy using equation #1 from an old

solution. The PM status weight value is generated according to

Table VII.

5) Sorting VMs in SVMs array in an ascending order by

the weight value

6) Sorting PMs in an ascending order by the status weight

value then by the weight value.

7) Each VM will be allocated to the first PM fitting for it,

which will not be overloaded after the migration.

8) In case the status of the old PM, from which the VM is

migrated, changed from “Over-Utilized” to any new status,

then the remaining VMs on the old PM added to an excluded

list in order to skip their migration.

9) In case the status of the new PM, to which the VM is

migrated, changed to any new status, then new PM status

weight value is recalculated based on PMSDNBC algorithm

and Table VII, then all PMs are reordered in an ascending

order by their status weight value then by the weight value.

TABLE. VII. PM STATUS WEIGHT INDEX MAPPINGS

STATUS STATUS WEIGHT VALUE

NORMAL UTILIZED 1

UNDER-UTILIZED 2

SWITCHED OFF 3

NEARLY OVER-UTILIZED 4

OVER-UTILIZED 5

Algorithm 2: VMSPRKCS

Input: PmList, VmList

Output: VMs migration mappings

1. For i=0 to PmList.length Do

2. Let pmStatus = getHostStatus(pmList [i])

3. If pmStatus==’Over-Utilized’ or pmStatus==’Under-

Utilized’ then

4. vms.add(pmList [i].getVmList());

5. End If

6. End for

7. return FindBestAllocation(PmList, vms);

Algorithm 3: FindBestAllocation

Input: PMs, VMs

Output: VMs migration mapping

1. n=10;

2. Generate an initial population of n host nests;

3. While (iterations < maxIteration) do

4. Get a cuckoo randomly solution Si by L´evy flights

5. ApplyPlacement (pms, vms, Si)

6. Calculate Fi quality of Si

7. Choose a nest among n (say, j) randomly

8. If (Fi > Fj) then

9. replace j by the new solution;

10. end

11. A fraction (pa) of worse nests is abandoned and new ones

are built.

12. Keep the best solutions

13. Rank the solutions and find the current best

14. End while

15. Return best;

Algorithm 4: ApplyPlacement

Input: PMs, VMs, S

1. Sort S.VMRK in ascending order by Weight Value

2. Sort S.PMRK in ascending order according by Status

Weight value then by Weight Value

3. Let VMRK = S.VMRK

4. For i=0 to VMRK .length do

5. Let vm = VMs[VMRK[i].index];

6. If ExcludedVMs .contains(vm) then

7. Continue;

8. End If

9. Let pm = vm.getHost();

10. Let pmPreStatus = PMSDNBC(pm);

11. pm.vmDestroy(vm)

12. Let pmPostStatus = PMSDNBC(pm);

13. IF pmPreStatus == "Over Utilized" and

pmPostStatus!= "OverUtilized" then

14. ExecludedVms.addAll(pm.getVmList());

15. End If

16. FindFirstFittingPm(PMs, vm, S)

17. End For

 End For

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

86 | P a g e

www.ijacsa.thesai.org

Algorithm 5: FindFirstFittingPm

Input: PMs, VM, S

Output: PM

1. Let selectedPm = null;

2. Let PMRK = S. PMRK;

3. For j=0 to PMRK .length do

4. Let pm = pms[PMRK[i].index];

5. If isHostOverUtilizedAfterAllocation(pm,VM) then

6. continue;

7. Else

8. Let pmPreStatus = PMSDNBC(pm);

9. pm.vmCreate(vm);

10. Let pmPostStatus = PMSDNBC (pm);

11. If pmPreStatus!= pmPostStatus then

12. Get pm weight status value using PMSDNBC

and Table VII;

13. Sort PMRK in ascending order according by

Status Weight then by Weight Value;

14. End If

15. selectedPm = PM;

16. break;

17. End If

18. End For

19. Return selectedPm ;

VI. SIMULATION SETUP AND RESULTS

Performance metrics, Simulation setup & Experimental
results are discussed in the following sections.

A. Performance Metrics

The following metrics have been considered to evaluate
the proposed algorithm:

1) Energy consumption: it refers to the total energy

consumed by all PMs in the datacenter, where the PM energy

consumption is calculated according to a real data power

consumption model provided by the SPEC power benchmark.

Table I illustrates the energy consumption of two different

PMs, HP G4 and HP G5, at different CPU load levels.

2) Service Level Agreement Violation (SLAV): As

proposed in [6], SLAV can be measured in IaaS for two main

factors: (1) SLA violation time per active host (SLATAH)

resulting from the CPU utilization is of 100% and (2) the SLA

violations resulting from performance degradation due to

migration (PDM). The SLAV factors can be calculated using

equations #7.

SLAV = SLATAH ∗ PDM (7)

SLATAH =
1

m
∑

Tok

Tak

m

k=0
 (8)

Where m is the number of PMs, Tok is the total time in
which the PM had an over-utilized status, resulting from the
100% CPU utilization and Tak is the total time of the PM for
being in the active state.

PDM =
1

n
∑

Cdk

Crk

n

k=0
 (9)

Where n is the number of VMs, Cdk is the estimated
performance degradation of the VM k due to migrations and
Crk is the total requested CPU capacity by the VM j.

1) ESV: as the research target is to balance the trade-off

between the SLA violation and energy consumption, it is

important to consider this metric. It is simply calculated as the

product of SLAV and energy consumption

𝐸𝑆𝑉 = 𝑆𝐿𝐴𝑉 ∗ 𝐸𝑛𝑒𝑔𝑟𝑦_𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (10)

2) Number of VM migrations: it refers to the total number

of VM migrations occurred over all the datacenter.

3) Shutdown hosts: it refers to the total number of PMs

switched to the switched off mode over all the datacenter.

B. Simulation Setup

To evaluate the proposed algorithm, we used the
CloudSim 3.0.3 toolkit simulator. Cloudsim is a well-known
common simulator that supports different policies for host
overload detection, VM selection and VM placement. It also
provides different types of workload as well as several cloud
metrics calculation, such as: Energy Consumption, SLAV,
number of VM migrations, PDMA, SLATAH and number of
host shutdowns. Furthermore, we used real workload traces
from a real system (PlanetLab data). PlanetLab is the
monitoring part of the CoMon project. It monitored CPU
utilizations for more than thousand VMs hosted at more than
500 PMs which were collected during March and April 2011.
Each day in the traces has a file for each VM, containing 288
values which represent the VM CPU utilization value [0-100]
every 5 minutes during the day. Traces characteristics are
represented in Table VIII. A datacenter comprising 800
heterogeneous PMs and more than 1000 VMs was simulated;
half of the PMs were HP ProLiant ML110 G4 (Intel Xeon
3040, dual-core 1860 MHz, 4 GB, 1 Gbps) and the rest are HP
ProLiant ML110 G5 (Intel Xeon 3075, dual-core 2660, 4 GB,
1 Gbps). For the VMs, four types were used, corresponding to
Amazon EC2 [27] illustrated below:

1) Micro instance (613MB, 500 MIPS).

2) Small Instance (1.7 GB, 1000 MIPS).

3) Extra-large Instance (3.75 GB, 2500 MIPS).

4) High-CPU Medium Instance (0.85 GB, 2500 MIPS).

C. Experimental Results

Traces with heterogeneous states for real cloud datacenter
presented from PlanetLab illustrated in Table VIII have been
used to evaluate the algorithm. A study presented by
Beloglazov and Buyya [6], stated that lr_MMT 1.2 performs
better than other dynamic VM consolidation algorithms, so we
considered it as the benchmark and compared our proposed
algorithm with it. The results are illustrated in Fig. 1, 2, 3, 4,
5, 6 and 7. The experimental results show that the proposed
algorithm can highly reduce the below metrics:

1) Energy consumption reduced by minimum 17.7%, by

maximum 28.6% and with average 24.23%, compared with

lr_MMT 1.2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

87 | P a g e

www.ijacsa.thesai.org

2) SLAV reduced by minimum 93.52%, by maximum

96.89% and with average 95.35%, compared with lr_MMT

1.2.

3) ESV reduced by minimum 95.5%, by maximum

97.56% and with average 96.5%, compared with lr_MMT 1.2.

4) The number of VM migrations reduced by minimum

88.07%, by maximum 90.85% and with average 89.3%,

compared with lr_MMT 1.2.

5) PDM reduced by minimum 77.78%, by maximum

88.89% and with average 86.3%, compared with lr_MMT 1.2.

6) SLATAH reduced by minimum 60.08%, by maximum

81.9% and with average 71.07%, compared with lr_MMT 1.2.

7) Number of host shutdowns reduced by minimum

80.27%, by maximum 88.31% and with average 84.38%,

compared with lr_MMT 1.2.

Finally, we ran the experiment for 10 times and calculated
the median value, displaying it in terms of each performance
metrics.

TABLE. VIII. PLANETLAB WORKLOAD TRACES CHARACTERISTICS

Date No of Virtual Machines Mean-Load (%)

03/03

06/03
09/03

22/03

25/03
03/04

09/04

11/04
12/04

20/04

1052

898
1061

1561

1078
1463

1358

1233
1054

1033

12.31

11.44
10.70

9.26

10.56
12.39

11.12

11.56
11.54

10.43

Fig. 1. Comparison of Energy Consumption.

Fig. 2. Comparison of SLAV*0.0001.

03/03 06/03 09/03 22/03 25/03 03/04 09/04 11/04 12/04 20/04

lr MMT 1.2 163.15 122.88 141.81 176.57 153.39 219.64 180.18 178.19 152 130.89

VMSPRKCS 126.42 93.4 117.46 132.26 112.15 172.01 134.96 129.73 115.33 93.46

0

50

100

150

200

250

E
n

e
r
g

y
,
K

w
h

03/03 06/03 09/03 22/03 25/03 03/04 09/04 11/04 12/04 20/04

lr MMT 1.2 463 439 578 457 508 451 452 471 461 694

VMSPRKCS 47 70 33 43 30 53 48 87 58 111

0

100

200

300

400

500

600

700

800

S
L

A
V

 *
 0

.0
0

0
0

1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

88 | P a g e

www.ijacsa.thesai.org

Fig. 3. Comparison ESV.

Fig. 4. Comparison of Number of VM Migrations.

Fig. 5. Comparison of PDM.

03/03 06/03 09/03 22/03 25/03 03/04 09/04 11/04 12/04 20/04

lr MMT 1.2 0.755 0.539 0.820 0.807 0.779 0.991 0.814 0.839 0.701 0.908

VMSPRKCS 0.058 0.064 0.037 0.055 0.034 0.089 0.063 0.109 0.065 0.101

0.000

0.200

0.400

0.600

0.800

1.000

1.200

E
S

V

03/03 06/03 09/03 22/03 25/03 03/04 09/04 11/04 12/04 20/04

lr MMT 1.2 27632 20297 24219 31349 27204 38104 31430 31151 25819 24542

VMSPRKCS 4655 4381 4011 5849 4002 7126 5376 6655 4597 4885

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

n
u

m
b

e
r
 o

f
V

M
 m

ig
r
a

ti
o

n
s

03/03 06/03 09/03 22/03 25/03 03/04 09/04 11/04 12/04 20/04

lr MMT 1.2 0.08 0.07 0.09 0.07 0.08 0.08 0.08 0.08 0.08 0.09

VMSPRKCS 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
D

M

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

89 | P a g e

www.ijacsa.thesai.org

Fig. 6. Comparison of SLATAH.

Fig. 7. Comparison of Number of Host Shutdowns.

VII. CONCLUSION AND FUTURE WORK

In this paper, a hybrid algorithm based on the Naive
Bayesian Classifier and the Random Key Cuckoo Search is
introduced to balance the tradeoff between the energy
consumption and SLA violation. In addition, we modified the
most common strategy for handling the VM consolidation by
merging VM selection and placement steps into one to avoid
any poor solution that may arise due to solving each of the two
steps alone. We used Naive Bayesian Classifier to detect the
future PM state in order to minimize the VMs migration,
resulting in reducing energy, SLAV as well as performance
degradation due to migration. We used Random Key Cuckoo
Search to handle the VM selection and placement steps. In
addition, CloudSim has been used with real traces provided
from PlanetLab to evaluate the proposed algorithm compared
with the benchmark algorithm lr_MMT 1.2 and the results
have shown that the proposed algorithm can reduce the energy
consumption by 24.23%, SLAV by 95.35%, ESV by 96.5%,

the number of VM migrations by 89.3%, PDM by 86.3%,
SLATAH by 71.07% and the number of host shutdowns by
84.38%. In this research, the objective function was
considered based data center energy consumption only; in the
future we are interested in calculating the objective function
according to multiple objective metrics and comparing it with
other meta-heuristic algorithms as well as more real datasets.

REFERENCES

[1] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009).
Cloud computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation Computer
Systems, 25(6), 599–616. doi: 10.1016/j.future.2008.12.001.

[2] Mell, P. M., & Grance, T. (2011). The NIST definition of cloud
computing. doi: 10.6028/nist.sp.800-145.

[3] Shehabi, A., Smith, S., Sartor, D., Brown, R., Herrlin, M., Koomey, J,
Lintner, W. (2016). United States Data Center Energy Usage Report.
doi: 10.2172/1372902.

[4] Barroso, L. A., & Hölzle, U. (2007). The Case for Energy-Proportional
Computing. Computer, 40(12), 33–37. doi: 10.1109/mc.2007.443.

03/03 06/03 09/03 22/03 25/03 03/04 09/04 11/04 12/04 20/04

lr MMT 1.2 5.84 5.86 6.52 6.23 6.19 5.88 5.92 6.1 6.15 7.44

VMSPRKCS 1.4 1.64 1.18 1.96 1.48 1.8 1.71 2.07 1.88 2.97

0

1

2

3

4

5

6

7

8

S
L

A
T

A
H

lr MMT 1.2 5023 3944 4556 5399 4948 6529 5575 5516 4696 4378

VMSPRKCS 775 783 796 777 778 772 773 778 773 784

0

1000

2000

3000

4000

5000

6000

7000

N
u

m
b

e
r
 o

f
h

o
st

 s
h

u
td

o
w

n
s

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

90 | P a g e

www.ijacsa.thesai.org

[5] Sharma, N. K., & Reddy, G. R. M. (2015). Novel energy efficient virtual
machine allocation at data center using Genetic algorithm. 2015 3rd
International Conference on Signal Processing, Communication and
Networking (ICSCN). doi: 10.1109/icscn.2015.7219897.

[6] Beloglazov, A., & Buyya, R. (2011). Optimal online deterministic
algorithms and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in Cloud data centers.
Concurrency and Computation: Practice and Experience, 24(13), 1397–
1420. doi: 10.1002/cpe.1867.

[7] Fan, X., Weber, W.-D., & Barroso, L. A. (2007). Power provisioning for
a warehouse-sized computer. Proceedings of the 34th Annual
International Symposium on Computer Architecture - ISCA 07. doi:
10.1145/1250662.1250665.

[8] Keller, G., Tighe, M., Lutfiyya, H., & Bauer, M. (n.d.). An analysis of
first fit heuristics for the virtual machine relocation problem. 2012 8th
International Conference on Network and Service Management (Cnsm)
and 2012 Workshop on Systems Virtualiztion Management (Svm), 406–
413.

[9] Duda, R. O., Stork, D. G., & Hart, P. E. (2000). Pattern classification
and scene analysis. New York: Wiley.

[10] Ouaarab, A., Ahiod, B., & Yang, X.-S. (2014). Random-key cuckoo
search for the travelling salesman problem. Soft Computing, 19(4),
1099–1106. doi: 10.1007/s00500-014-1322-9.

[11] Yang, X.-S., & Deb, S. (2009). Cuckoo Search via Lévy flights. 2009
World Congress on Nature & Biologically Inspired Computing
(NaBIC). doi: 10.1109/nabic.2009.5393690.

[12] Bean, J. C. (1994). Genetic Algorithms and Random Keys for
Sequencing and Optimization. ORSA Journal on Computing, 6(2), 154–
160. doi: 10.1287/ijoc.6.2.154.

[13] Calheiros, R. N., Ranjan, R., Beloglazov, A., Rose, C. A. F. D., &
Buyya, R. (2010). CloudSim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and Experience, 41(1), 23–50. doi:
10.1002/spe.995.

[14] Park, K., & Pai, V. S. (2006). CoMon. ACM SIGOPS Operating
Systems Review, 40(1), 65. doi: 10.1145/1113361.1113374.

[15] Shi, L., Furlong, J., & Wang, R. (2013). Empirical evaluation of vector
bin packing algorithms for energy efficient data centers. 2013 IEEE
Symposium on Computers and Communications (ISCC). doi:
10.1109/iscc.2013.6754915.

[16] Tighe, M., Keller, G., Bauer, M., & Lutfiyya, H. (n.d.). DCSim: A data
centre simulation tool for evaluating dynamic virtualized resource
management. 2012 8th International Conference on Network and
Service Management (Cnsm) and 2012 Workshop on Systems
Virtualiztion Management (Svm).

[17] Digs-Uwo. (2014, December 7). digs-uwo/dcsim. Retrieved from
https://github.com/digs-uwo/dcsim.

[18] Qiao, L., Liu, B., Hua, Y., Zhao, Q., & Fu, X. (2019). Genetic
Expression Programming Based Dynamic Virtual Machine
Consolidation in Cloud Computing. 2019 IEEE 9th International
Conference on Electronics Information and Emergency Communication
(ICEIEC). doi: 10.1109/iceiec.2019.8784588.

[19] Rui, Z., Shasha, H., & Hui, G. (2016). Research and Application of GEP
Algorithm Based on Cloud Model. International Journal of Signal
Processing, Image Processing and Pattern Recognition, 9(11), 309–318.
doi: 10.14257/ijsip.2016.9.11.28.

[20] Li, L., Dong, J., Zuo, D., & Wu, J. (2019). SLA-Aware and Energy-
Efficient VM Consolidation in Cloud Data Centers Using Robust Linear
Regression Prediction Model. IEEE Access, 7, 9490–9500. doi:
10.1109/access.2019.2891567.

[21] Li, L., Dong, J., Zuo, D., & Liu, J. (2018). SLA-Aware and Energy-
Efficient VM Consolidation in Cloud Data Centers Using Host States
Naive Bayesian Prediction Model. 2018 IEEE Intl Conf on Parallel &
Distributed Processing with Applications, Ubiquitous Computing &
Communications, Big Data & Cloud Computing, Social Computing &
Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom). doi: 10.1109/bdcloud.
2018.00025.

[22] Alboaneen, D. A., Tianfield, H., & Zhang, Y. (2016). Glowworm
Swarm Optimisation Algorithm for Virtual Machine Placement in Cloud
Computing. 2016 Intl IEEE Conferences on Ubiquitous Intelligence &
Computing, Advanced and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing, Internet of People,
and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartW
orld). doi: 10.1109/uic-atc-scalcom-cbdcom-iop-smartworld.2016.0129.

[23] Braiki, K., & Youssef, H. (2018). Multi-Objective Virtual Machine
Placement Algorithm Based on Particle Swarm Optimization. 2018 14th
International Wireless Communications & Mobile Computing
Conference (IWCMC). doi: 10.1109/iwcmc.2018.8450527.

[24] Tavakoli-Someh, S., & Rezvani, M. H. (2019). Utilization-aware Virtual
Network Function Placement Using NSGA-II Evolutionary Computing.
2019 5th Conference on Knowledge Based Engineering and Innovation
(KBEI). doi: 10.1109/kbei.2019.8734978.

[25] Kusic, D., Kephart, J. O., Hanson, J. E., Kandasamy, N., & Jiang, G.
(2008). Power and performance management of virtualized computing
environments via lookahead control. Cluster Computing, 12(1), 1–15.
doi: 10.1007/s10586-008-0070-y.

[26] The SPECpower benchmark. (n.d.). Retrieved from
http://www.spec.org/power_ssj2008/.

[27] Liu, H., Xu, C.-Z., Jin, H., Gong, J., & Liao, X. (2011). Performance
and energy modeling for live migration of virtual machines. Proceedings
of the 20th International Symposium on High Performance Distributed
Computing - HPDC 11. doi: 10.1145/1996130.1996154.

http://www.spec.org/power_ssj2008/

