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Abstract—With the increase in the road transportation 

system the safety concerns for the road travels are also 

increasing. In order to ensure the road safety, various 

government and non-government efforts are visible to maintain 

the road quality and transport network system. The maintenance 

of the road condition is in the verse of getting automated for the 

quick identification of potholes, cracks and patch works and 

repair. The automation process is taking place in majority of the 

counties with the help of ICT enabled frameworks and devices. 

The primary device used for the purpose is the geo location 

enabled image capture devices. Regardless to mention the image 

capture process is always prune to noises and must be removed 

for better further analysis. Also, the spatial data is collected from 

the road networks are also prune to various error such as 

missing values or outliers due to the induced noises in the capture 

devices. Hence, the demand of the current research is to purpose 

a complete solution for the noise identification and removal from 

the spatial road network data for making the automation process 

highly successful and highly accurate. In the recent time, many 

parallel research attempts are observed, which resulted into 

solving the problem of noise reduction in all aspects of spatial 

data. Nevertheless, all the parallel research outcomes have failed 

to provide a single solution for all the noise issues. Henceforth, 

this work proposes three novel algorithms to solve spatial image 

noise problem using the adaptive moment filtration, missing 

value noise from the spatial data using adaptive logistic analysis 

and finally, the outlier noise removal from the same spatial data 

using corrective logistic machine learning method. The outcome 

of this work is nearly 70% accuracy in image noise reduction, 

90% accuracy for missing value and outlier removal. The work 

also justifies the information loss reduction by nearly 50%. The 

final outcome of the work is to ensure higher accuracy for road 

maintenance automation. 

Keywords—Spatial image moments; adaptive logistic de-

noising; machine learning; noise removal; correlative corrections 

I. INTRODUCTION 

Spatial data retrieval for the imaging methods are highly 
beneficial for detection and provide automatic maintenance of 
the road conditions as the spatial data provides higher order 
information for each pixel in the spatial image. The work by 
D. A. Landgrebe [1] have significantly proven the fact the 
improvement in further processing can be achieved using 
spatial data. Nonetheless, the accumulation of the spatial 
image data is full of challenges as suggested by J. M. Bioucas 
– Dias [2] with the restriction of continuous mapping between 
image data and spatial data vectors. The other parallel research 
by N. Keshava [3] have suggested various other methods for 
mapping without the spatial mixing methods. 

However, there are multiple parallel research outcomes, 
which suggested extraction of the spatial data by separating 
the image information and the text information associated with 
each pixel. The study by M. E. Winter [4] Have suggest the 
extraction of the road spatial data using the N-Finder 
algorithm. This algorithm is sophisticated and highly accepted 
by the researcher for spatial data extraction using the vector 
methods. Also, the work by J. M. P. Nascimento [5] have 
demonstrated the vertex component analysis method, which 
relies on the modifications and enhancements over the 
principle component extraction methods. Further, the work by 
J. Li [6] has showcased the algorithm as minimum volume 
measure, ensuring the extraction of the minimal spatial data 
for any purpose such as road information. 

Nonetheless, having the capture process sorted out for the 
spatial data accumulation, the major focus is on the noise 
reduction as suggested by Alp Erturk [7]. Henceforth, this 
work proposes a noval solution for spatial data noise reduction 
for all possible noise types. 

The rest of the work is furnished such that in Section 2, the 
parallel research outcomes are analysed, in Section 3, the 
mathematical model for the identified problems and the 
proposed solutions are furnished, in Section 4 the proposed 
algorithm are elaborated, in Section 5, the obtained results are 
discussed, in Section 6 the comparative analysis is 
summarized and the work produces the final conclusion in 
Section 7. 

II. PARALLEL RESEARCH OUTCOMES 

In the section of the work, the parallel research outcomes 
are discussed critically for better formulation of the problem 
and solutions in the upcoming sections. 

The noise in any form in any data can be catastrophic for 
achieving the further results. Hence, the pre-processing 
techniques for the data noise reductions are getting popular. 
However, the present pre-processing method for the spatial 
data is not highly complex and demands further 
improvements. When there is significantly immaterial and 
redundant and data present or noisy and unreliable data, then 
comprehension discovery during the training period is more 
difficult steps that are filtering and data preparation may 
require considerable level of processing period. Data pre-
processing comprises cleansing, Instance selection, 
normalization, transformation, characteristic extraction along 
with variety, etc. 
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The recent research by M.Zortea [8] have pro-posed a 
spatial pre-processing method for image data using 
endmember extraction process. The work is highly justified 
for the pixel information preservation and noise reduction at 
the same time. Nonetheless, the associated information 
extracted from the pixels are also prune to noises, which must 
be de-noised as well. However, the work by G.Martin [9] de-
noising process, where the relevancy of the information is also 
considered.  This ensures some of the extracted information 
from te pixels are also processes for normalization. Further, 
the work of A. Plaza [10] has fine-tuned the workability of the 
spatial image information de-noising by applying the remotely 
sensed hyperspectral analysis for the spatial datasets. 

In the contrast, the work by A. Erturk [11] and D. Cesmeci 
[12] has demonstrated significant contributions to the de-
noising of the spatial data. These two works are highly 
accepted. Nevertheless, this work identified few drawbacks in 
these two bench-marked algorithms and proposes a solution to 
these methods. In the further sections of the work, these two 
works are constantly compared with the proposed outcomes. 
Finally, the similar problems are also highlighted by the work 
of C. Li [13]. 

The limitations of the existing research outcomes are listed 
here: Firstly, all signal processing apparatus, both analogy 
along with electronic, have faculties which make them more 
prone to noise. Noise might be arbitrary or white sound using 
an additional frequency supply, or frequency determined noise 
introduced with means of a computer device’s mechanism or 
indicate processing calculations. 

Secondly, back in electronic recording apparatus, a 
significant kind of noise can be hiss created by arbitrary 
electron motion due to thermal agitation in any way 
temperatures above absolute zero. These abrasive electrons 
quickly add and subtract out of the voltage of this output and 
therefore create detectable sound. 

Finally, in the instance of photographic picture along with 
magnetic tape is introduced on account of the grain structure 
of this moderate. In photographic picture, the magnitude of the 
sausage at the film determines the picture’s sensitivity, more 
sensitive picture with larger sized proteins. To pay for this, 
larger regions of film or magnetic tape could be employed to 
lessen the noise to a decent level. 

Henceforth, in the next section of the work, the problems 
are highlighted, elaborated and the mathematical models for 
the proposed solutions are formulated. 

III. PROBLEM FORMULATION 

After the detailed analysis of the parallel research 
outcomes, in the section of the work, the mathematical model 
for the problem and proposed solutions are elaborated. 

Lemma-1: Adaptive Moment Filtration can detect and 
reduce the noise in the spatial image sets. 

Proof: Assuming that the complete spatial image ste can be 
represented as I[] and each and every image in the set can be 
identified as Ix with a total number of n images in the dataset. 
Then, this analogy can be represented as: 

1

[]
n

x

x

I I



              (1) 

Where each Ix  belongs to the spatial dataset. As, 

[]xI I
              (2) 

Also, every image in the dataset can be represented using 
the<r,g,b> tuple as, 

, ,x x x xI r g b 
             (3) 

Applying, the   function for extraction of the gray 

parameter as intensity of the image as gx 

( )x xI g 
              (4) 

Henceforth the complete image can be clustered based on 
the adaptive image intensity. Assuming the cluster collection 
for the image as C [], the following formulation can be 
derived: 
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Further, assuming that, each and every cluster in the 
cluster set C[] can be represented in terms of two dimensional 
function to map into the spatial space, then this concept can be 
mathematical presented as, 

[]kC C
              (6) 

And, 

{ ( , ) | ( , )}kC f i j m n
             (7) 

Where m and n are the order of the spatial data. Thus the 
moment Mk, can be calculated as, 

. ( , ). .m n

kM i j f i j di dj

 
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  
            (8) 

Similarity, for the complete image, the same moment 
function can be calculated as 

' '' ' . ( ', '). '. 'm n

IM i j f i j di dj
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Where, 

{ ( ', ') | ( ', ')}IC f i j m n
          (10) 

Finally, building the complete set of clusters with noises 
CN [], each and every cluster must be analysis as, 

[] [],k k ICN C C iff M M  
         (11) 
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Assuming that each cluster in the image set with noise can 
be represented as CNn , then each CNn  must be clustered again 
using the adaptive clustering process and the moments shall be 
calculated, considering only the selected cluster. 

Considering the final size of the sub-cluster is relatively 
small considering the complete image, the sub-cluster with the 
noise can be replaced using the adaptive missing value 
replacement method. This adaptive missing value replacement 
method is further elaborated in the text mathematical model in 
this section. 

Lemma -2: Adaptive logistic analysis for the missing value 
can be highly accurate compared with the linear analysis for 
spatial data. 

Proof: Assuming that, the spatial dataset can be considered 
as D [] and each item in the data set can be represented as Dx    
with total number of elements as n with total m number of 
tuples. Thus, this relation can be formulated as, 

1

[] , , ...

n

m

x x x

x

D D D D


   
          (12) 

The linear method applies a simple strategy for calculating 
the replacement factor, RF [] as, 

1
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Henceforth, the men of the RF [], denoted as rf, can be 
calculated as, 
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In the other hand, the adaptive logistic analysis builds the 
correlation factor, Corr, before calculating the rectification 
factor as, 
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Further, the rectification factor, rf, can be calculated as, 
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It is natural to realize that, the adaptive logistic method is 
prone to be a lesser number compared to the linear method 
[Fig. 1], Hence, the following statement can be made, as 

'rf rf
            (17) 

Henceforth, if any data point can be featured as missing 
value data point in the spatial dataset, 

( / ) 0
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And 
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           (19) 

Then, using the adaptive logistic method, the missing data 
point can be calculated as, 

1
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
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          (20) 

Thus, it is realist to the state that, adaptive logistic method 
is more accurate for identifying and replacing the missing 
values or data points in the spatial datasets. 

Furthermore, the final identified challenge for the spatial 
data noise reduction is the outlier removal from the outlier 
form dataset or data points. Hence, this problem must be 
addressed and the solution to this problem is formulated using 
the following mathematical model. 

Lemma -3 Corrective logistic analysis for the outlier value 
can be accurate compared with the linear analysis for spatial 
data. 

Proof: Assuming that, the spatial dataset can be considered 
as D [] and each time in the data set can be represented as Dx 
with total number of elements as n with total m number of 
tuples. Thus, this relation can be formulated as, 
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The liner method applies a simple strategy for calculating 
the replacement factor, RF [] as, 
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Fig. 1. Comparative Function Growth in Adaptive Logistic and Linear. 
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Henceforth, the mean of the RF [], denoted as rf, can be 
calculated as 

1
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            (23) 

In the other hand, the adaptive logistic analysis builds the 
threshold factor, TH, as, 
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Further, the correction factor, ( )t , can be calculated as, 
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Again, it is natural to realize that corrective logistic 
method is prone to be a lesser number compared to the linear 
method and can be formulated as 

TH rf
            (26) 

Henceforth, if any data point can be featured as outlier 
data points in the spatial dataset, 

( ) ( 1)xD t TH t 
           (27) 

Then, the outlier data point must be replaced with the 
newer data point as, 

( ) ( ) ( )xD t TH t t 
           (28) 

 Thus, it is realist to state that, corrective logistic method is 
more accurate for identifying and replacing the outliers’ 
values or data points in the spatial datasets. 

Henceforth, in the light of the problem formulation and 
proposed corrective models, in the next section of this work, 
the proposed algorithms are furnished and discussed. 

IV. PROPOSED ALGORITHMS  

After the detailed mathematical modelling of the problem 
and proposed solution, in this section of the work, the 
proposed algorithms are furnished and discussed. 

Firstly, the algorithm for noise detection and reduction is 
furnished here for the spatial images. 

Moments are well-known for his or her own application in 
picture investigation, because they are sometimes utilized to 
derive invariants with regard to special conversion lessons. 
The expression invariant minutes can be abused within this 
circumstance. But whilst instant invariants are all invariants 
which can be made by minutes, the single minutes which can 
be invariants on their own would be the fundamental minutes. 
Be aware the invariants will be invariant from the domain 
names. Neither scaling nor spinning have been characterized 

also the transformation is not reversible, and also an image is 
an approximation. All these invariants are simply invariant 
after describing a silhouette. 

Secondly, the algorithm for missing value reduction for 
spatial data is furnished here. 

Algorithm - I: Adaptive Moment Based Spatial Image Noise 
Detection and Removal Algorithm (AMBSI-NDR) 

Step - 1. Accept the spatial data set V []. 

Step - 2. For each V [i] in V[] 

a. Separate the text component as T[i] and Image 
Components as I[i]. 

b. For each T[i] in T[] 

i. Call the ALC-MVIR and CLC-OIR 
algorithms.  

c. For each I[k] in I[] 

i. Calculate the Pixel Intensity for all 
Pixels, PI []. 

ii. Calculate the Initial Noise Level as NI.  

iii. Calculate the Image Size as IS.  

iv. For each PI[i] in PI[] 

1. Consider the Image as 
ImgTem. 

2. Identify the Image Segments 
as S[]. 

v. Calculate the Image Moment as IM. 

vi. For each S[i] in S[] 

1. Calculate the moment as M[i] 

2. If M[i] Not Equals to IM 

a. Then, ImgTem = S[i], 
IM = M[i] and Repeat 
from Step-2.C.I 

3. Else, Mark the S[i] as No-
Noise 

vii. Replace the Segments Marked No-
Noise data using CLC-OIR Algorithm  

d. Calculate the Reduced Noise Level as RNI.  

e. Calculate the Final Image Size as FIS. 

f. If RNI < NI and FIS = IS 

i. Then, Report the Final Image without 
Noise. 

g. Else, Repeat from Step-2.C.  

Step - 3. Report the final noise reduced image set I[]. 
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Imputation could be the procedure for substituting lost data 
using values. It’s called thing imputation when it’s called 
imputation. When substituting for a factor of the data level. 
Now, there are three major difficulties that data will cause 
data make reductions, create the analysis and handling of their 
data arduous, and may present a sizable total of prejudice. 

Algorithm - II: Adaptive Logistic Correlation Based 
Missing Value Identification & Replacement 
Algorithm (ALC-MVIR) 

Step - 1. Accept the Text set as T[] from the Spatial 
Dataset  

Step - 2. For each T[i] from T[] set  

a. Calculate the Correlation, Corr, for each 
Data Iteams as Eq. 15  

b. Calculate the rectification factor, Corr as 
Eq. 16 

c. If T[i] Equals to Zero or T[i] Equals to 
"Not Available"  

d. Then,  

i. Mark the data items or Data 
Points as Missing Value  

ii. Replace the Missing Value as 
T[i] = T[i-1] ± Corr[i-1] 

Step - 3. Report the final Missing Value Reduced 
dataset as T[] 

Finally, the algorithm for outlier detection in spatial data 
sets are furnished here. 

Algorithm - III: Correlative Logistic Correction Based 
Outlier Identification & Removal Algorithm (CLC-OIR) 

Step - 1. Accept the Text set as T[] from the Spatial 
Dataset  

Step - 2. For each T[i] from T[] set  

a. Calculate the Threshold, TH[i] as Eq. 24  

b. Calculate the correction factor, Theta[i] as 
Eq. 25 

c. If T[i] > TH[i] 

d. Then,  

i. Mark the data item or Data Point as 
Outlier 

ii. Replace the Outlier as T[i] = TH[i] 
± Theta[i] 

Step - 3. Report the final outlier removed dataset as T[] 

They suggest either dimension error or the people come 
with a supply, although outliers can happen by chance in 
virtually and supply. At the prior event one wants to lose them 
use statistics which can be robust to outliers, any particular 

you must be careful in applying and then although at the latter 
instance that they signify which the supply comes with 
skewness. A reason for outliers can be that a mix of two 
distributions, which could signal identification versus 
dimension malfunction, or maybe just two, means of mix 
version model this really. 

The results obtained from the proposed algorithms are 
highly satisfactory and are discussed in the next section of the 
work. 

V. RESULTS AND DISCUSSIONS 

The proposed algorithm is evaluated on standard and 
benchmark dataset [14] and are highly satisfactory. In the 
section of the work, the obtained results are furnished and 
discussed. 

Firstly, the image sets are introduced with some additional 
noises for better identification of the improvements over the 
traditional algorithms with the proposed algorithm. The initial 
noise induction results are elaborated here [Table I]. The noise 
types induced as Type-1 for Salt and Pepper Noise, Type-2 for 
Gaussian Noise, Type-3 for Sparkle Noise and finally Type-4 
for passion Noise. 

The noise levels are also visualized graphically here 
[Fig. 2]. 

Secondly, the results from the image noise reduction 
algorithm is furnished [Table II] and the step by step 
comparison is also done with two benchmark work by A. 
Erturk [11] and D. Cesmeci [12]. 

The results are also visualized graphically here [Fig. 3]. 

 

Fig. 2. Initial Noise Level Analysis. 

 

Fig. 3. Noise Level Reduction Analysis. 
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TABLE. I. NOISE INDUCTION IN SPATIAL IMAGES 

 Data Item 

Initial 

Noise 

(dB) 

Added 

Noise (dB) 

Total Noise 

(dB) 

Noise Type - 1 ID_Spat - 1 4.250 33.860 38.110 

Noise Type - 1 ID_Spat - 2 5.865 34.965 40.831 

Noise Type - 1 ID_Spat - 3 4.038 33.689 37.726 

Noise Type - 1 ID_Spat - 4 6.357 34.315 40.672 

Noise Type - 1 ID_Spat - 5 1.775 33.648 35.422 

Noise Type - 1 ID_Spat - 6 2.814 33.642 36.456 

Noise Type - 1 ID_Spat - 7 16.436 35.586 52.021 

Noise Type - 1 ID_Spat - 8 1.387 34.000 35.387 

Noise Type - 1 ID_Spat - 9 5.829 33.903 39.732 

Noise Type - 1 ID_Spat - 10 114.262 45.715 159.976 

Noise Type - 2 ID_Spat - 11 5.950 31.544 37.494 

Noise Type - 2 ID_Spat - 12 5.865 31.474 37.339 

Noise Type - 2 ID_Spat - 13 4.038 31.568 35.605 

Noise Type - 2 ID_Spat - 14 6.357 31.600 37.957 

Noise Type - 2 ID_Spat - 15 1.420 31.699 33.119 

Noise Type - 2 ID_Spat - 16 4.925 31.682 36.607 

Noise Type - 2 ID_Spat - 17 38.350 32.114 70.464 

Noise Type - 2 ID_Spat - 18 4.854 31.472 36.327 

Noise Type - 2 ID_Spat - 19 3.886 31.556 35.441 

Noise Type - 2 ID_Spat - 20 159.966 36.839 196.805 

Noise Type - 3 ID_Spat - 21 5.100 12.183 17.283 

Noise Type - 3 ID_Spat - 22 5.865 11.919 17.785 

Noise Type - 3 ID_Spat - 23 4.845 12.080 16.925 

Noise Type - 3 ID_Spat - 24 10.595 12.063 22.658 

Noise Type - 3 ID_Spat - 25 2.485 12.253 14.737 

Noise Type - 3 ID_Spat - 26 1.407 11.980 13.387 

oise Type - 3 ID_Spat - 27 38.350 12.638 50.988 

Noise Type - 3 ID_Spat - 28 2.774 11.853 14.627 

Noise Type - 3 ID_Spat - 29 5.829 12.014 17.842 

Noise Type - 3 ID_Spat - 30 137.114 24.586 161.700 

Noise Type - 4 ID_Spat - 31 2.550 32.927 35.476 

Noise Type - 4 ID_Spat - 32 20.529 27.979 48.507 

Noise Type - 4 ID_Spat - 33 1.615 32.483 34.099 

Noise Type - 4 ID_Spat - 34 6.357 31.017 37.374 

Noise Type - 4 ID_Spat - 35 1.065 33.839 34.904 

Noise Type - 4 ID_Spat - 36 2.814 32.195 35.009 

Noise Type - 4 ID_Spat - 37 21.914 25.968 47.882 

Noise Type - 4 ID_Spat - 38 3.467 31.406 34.874 

Noise Type - 4 ID_Spat - 39 6.800 31.742 38.542 

Noise Type - 4 ID_Spat - 40 159.966 29.772 189.738 

TABLE. II. NOISE DETECTION AND REMOVAL FOR SPATIAL IMAGES 

Data Item 

Total 

Noise 

(dB) 

Reduced 

Noise (dB) 

By 

Removal 

Method – 1 

[11] 

Reduced 

Noise (dB) 

By 

Removal 

Method – 2 

[12] 

Reduced 

Noise (dB) 

By Proposed 

Method 

ID_Spat - 1 38.110 0.011 0.948 2.033 

ID_Spat - 2 40.831 0.012 2.002 3.632 

ID_Spat - 3 37.726 0.011 0.847 2.028 

ID_Spat - 4 40.672 0.011 1.550 2.025 

ID_Spat - 5 35.422 0.011 0.527 2.471 

ID_Spat - 6 36.456 0.011 0.751 2.093 

ID_Spat - 7 52.021 0.012 2.032 2.380 

ID_Spat - 8 35.387 0.011 0.728 2.218 

ID_Spat - 9 39.732 0.011 1.066 2.059 

ID_Spat - 10 159.976 0.015 6.931 2.991 

ID_Spat - 11 37.494 0.009 4.947 1.972 

ID_Spat - 12 37.339 0.009 5.395 3.733 

ID_Spat - 13 35.605 0.009 4.939 1.961 

ID_Spat - 14 37.957 0.009 5.115 1.998 

ID_Spat - 15 33.119 0.009 4.888 2.673 

ID_Spat - 16 36.607 0.009 4.905 2.292 

ID_Spat - 17 70.464 0.009 5.243 2.100 

ID_Spat - 18 36.327 0.009 4.892 2.297 

ID_Spat - 19 35.441 0.009 4.974 2.072 

ID_Spat - 20 196.805 0.011 7.658 3.163 

ID_Spat - 21 17.283 0.004 2.118 1.051 

ID_Spat - 22 17.785 0.004 2.635 2.496 

ID_Spat - 23 16.925 0.004 2.091 1.033 

ID_Spat - 24 22.658 0.004 2.385 1.134 

ID_Spat - 25 14.737 0.004 1.960 1.358 

ID_Spat - 26 13.387 0.004 1.987 1.178 

ID_Spat - 27 50.988 0.004 2.498 1.578 

ID_Spat - 28 14.627 0.003 1.936 1.175 

ID_Spat - 29 17.842 0.004 2.119 1.088 

ID_Spat - 30 161.700 0.008 6.224 3.038 

ID_Spat - 31 35.476 0.010 6.399 2.034 

ID_Spat - 32 48.507 0.008 5.771 5.326 

ID_Spat - 33 34.099 0.009 6.275 1.846 

ID_Spat - 34 37.374 0.009 6.123 1.816 

ID_Spat - 35 34.904 0.010 6.564 2.808 

ID_Spat - 36 35.009 0.009 6.236 2.343 

ID_Spat - 37 47.882 0.008 5.024 1.634 

ID_Spat - 38 34.874 0.009 6.115 2.361 

ID_Spat - 39 38.542 0.009 6.175 2.315 

ID_Spat - 40 189.738 0.010 6.566 3.445 
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TABLE. III. NOISE REDUCTION PERCENTAGE ANALYSIS FOR SPATIAL 

IMAGES 

Data Item 
Reduction % by 

Method – 1  

Reduction % by 

Method – 2 

Reduction % by 

Proposed 

Method 

ID_Spat - 1 88.819 86.362 83.515 

ID_Spat - 2 85.606 80.731 76.740 

ID_Spat - 3 89.267 87.052 83.921 

ID_Spat - 4 84.342 80.559 79.392 

ID_Spat - 5 94.958 93.503 88.013 

ID_Spat - 6 92.250 90.220 86.538 

ID_Spat - 7 68.384 64.501 63.831 

ID_Spat – 8 96.049 94.023 89.814 

ID_Spat – 9 85.302 82.648 80.148 

ID_Spat – 10 28.567 24.243 26.706 

ID_Spat – 11 84.107 70.938 78.871 

ID_Spat – 12 84.267 69.843 74.294 

ID_Spat – 13 88.634 74.787 83.151 

ID_Spat – 14 83.228 69.777 77.987 

ID_Spat – 15 95.685 80.954 87.642 

ID_Spat – 16 86.521 73.148 80.286 

ID_Spat – 17 45.562 38.136 42.595 

ID_Spat – 18 86.612 73.171 80.314 

ID_Spat – 19 89.010 75.001 83.191 

ID_Spat – 20 18.713 14.827 17.111 

ID_Spat – 21 70.472 58.236 64.415 

ID_Spat – 22 66.999 52.206 52.989 

ID_Spat – 23 71.350 59.019 65.269 

ID_Spat – 24 53.224 42.712 48.235 

ID_Spat – 25 83.116 69.840 73.926 

ID_Spat – 26 89.463 74.644 80.693 

ID_Spat – 27 24.779 19.887 21.692 

ID_Spat – 28 81.013 67.798 73.000 

ID_Spat – 29 67.313 55.456 61.235 

ID_Spat – 30 15.200 11.356 13.326 

ID_Spat – 31 92.786 74.776 87.078 

ID_Spat – 32 57.662 45.782 46.699 

ID_Spat – 33 95.236 76.860 89.848 

ID_Spat – 34 82.967 66.608 78.131 

ID_Spat – 35 96.921 78.143 88.905 

ID_Spat – 36 91.935 74.150 85.269 

ID_Spat – 37 54.217 43.740 50.821 

ID_Spat – 38 90.032 72.524 83.287 

ID_Spat – 39 82.333 66.336 76.349 

ID_Spat – 40 15.686 12.231 13.875 

As the reduced noise levels are concerns, much reductions 
can be observed by the first methods [XX]. However, the 
other image integrity-based factors are highly compromised. 
The details are furnished and discussed further in the sections 
of the work. Thirdly, the noise reduction percentage by these 
three methods are also analysed here [Table III]. 

The results are also visualized graphically here [Fig. 4]. 

Further, the image information loss analysis is carried out. 
One of the most prominent measure of the information loss 
from the images are size of the image apart from the pixel 
intensity and scale density. The size comparison after the 
noise reduction is furnished here [Table IV]. 

The results are also visualized graphically here [Fig. 5]. 

The results are also visualized graphically here [Fig. 6]. 

 

Fig. 4. Noise Level Reduction Percentage Analysis. 

 

Fig. 5. Information Loss Percentage Analysis is Formulated [Table V]. 

 

Fig. 6. Information Percentage Loss Analysis. 
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TABLE. IV. SIZE ANALYSIS AFTER THE NOISE REDUCTION FOR SPATIAL 

IMAGES 

Data Item 

Origin

al 

Image 

Size 

(MB) 

Noisy 

Image 

Size 

(MB) 

Size After 

Noise 

Reduction 

by 

Method - 

1 (MB) 

Size After 

Noise 

Reduction 

by 

Method - 

2 (MB) 

Size After 

Noise 

Reduction 

by 

Proposed 

Method 

(MB) 

ID_Spat - 1 45437 167331 71693 83712 22351 

ID_Spat - 2 41130 178854 76705 89544 24447 

ID_Spat - 3 84698 214678 94117 109470 30794 

ID_Spat - 4 9755 66685 28429 33312 11351 

ID_Spat - 5 24968 109963 46808 54912 16531 

ID_Spat - 6 115202 228475 99408 116482 32575 

ID_Spat - 7 20457 91513 38863 45497 13082 

ID_Spat - 8 40564 128879 55745 64985 18351 

ID_Spat - 9 155164 179606 85817 106752 35199 

ID_Spat - 10 53071 125578 56409 66033 29640 

ID_Spat - 11 45437 99249 47950 51110 16721 

ID_Spat - 12 41130 104508 49877 53377 18594 

ID_Spat - 13 84698 133089 67833 72264 25537 

ID_Spat - 14 9755 38124 17532 18605 7775 

ID_Spat - 15 24968 63250 29653 31839 12001 

ID_Spat - 16 115202 144451 71066 76103 31859 

ID_Spat - 17 20457 51769 24214 25793 9468 

ID_Spat - 18 40564 76102 38241 40258 13885 

ID_Spat - 19 155164 157122 78464 95699 37598 

ID_Spat - 20 53071 77273 41105 44247 26842 

ID_Spat - 21 45437 169599 73438 99399 22528 

ID_Spat - 22 41130 180482 78018 105462 23567 

ID_Spat - 23 84698 212141 92933 122483 28543 

ID_Spat - 24 9755 67926 29310 39980 11391 

ID_Spat - 25 24968 110082 47055 64150 16718 

ID_Spat - 26 115202 208493 89502 113856 28939 

ID_Spat - 27 20457 90795 38538 52554 13168 

ID_Spat - 28 40564 128375 55702 74616 19211 

ID_Spat - 29 155164 168397 82160 98588 38230 

ID_Spat - 30 53071 117449 52395 68099 35066 

ID_Spat - 31 45437 184563 83364 38048 24542 

ID_Spat - 32 41130 197409 89594 35099 26516 

ID_Spat - 33 84698 234286 106951 61869 32634 

ID_Spat - 34 9755 73556 33317 9857 11937 

ID_Spat - 35 24968 120899 54596 20914 17454 

ID_Spat - 36 115202 249398 113641 70122 38501 

ID_Spat - 37 20457 100838 45352 17157 13953 

ID_Spat - 38 40564 141868 64307 33048 19995 

ID_Spat - 39 155164 195594 96521 101160 33836 

ID_Spat - 40 53071 138009 64324 39223 30793 

TABLE. V. SIZE ANALYSIS AFTER THE NOISE REDUCTION FOR SPATIAL 

IMAGES 

Data Item 

Origin

al 

Image 

Size 

(MB) 

Noisy 

Image 

Size 

(MB) 

Deviatio

n % by 

Method 

– 1 

Deviation 

% by 

Method – 2 

Deviation

 % by 

Novel 

Method 

ID_Spat - 1 45437 167331 57.79 84.24 50.81 

ID_Spat - 2 41130 178854 86.49 117.71 40.56 

ID_Spat - 3 84698 214678 11.12 29.25 63.64 

ID_Spat - 4 9755 66685 191.43 241.49 16.36 

ID_Spat - 5 24968 109963 87.47 119.93 33.79 

ID_Spat - 6 115202 228475 13.71 1.11 71.72 

ID_Spat - 7 20457 91513 89.97 122.40 36.05 

ID_Spat - 8 40564 128879 37.42 60.20 54.76 

ID_Spat - 9 155164 179606 44.69 31.20 77.31 

ID_Spat - 10 53071 125578 6.29 24.42 44.15 

ID_Spat - 11 45437 99249 5.53 12.49 63.20 

ID_Spat - 12 41130 104508 21.27 29.78 54.79 

ID_Spat - 13 84698 133089 19.91 14.68 69.85 

ID_Spat - 14 9755 38124 79.72 90.72 20.30 

ID_Spat - 15 24968 63250 18.76 27.52 51.93 

ID_Spat - 16 115202 144451 38.31 33.94 72.35 

ID_Spat - 17 20457 51769 18.37 26.08 53.72 

ID_Spat - 18 40564 76102 5.73 0.75 65.77 

ID_Spat - 19 155164 157122 49.43 38.32 75.77 

ID_Spat - 20 53071 77273 22.55 16.63 49.42 

ID_Spat - 21 45437 169599 61.63 118.76 50.42 

ID_Spat - 22 41130 180482 89.69 156.41 42.70 

ID_Spat - 23 84698 212141 9.72 44.61 66.30 

ID_Spat - 24 9755 67926 200.46 309.84 16.77 

ID_Spat - 25 24968 110082 88.46 156.93 33.04 

ID_Spat - 26 115202 208493 22.31 1.17 74.88 

ID_Spat - 27 20457 90795 88.39 156.90 35.63 

ID_Spat - 28 40564 128375 37.32 83.95 52.64 

ID_Spat - 29 155164 168397 47.05 36.46 75.36 

ID_Spat - 30 53071 117449 1.27 28.32 33.93 

ID_Spat - 31 45437 184563 83.47 16.26 45.99 

ID_Spat - 32 41130 197409 117.83 14.66 35.53 

ID_Spat - 33 84698 234286 26.27 26.95 61.47 

ID_Spat - 34 9755 73556 241.54 1.05 22.37 

ID_Spat - 35 24968 120899 118.66 16.24 30.09 

ID_Spat - 36 115202 249398 1.36 39.13 66.58 

ID_Spat - 37 20457 100838 121.69 16.13 31.79 

ID_Spat - 38 40564 141868 58.53 18.53 50.71 

ID_Spat - 39 155164 195594 37.79 34.80 78.19 

ID_Spat - 40 53071 138009 21.20 26.09 41.98 
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Hence, it is natural to realize that, the information loss is 
the least by the proposed method.  Further, as the spatial 
dataset does not only concern the image data, rather also the 
text data. Hence, this algorithm also analyses the missing 
value detection and outlier removal results. 

The missing value analysis is carried out for the complete 
spatial dataset. However, only few furnished here [Table VI]. 

The results are also visualized graphically here [Fig. 7]. 

The outlier analysis is carried out for the complete spatial 
dataset. However, only few are furnished here [Table VII]. 

TABLE. VI. MISSING VALUE DETECTION ANALYSIS 

Data Item 
Number of 

Data Items 

Number of 

Missing Values 

Detected 

Missing 

Values 

Accuracy 

(%) 

ID_Spat - 1 400 8 7 87.50 

ID_Spat - 2 393 9 9 100.00 

ID_Spat - 3 387 7 7 100.00 

ID_Spat - 4 310 5 5 100.00 

ID_Spat - 5 320 5 5 100.00 

ID_Spat - 6 337 5 4 80.00 

ID_Spat - 7 301 10 6 60.00 

ID_Spat - 8 369 7 6 85.71 

ID_Spat - 9 322 9 7 77.78 

ID_Spat - 10 329 7 7 100.00 

 

Fig. 7. Missing Value Replacement Accuracy Analysis. 

TABLE. VII. OUTLIER VALUE DETECTION ANALYSIS 

Data Item 
Number of 

Data Items 

Number of 

Missing 

Values 

Detected 

Missing 

Values 

Accuracy 

(%) 

ID_Spat - 1 400 4 4 100.00 

ID_Spat - 2 393 8 6 75.00 

ID_Spat - 3 387 7 5 71.43 

ID_Spat - 4 310 4 4 100.00 

ID_Spat - 5 320 7 7 100.00 

ID_Spat - 6 337 6 5 83.33 

ID_Spat - 7 301 5 5 100.00 

ID_Spat - 8 369 5 4 80.00 

ID_Spat - 9 322 4 4 100.00 

ID_Spat - 10 329 7 6 85.71 

 

Fig. 8. Outlier Detection and Replacement Accuracy Analysis. 

The results are also visualized graphically here [Fig. 8]. 

Henceforth, with the detailed analysis of the results 
obtained from the proposed algorithms, in the next section of 
this work, the comparative analysis is furnished. 

VI. COMPARATIVE ANALYSIS 

Although, the step by step comparisons are carried out 
with highly benchmarked parallel research outcomes, in the 
previous section of this work, the summarized comparative 
analysis is carried out here [Table VIII]. 

The improvements over the existing algorithms are notable 
and the reasons are elaborated here. 

Firstly, instead quite a few complexes mean of plasma 
normalization are constructing on arrangement preserving 
transformations homeomorphisms and also diffeomorphisms 
given that they take sleek sub manifolds effortlessly 
throughout conversion. Diffeomorphisms are created inside 
today’s area of computational anatomy predicted on 
diffeomorphic leaks, additionally referred to as diffeomorphic 
mapping. But such transformations by way of diffeomorphic 
aren’t additive, even though they produce a set with work 
article and behaving non-linearly to the graphics by the way of 
team actions. 

Secondly, any process for spectral imaging, allowing 
qualitative and qualitative characterization of their air and also 
of this outside. These dimensions may be properly utilized for 
atmospheric gases, the dimension of these concentrations and 
identifications of outside substances and unambiguous direct, 
then the mission of their participation of signs that were blended. 

TABLE. VIII. SUMMARIZED COMPARATIVE ANALYSIS 

Method 

Name 

Noise 

Reduction 

Percentage 

Mean (%)  

Image 

Information 

Loss 

Percentage 

Mean (%) 

Missing 

Value 

Detection 

and 

Reduction 

Accuracy 

Mean (%) 

Outlier 

Detection 

and 

Reduction 

Accuracy 

Mean (%) 

Model 

Complexity 

A. Ertürk 

et al [11] 
73.96 59.51 59.21 57.55 High  

D. 

Çeşmeci et 

al. [12] 

63.67 60.65 61.75 62.62 Moderate  

Proposed 
Method  

68.01 50.31 89.10 89.55 Low 
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Third, in machine-learning and predictive optimization, 
loss works for classifications are all computationally viable 
loss purposes representing the cost covered inaccuracy of 
predictions from classification issues as issues of identifying 
that category a specific monitoring belongs to. 

Finally, there will be to unmixing a method always to undo 
the procedure that is blending. Ordinarily, of blending 2 types 
are all supposed: nonlinear and linear. Vertical blending like 
being level models that the earth and episode sun onto the 
earth results in the substance to digitize a certain sum of their 
episode energy right back into the detector. Just about every 
pixel is described as a sum of the vitality slabs of substances. 
Just about every material contributes to the monitoring of this 
sensor within a mode that is favourable. A conservation of 
electricity restriction is detected inducing this mixture’s 
weights to amount to a in addition to having the favourable. 

Henceforth, after the detailed discussion on the 
comparative analysis, this work presence the final research 
conclusion in the next section of the work. 

VII. CONCLUSION 

Automation in the road accident prediction is highly 
dependent on the road conditions. Thus, correct detections of 
the road conditions are one of the most important aspects. The 
road data or the spatial road information is highly prune to the 
noise. Failing to justify the de-noising process of the spatial 
data with respect to the image intensity or the information loss 
from the parallel research outcomes, this work proposes a 
novel adaptive moments-based image de-noising methods 
with the use of adaptive intensity calculations for image 
segments. Further in order to also de-noise the endmember 
data items, extracted from the spatial data, this work 
introduces two other methods as adaptive logistic estimation 
and corrective logistic estimation for the de-noising purpose. 
The work results in nearly 90% accuracy of de-nosing process. 
This work can be considered as a newer benchmark for de-
noising the spatial road data for making the further  processing 
highly accurate. 
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