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Abstract—Software engineers working in Modern Code 

Review (MCR) are confronted with the issue of lack of 

competency in the identification of situational factors. MCR is a 

software engineering activity for the identification and fixation of 

defects before the delivery of the software product. This issue can 

be a threat to the individual sustainability of software engineers 

and it can be addressed by situational awareness. Therefore, the 

objective of the study is to identify situational factors concerning 

the MCR process. Systematic Literature Review (SLR) has been 

used to identify situational factors. Data coding along with 

continuous comparison and memoing procedures of grounded 

theory and expert review has been used to produce an exclusive 

and validated list of situational factors grouped under categories. 

The study results conveyed 23 situational factors that are 

grouped into 5 broad categories i.e. People, Organization, 

Technology, Source Code and Project. The study is valuable for 

researchers to extend the research and for software engineers to 

identify situations and sustain for longer. 

Keywords—Situational; modern code review; sustainable 

software engineer 

I. INTRODUCTION 

Sustainable software engineering is presently a major 
concern in software development [1], [2]. It has five major 
aspects such as individual, social, economic, environmental, 
and technical [3], [4]. It is argued that work has been done 
regarding technical, economic, social, and environmental 
aspect of sustainable software engineering, however, individual 
sustainability aspect has been given less attention by the 
researchers and it warrants future research [2], [3], [4], [5], [6], 
[7]. 

Regarding individual sustainability, the software engineers 
are confronting with the issue of lack of competency in the 
identification of situational factors in various software 
engineering activities such as software requirement gathering 
and design, software construction and testing, modern code 
review [3], [8], [9]. 

The existing work concerning identification of situational 
factors have got attention by the researcher in software 
requirement and for software development, however, less 
attention has been devoted concerning situational context in 
modern code review specifically, to support software 
engineers’ sustainability  [3], [8], [9], [10], [11], [12]  that can 
be the reason of software failure [3], [11], [13], [14]. 

Therefore, there is a need to identify situational factors for 
Modern Code Review (MCR) to overcome the issue of lack of 
competency in the identification of situational factors and to 
ensure the software engineers’ sustainability involved in the 
MCR process [8], [9], [15]. MCR is an enhancement of Fagan's 
inspection, commonly known as a lightweight review process 
[16], [17]. It is supposed as a significant tool for improving 
code and software quality [16], [17], [18]. In MCR, software 
engineers i.e. authors and reviewers both aimed to improve the 
code quality [16], [17]. In this process, the code is reviewed by 
the reviewer from varying aspects. For instance, code style, 
code logic, code complexity etc. [16], [17], [18]. The process is 
highly reliant on review tools such as Code flow, Review 
board, Gerrit, etc. [16], [19]. 

This research has twofold aims i.e. to perform Systematic 
literature review (SLR) to identify situational factors for the 
MCR process and to validate them through expert review. The 
study detailed the SLR phases and expert review to identify 
and validate the situational factors for the MCR process that 
can help software engineers to sustain longer. This inquiry at 
one hand allows the investigators to outspread the research and 
on the other hand, it supports software engineers’ sustainability 
through situational awareness in MCR. 

The paper is arranged as Section II provides the 
background details. Section III details the study methodology. 
Section IV presents the results. Section V delivers the 
discussion. Section VI provides the conclusion and future 
work. Section VII deliberates the research contributions. 

II. BACKGROUND 

Sustainability in software engineering is a noteworthy part 
of practices in the disciplines [1], [2]. It is defined as the 
“capacity to endure” [4]. There are five sustainability aspects 
reported in the literature such as individual, social, economic, 
environmental and technical [3], [4], [13], [14]. 

Economic sustainability aspects deals with investments and 
profitability [3], [4], [20], [21]. The technical sustainability 
aspect is connected to the ability to maintain and evolve 
software [8], [22], [23]. The social sustainability aspect is 
associated with the relationship between organizations, groups, 
and individuals [3], [4]. The environmental sustainability 
aspect is related to the objective to lessen the negative 
influence of software engineering activities on the environment 
[2], [3], [24], [25]. The individual sustainability aspect is 
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related to well-being, education, and liberty of software 
engineers to sustain for longer [3], [4], [14]. Although valued 
work has been performed concerning to sustainable software 
engineering aspects i.e. technical, economic, social, and 
environmental, however, individual sustainability aspect has 
got less attention by the researchers and needs a detailed 
insight [2], [3], [4], [5], [6], [7]. 

Presently, software engineers are confronted with the issue 
concerning their sustainability such as lack of competency in 
the identification of situational factors in the Modern Code 
Review (MCR) process [3], [8], [9], [13], [14]. MCR is an 
important software engineering activity also known as a 
lightweight version of Fagan’s inspection where developer 
other than source code author review the source code and guide 
the author in improving the quality of source code [16], [17], 
[26], [27], [28]. The process is performed with the help of 
review tools, for instance, Gerrit [16]. The overview of the 
process is shown in Fig. 1. 

One of the reasons behind the issue of lack of competency 
in the identification of situational factors is unfamiliar 
situations [9], [23]. It is stated that the above issue can cause a 
decrease in the competency and capability of software 
engineers towards problem understanding, and identification of 
unfamiliar situations [9], [15]. This issue can be addressed by 
situational awareness in MCR [9], [11], [14]. 

In modern software development, situation-aware 
computing is extremely desirable [9]. Situation aware software 
engineering also called situational software engineering allows 
the software engineers to be able to deal with familiar 
situations instead of being unproductive with unfamiliar 
situations [9], [10], [11], [15], [29]. Situational software 
engineering ensures the software engineers’ sustainability [9], 
[11], [15]. 

 

Fig. 1. MCR Overview [17]. 

The previous work established that researchers have 
highlighted the significance of situational factors identification 
and attention has been given on the identification of situational 
factors in software requirement and for software development 
[3], [8], [9], [10], [11], [12], however, little indication is 
available concerning to Modern Code Review (MCR) [30], 
[31], [32], [33], [34]. It results in the unavailability of 
situational guidelines that can help software engineers to 
increase their competency for the identification of situational 
factors. Therefore, this study aims to identify the unique and 
validated list of situational factors for the MCR process to 
support software engineers’ sustainability. 

III. RESEARCH METHODOLOGY 

The research activities completed to produce the unique 
and validated list of situational factors for the MCR process to 
support software engineers’ sustainability are explained in 
subsections. 

A. Systematic Literature Review (SLR) 

The Systematic Literature Review (SLR) technique 
specified by [35] has been employed to recognize the 
situational factors for the MCR process to support software 
engineers’ sustainability. The SLR technique is a schematized 
approach to accomplish impartial results [35]. It involves 
significant steps such as SLR planning, SLR execution and, 
reporting the SLR results. It is a suitable technique to record 
significant data from existing research.  The steps involved in 
SLR are explained in subsections. 

1) Research questions: Designing the research question is 

an important aspect of SLR. For this study, the PICOC 

strategy proposed by [36] has been utilized to prepare the 

research question. PICOC stands for population, intervention, 

comparison, outcome, and context. As this study is inclusive 

of any type of comparison between methods, therefore the 

study selected only population, intervention, outcome, and 

context that is PIOC. Table I presents a summary of the PIOC 

strategy. 

To collect the indications on the current state of research 
concerning situational factors, the planned research question is 
given below. 

RQ1: What situational factors of the MCR process should 
be known, to support the software engineers’ sustainability? 

2) Search technique: The search technique includes the 

recognition of main search terms, finding their alternative and 

then constructing the search thread to search relevant data 

from data sources. Table II presents the main terms and their 

alternatives. 

The search thread is planned based on the main terms and 
their alternate terms. The planned search thread is given below. 

(‘conditional’, ‘contextual’, ‘situational factor’) AND 
(‘modern code inspection’, ‘contemporary code review’ ‘code 
review’, ‘code inspection’, ‘ ‘lightweight code inspection’) 
AND (‘sustainable software engineers’, ‘sustainable software 
developer’, ‘sustainable software programmer’) 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 1, 2020 

500 | P a g e  

www.ijacsa.thesai.org 

TABLE. I. POIC SUMMARY 

Population Intervention Outcome Context 

Software 

Engineers 

MCR 

Process 

Situational 
factors for 

MCR process 

to support 
software 

engineers’ 

sustainability 

The research includes all 

types of studies, for 
instance, interviews, 

surveys, questionnaires, 

experiments, and case 
studies regarding MCR. 

TABLE. II. MAIN TERMS AND THEIR ALTERNATES 

Situational Modern Code Review 
Sustainable Software 

Engineer 

‘conditional’, 
‘contextual’, 

‘situational 

factor’ 

‘modern code inspection’, 
‘contemporary code review’ 

‘code review’, ‘code inspection’, 

‘lightweight code inspection’ 

‘sustainable software 
developer’, 

‘sustainable software 

programmer’ 

3) Data source: The data is collected from varying 

sources known for publishing software engineering research 

articles. The data origin utilized for the study includes ACM, 

IEEE, Springer link, Science direct, Wiley online, Scopus, and 

Web of Science. Papers published in 2013 to 2019 are 

considered for selection. The journals’ articles, workshop 

papers, conference papers, book chapters, published thesis, 

and technical reports are searched in the defined databases. 

The data sources that reflect situational factors that impact the 

sustainability of software engineers involved in the MCR 

process are recognized as probably pertinent. 

4) Study inclusion and exclusion principles: The inclusion 

criteria for including the relevant studies is as follows. 

a) Research published in journals, conference 

proceedings, workshops, book chapters, thesis, or technical 

reports that are discussing situational factors for the MCR 

process to support software engineers. 

b) Publication content is available completely. 

c) Publications from 2013 to 2019. 

d) Research papers are written in the English language. 

 The research papers were excluded based on the exclusion 
criteria specified below. 

a) Research papers giving information such as 

conference proceedings, workshops table of content, and 

irrelevant title. 

b) Research papers that do not contain any one of the 

study main terms or their alternates terms. 

c) Duplicate research papers 

Fig. 2 summarizes the study inclusion and exclusion 
principles. 

5) Quality assessment: The selected research papers are 

weighed for their quality by using the checklist provided by 

[35]. The checklist used for evaluating the quality of the 

research papers is given in Table III. Furthermore, each 

question given in the checklist presented in Table III is 

answered by the measures given by [35]. The measures are 

shown in Table IV. 

6) Data extraction: The data is extracted from the selected 

studies with the help of extraction forms given by [35]. The 

details about the data extraction form are presented in Table 

V. 

TABLE. III. QUALITY ASSESSMENT CHECKLIST [36] 

Question Answer 

Are the objective clearly stated? Yes/ No/Partially 

Are the findings sound and significant? - 

Are the prediction techniques used clearly described 

and their selection are justified? 
- 

Is the facts been extended through the research? - 

Is the multiplicity of viewpoint and background been 

explored? 
- 

Are the associations between data, interpretation, and 
conclusions are vibrant? 

- 

Does the depth of the data is conveyed? - 

TABLE. IV. MEASURES FOR ANSWERING QUESTION GIVEN IN CHECKLIST 

[36] 

Answer Score 

Yes 1 

No 0 

Partially 0.5 

 

Fig. 2. Study Inclusion and Exclusion Criteria. 

 
Studies after searching in Data Sources (ACM, IEEE, 

Springer link, Science direct, Wiley online, Scopus, 
and Web of Science) 

-Research published in journals, 

conference proceedings, workshops, book 
chapters, thesis, or technical reports that 

are discussing situational factors for the 

MCR process to support software 
engineers.  

-Publication content is available 
completely. 

-Publication from 2013 to 2019. 

-Research papers are written in the 

English language. 

 

-Research papers giving information such 

as conference proceedings, workshops 
table of content, and irrelevant title. 

-Research papers that not contain any one 
of the study main terms or their alternates 

terms. 

-Duplicate research papers 

 
 

Studies selected 

after inclusion 

Studies 
Excluded 
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TABLE. V. DATA EXTRACTION FORM 

Data Items Data information Notes 

Paper ID A unique identifier SFS<1--n>  

Title   

Author (s)   

Year   

Study type  (Conference/Journal/Book/Thesis)  

Study Publisher  IEEE  

Situational Factors   

7) Data analysis: After the data extraction, qualitative 

data analysis has been performed using the grounded theory 

given by [37], [38]. The grounded theory techniques i.e. data 

coding, continuous comparison and memoing has been used to 

recognize a unique list of situational factors grouped under 

various categories for the MCR process. 

B. Expert Review 

After finding the unique list of situational factors grouped 
under various categories, the list has been sent to the experts 
for the assessment concerning naming, terms, and classification 
of identified situational factors. The experts are also asked to 
mention new situational factors. The experts are designated 
based on their expertise in MCR along with software 
development experience for more than 10 years, the familiarity 
of situational software engineering, sustainable software 
engineering, and individual sustainability. The guidelines given 
by Ayyub [39], [40] are followed. The final list of situational 
factors along with their classification is presented in Section 
VI. Fig. 3 highlights the summarized view of the methodology 
employed for the identification of situational factors for the 
MCR process to support software engineers’ sustainability. 

 

Fig. 3. Overview of Study Methodology. 

IV. RESULTS 

This section presents the results of SLR and the expert 
review i.e. the study selection process, distribution of data 
sources and an evaluated list of situational factors for the MCR 
process to support software engineers’ sustainability. 

A. Study Selection Process Results 

In the initial search, 9295 papers are found based on 
defined study main terms. The studies mentioning exclusive 
information concerning table of content, workshop or 
conference preceding details or having disparate titles are 
eliminated, and 1096 studies are selected. The 1096 studies are 
assessed for relevancy concerning main terms of the study i.e. 
Situational, Modern Code Review, Sustainable Software 
Engineer. The studies not representing any of the study main 
terms are rejected and 187 studies are included. Afterward, 187 
obtained studies are checked for replication. After replication 
assessment 162 studies are obtained for their quality 
assessment. After quality assessment 158 studies are included 
for deep review for the identification of situational factors for 
the MCR process to support software engineers’ sustainability. 

B. Distribution of Data Sources 

Total 9295 papers obtained after an initial search from 
defined databases. Finally, 158 papers are selected after going 
through inclusion/exclusion and quality assessment. 

C. Situational Factors 

The study results reported 23 situational factors grouped 
into five categories i.e. people, organization, project, source 
code, and technology. The classification of the identified 
situational factors is discussed in subsections. Table VI 
summarizes the situational factors along with their classification 
for the MCR process to support software engineers’ sustainability. 

1) People: This category includes factors that are directly 

related to people. The situational factors included in this 

category are team, team interaction,  reviewer response, and 

knowledge sharing [17], [19], [26], [34], [41], [42], [43], [44], 

[45], [46], [47], [48]. 

2) Source code: It refers to a list of human-readable 

instructions that a programmer writes using code editors. The 

source code runs through a compiler to turn it into machine 

code, that a computer can understand and execute [49]. The 

situational factors grouped under this category are source code 

attributes, source code change attributes, source code change 

documentation, testing, review concentration, and defect [17], 

[18], [19], [32], [43] [50], [51], [52], [53], [54], [55]. 

3) Organization: It refers to the group of people and 

facilities with an arrangement of tasks, authorities, and 

relations [56]. The situational factors included in this category 

are resources [26], organization policy, organization practices, 

organization standards, organization attributes, and 

information dissemination [26], [41], [43], [50], [57], [58]. 

4) Project: The project is an arrangement of tasks that are 

prearranged from beginning to end bounded by resources and 

required outcomes [56]. This category involves two situational 

factors i.e. project attributes and project release management 

[16], [17], [43], [59], [60]. 

Data coding, continuous comparison, and memoing from 

grounded theory 

SLR to identify situational factor for MCR process to support 
software engineers’ sustainability 

Expert Review 

Unique data units organize into 
situational Factors 

 

Evaluated list of situational 
factors and categories 

 

Pertinent data sources 
 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 1, 2020 

502 | P a g e  

www.ijacsa.thesai.org 

TABLE. VI. SITUATIONAL FACTORS AND THEIR CATEGORIES 

Categories 
Situational 

Factors 
References 

People 

Team 

[17], [19], [26], [34], [41], [42], 

[43], [65], [66], [61], [67], [50], 

[68] 

Team Interaction 
[17], [26], [42], [43], [65], [50], 

[69], [70],[59], [71], [72] 

Reviewer 
Response 

[16], [17], [18], [26], [32], [42], 
[43], [66],  [44], [45], [73] 

Knowledge 

Sharing 

[26], [43], [61], [67],  [69], [46], 

[47] 

Source Code 

Source Code 

Attributes 

[17], [18], [19], [30], [31], [32], 
[33], [41] [42], [43], [66],  [70], 

[59], [44], [47] [74], [51] , [52], 
[75], [76],  [77], [66] 

Source Code 
Change Attributes 

[16], [17], [18], [19] [26], [30], 

[32], [43] [50], [70], [59],  [71] 

[51], [52], [75], [78]  

Source Code 
Change 

Documentation 

[16], [18], [19], [26], [30], [42], 
[43], [65] [50], [59],  [51], [76], 

[79] 

Testing 
[18], [19], [50], [51], [52], [53], 
[54] 

Review 

Concentration 
[17], [32], [42], [55] 

Defect [32], [41], [70], [71], [55], [62] 

Organization 

Resources [26] 

Organization 

Policy 
[26], [57] 

Organization 

Practices 
[26], [41], [43], [50], [57], [58] 

Organization 
Standards 

[17], [18], [26], [41], [61], [57] 

Organization 

Attributes 
[17], [26], [41], [61] 

Information 

Dissemination 
[57]  

Project 

Project Attributes [16], [17], [43], [59] 

Project Release 

Management 
[17], [18], [43],  

Technology 

Process 
[17], [18], [26],   [31], [34] [41] 

[43], [61], [71], [57] 

Tool 
[18], [26] [34], [61], [50], [69], 
[70], [59],  [71], [74], [62], [63], 

[64] 

Technology 
Maturity 

[26] 

Technology 

Accessibility 
[26], [61] 

Training [17], [18], [26], [70] 

5) Technology: It refers to the approaches, skills, and 

processes used in the creation of goods or services in the 

achievement of aims [49]. The situational factors included in 

this category are process, tool, technology maturity, 

technology accessibility, and training [18], [26], [31], [34] 

[41] [43], [61], [62], [63], [64]. 

V. DISCUSSION 

This study has provided a comprehensive list of classified 
and validated situational factors for the MCR process to 
support software engineers’ sustainability through SLR and 
expert review. The identified situational factors that can impact 
the sustainability of software engineers can be an important 
reference for researchers involved in research concerning 
situational software engineering, sustainable software 
engineering, and MCR. The work can support the sustainability 
of software engineers involved in the MCR process by 
providing the list of situational factors. The identified list can 
also act as a guide for the researchers and practitioners working 
in situational software engineering, and sustainable software 
engineering. 

The study presents the situational factors based on 
literature. Although effort has been made to cover all the 
related research papers to present the comprehensive list of 
situational factors for MCR process to support software 
engineers’ sustainability, however, there can be a possibility 
that some research may not be covered. 

VI. CONCLUSION AND FUTURE WORK 

 This work has provided a unique, classified, and validated 
list of situational factors for the MCR process to support 
software engineers’ sustainability.  A total of 23 situational 
factors have been identified as a result of this work. The 
identified factors are broadly grouped under five categories i.e. 
People, Organization, Process, Source code, and Technology. 
These factors can support the sustainability of software 
engineers. 

In the future, a more inclusive list will be shaped, the 
ongoing research objectives.  In addition to this, a 
comprehensive and enhanced MCR process will be produced 
with situational factors. This work provided situational factors 
for MCR activity of software engineering that allows the 
investigators to extend this research by determining other 
situational factors in other software engineering activities. 

VII. CONTRIBUTION 

 The examination contributed to the software engineering 
body of knowledge (SWEBOK), Situational software 
engineering and sustainable software engineering by 
highlighting the worth of situational factor identification for the 
sustainability of the software engineers involved in MCR. 
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