
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

498 | P a g e

www.ijacsa.thesai.org

Situational Factors for Modern Code Review to

Support Software Engineers’ Sustainability

Sumaira Nazir1, Nargis Fatima2, Suriayati Chuprat3

Razak Faculty of Technology and Informatics

University Technology Malaysia (UTM), Kuala Lumpur, Malaysia1, 2, 3

Department of Engineering and Computer Science

National University of Modern Languages (NUML), Islamabad, Pakistan1, 2

Abstract—Software engineers working in Modern Code

Review (MCR) are confronted with the issue of lack of

competency in the identification of situational factors. MCR is a

software engineering activity for the identification and fixation of

defects before the delivery of the software product. This issue can

be a threat to the individual sustainability of software engineers

and it can be addressed by situational awareness. Therefore, the

objective of the study is to identify situational factors concerning

the MCR process. Systematic Literature Review (SLR) has been

used to identify situational factors. Data coding along with

continuous comparison and memoing procedures of grounded

theory and expert review has been used to produce an exclusive

and validated list of situational factors grouped under categories.

The study results conveyed 23 situational factors that are

grouped into 5 broad categories i.e. People, Organization,

Technology, Source Code and Project. The study is valuable for

researchers to extend the research and for software engineers to

identify situations and sustain for longer.

Keywords—Situational; modern code review; sustainable

software engineer

I. INTRODUCTION

Sustainable software engineering is presently a major
concern in software development [1], [2]. It has five major
aspects such as individual, social, economic, environmental,
and technical [3], [4]. It is argued that work has been done
regarding technical, economic, social, and environmental
aspect of sustainable software engineering, however, individual
sustainability aspect has been given less attention by the
researchers and it warrants future research [2], [3], [4], [5], [6],
[7].

Regarding individual sustainability, the software engineers
are confronting with the issue of lack of competency in the
identification of situational factors in various software
engineering activities such as software requirement gathering
and design, software construction and testing, modern code
review [3], [8], [9].

The existing work concerning identification of situational
factors have got attention by the researcher in software
requirement and for software development, however, less
attention has been devoted concerning situational context in
modern code review specifically, to support software
engineers’ sustainability [3], [8], [9], [10], [11], [12] that can
be the reason of software failure [3], [11], [13], [14].

Therefore, there is a need to identify situational factors for
Modern Code Review (MCR) to overcome the issue of lack of
competency in the identification of situational factors and to
ensure the software engineers’ sustainability involved in the
MCR process [8], [9], [15]. MCR is an enhancement of Fagan's
inspection, commonly known as a lightweight review process
[16], [17]. It is supposed as a significant tool for improving
code and software quality [16], [17], [18]. In MCR, software
engineers i.e. authors and reviewers both aimed to improve the
code quality [16], [17]. In this process, the code is reviewed by
the reviewer from varying aspects. For instance, code style,
code logic, code complexity etc. [16], [17], [18]. The process is
highly reliant on review tools such as Code flow, Review
board, Gerrit, etc. [16], [19].

This research has twofold aims i.e. to perform Systematic
literature review (SLR) to identify situational factors for the
MCR process and to validate them through expert review. The
study detailed the SLR phases and expert review to identify
and validate the situational factors for the MCR process that
can help software engineers to sustain longer. This inquiry at
one hand allows the investigators to outspread the research and
on the other hand, it supports software engineers’ sustainability
through situational awareness in MCR.

The paper is arranged as Section II provides the
background details. Section III details the study methodology.
Section IV presents the results. Section V delivers the
discussion. Section VI provides the conclusion and future
work. Section VII deliberates the research contributions.

II. BACKGROUND

Sustainability in software engineering is a noteworthy part
of practices in the disciplines [1], [2]. It is defined as the
“capacity to endure” [4]. There are five sustainability aspects
reported in the literature such as individual, social, economic,
environmental and technical [3], [4], [13], [14].

Economic sustainability aspects deals with investments and
profitability [3], [4], [20], [21]. The technical sustainability
aspect is connected to the ability to maintain and evolve
software [8], [22], [23]. The social sustainability aspect is
associated with the relationship between organizations, groups,
and individuals [3], [4]. The environmental sustainability
aspect is related to the objective to lessen the negative
influence of software engineering activities on the environment
[2], [3], [24], [25]. The individual sustainability aspect is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

499 | P a g e

www.ijacsa.thesai.org

related to well-being, education, and liberty of software
engineers to sustain for longer [3], [4], [14]. Although valued
work has been performed concerning to sustainable software
engineering aspects i.e. technical, economic, social, and
environmental, however, individual sustainability aspect has
got less attention by the researchers and needs a detailed
insight [2], [3], [4], [5], [6], [7].

Presently, software engineers are confronted with the issue
concerning their sustainability such as lack of competency in
the identification of situational factors in the Modern Code
Review (MCR) process [3], [8], [9], [13], [14]. MCR is an
important software engineering activity also known as a
lightweight version of Fagan’s inspection where developer
other than source code author review the source code and guide
the author in improving the quality of source code [16], [17],
[26], [27], [28]. The process is performed with the help of
review tools, for instance, Gerrit [16]. The overview of the
process is shown in Fig. 1.

One of the reasons behind the issue of lack of competency
in the identification of situational factors is unfamiliar
situations [9], [23]. It is stated that the above issue can cause a
decrease in the competency and capability of software
engineers towards problem understanding, and identification of
unfamiliar situations [9], [15]. This issue can be addressed by
situational awareness in MCR [9], [11], [14].

In modern software development, situation-aware
computing is extremely desirable [9]. Situation aware software
engineering also called situational software engineering allows
the software engineers to be able to deal with familiar
situations instead of being unproductive with unfamiliar
situations [9], [10], [11], [15], [29]. Situational software
engineering ensures the software engineers’ sustainability [9],
[11], [15].

Fig. 1. MCR Overview [17].

The previous work established that researchers have
highlighted the significance of situational factors identification
and attention has been given on the identification of situational
factors in software requirement and for software development
[3], [8], [9], [10], [11], [12], however, little indication is
available concerning to Modern Code Review (MCR) [30],
[31], [32], [33], [34]. It results in the unavailability of
situational guidelines that can help software engineers to
increase their competency for the identification of situational
factors. Therefore, this study aims to identify the unique and
validated list of situational factors for the MCR process to
support software engineers’ sustainability.

III. RESEARCH METHODOLOGY

The research activities completed to produce the unique
and validated list of situational factors for the MCR process to
support software engineers’ sustainability are explained in
subsections.

A. Systematic Literature Review (SLR)

The Systematic Literature Review (SLR) technique
specified by [35] has been employed to recognize the
situational factors for the MCR process to support software
engineers’ sustainability. The SLR technique is a schematized
approach to accomplish impartial results [35]. It involves
significant steps such as SLR planning, SLR execution and,
reporting the SLR results. It is a suitable technique to record
significant data from existing research. The steps involved in
SLR are explained in subsections.

1) Research questions: Designing the research question is

an important aspect of SLR. For this study, the PICOC

strategy proposed by [36] has been utilized to prepare the

research question. PICOC stands for population, intervention,

comparison, outcome, and context. As this study is inclusive

of any type of comparison between methods, therefore the

study selected only population, intervention, outcome, and

context that is PIOC. Table I presents a summary of the PIOC

strategy.

To collect the indications on the current state of research
concerning situational factors, the planned research question is
given below.

RQ1: What situational factors of the MCR process should
be known, to support the software engineers’ sustainability?

2) Search technique: The search technique includes the

recognition of main search terms, finding their alternative and

then constructing the search thread to search relevant data

from data sources. Table II presents the main terms and their

alternatives.

The search thread is planned based on the main terms and
their alternate terms. The planned search thread is given below.

(‘conditional’, ‘contextual’, ‘situational factor’) AND
(‘modern code inspection’, ‘contemporary code review’ ‘code
review’, ‘code inspection’, ‘ ‘lightweight code inspection’)
AND (‘sustainable software engineers’, ‘sustainable software
developer’, ‘sustainable software programmer’)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

500 | P a g e

www.ijacsa.thesai.org

TABLE. I. POIC SUMMARY

Population Intervention Outcome Context

Software

Engineers

MCR

Process

Situational
factors for

MCR process

to support
software

engineers’

sustainability

The research includes all

types of studies, for
instance, interviews,

surveys, questionnaires,

experiments, and case
studies regarding MCR.

TABLE. II. MAIN TERMS AND THEIR ALTERNATES

Situational Modern Code Review
Sustainable Software

Engineer

‘conditional’,
‘contextual’,

‘situational

factor’

‘modern code inspection’,
‘contemporary code review’

‘code review’, ‘code inspection’,

‘lightweight code inspection’

‘sustainable software
developer’,

‘sustainable software

programmer’

3) Data source: The data is collected from varying

sources known for publishing software engineering research

articles. The data origin utilized for the study includes ACM,

IEEE, Springer link, Science direct, Wiley online, Scopus, and

Web of Science. Papers published in 2013 to 2019 are

considered for selection. The journals’ articles, workshop

papers, conference papers, book chapters, published thesis,

and technical reports are searched in the defined databases.

The data sources that reflect situational factors that impact the

sustainability of software engineers involved in the MCR

process are recognized as probably pertinent.

4) Study inclusion and exclusion principles: The inclusion

criteria for including the relevant studies is as follows.

a) Research published in journals, conference

proceedings, workshops, book chapters, thesis, or technical

reports that are discussing situational factors for the MCR

process to support software engineers.

b) Publication content is available completely.

c) Publications from 2013 to 2019.

d) Research papers are written in the English language.

 The research papers were excluded based on the exclusion
criteria specified below.

a) Research papers giving information such as

conference proceedings, workshops table of content, and

irrelevant title.

b) Research papers that do not contain any one of the

study main terms or their alternates terms.

c) Duplicate research papers

Fig. 2 summarizes the study inclusion and exclusion
principles.

5) Quality assessment: The selected research papers are

weighed for their quality by using the checklist provided by

[35]. The checklist used for evaluating the quality of the

research papers is given in Table III. Furthermore, each

question given in the checklist presented in Table III is

answered by the measures given by [35]. The measures are

shown in Table IV.

6) Data extraction: The data is extracted from the selected

studies with the help of extraction forms given by [35]. The

details about the data extraction form are presented in Table

V.

TABLE. III. QUALITY ASSESSMENT CHECKLIST [36]

Question Answer

Are the objective clearly stated? Yes/ No/Partially

Are the findings sound and significant? -

Are the prediction techniques used clearly described

and their selection are justified?
-

Is the facts been extended through the research? -

Is the multiplicity of viewpoint and background been

explored?
-

Are the associations between data, interpretation, and
conclusions are vibrant?

-

Does the depth of the data is conveyed? -

TABLE. IV. MEASURES FOR ANSWERING QUESTION GIVEN IN CHECKLIST

[36]

Answer Score

Yes 1

No 0

Partially 0.5

Fig. 2. Study Inclusion and Exclusion Criteria.

Studies after searching in Data Sources (ACM, IEEE,

Springer link, Science direct, Wiley online, Scopus,
and Web of Science)

-Research published in journals,

conference proceedings, workshops, book
chapters, thesis, or technical reports that

are discussing situational factors for the

MCR process to support software
engineers.

-Publication content is available
completely.

-Publication from 2013 to 2019.

-Research papers are written in the

English language.

-Research papers giving information such

as conference proceedings, workshops
table of content, and irrelevant title.

-Research papers that not contain any one
of the study main terms or their alternates

terms.

-Duplicate research papers

Studies selected

after inclusion

Studies
Excluded

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

501 | P a g e

www.ijacsa.thesai.org

TABLE. V. DATA EXTRACTION FORM

Data Items Data information Notes

Paper ID A unique identifier SFS<1--n>

Title

Author (s)

Year

Study type (Conference/Journal/Book/Thesis)

Study Publisher IEEE

Situational Factors

7) Data analysis: After the data extraction, qualitative

data analysis has been performed using the grounded theory

given by [37], [38]. The grounded theory techniques i.e. data

coding, continuous comparison and memoing has been used to

recognize a unique list of situational factors grouped under

various categories for the MCR process.

B. Expert Review

After finding the unique list of situational factors grouped
under various categories, the list has been sent to the experts
for the assessment concerning naming, terms, and classification
of identified situational factors. The experts are also asked to
mention new situational factors. The experts are designated
based on their expertise in MCR along with software
development experience for more than 10 years, the familiarity
of situational software engineering, sustainable software
engineering, and individual sustainability. The guidelines given
by Ayyub [39], [40] are followed. The final list of situational
factors along with their classification is presented in Section
VI. Fig. 3 highlights the summarized view of the methodology
employed for the identification of situational factors for the
MCR process to support software engineers’ sustainability.

Fig. 3. Overview of Study Methodology.

IV. RESULTS

This section presents the results of SLR and the expert
review i.e. the study selection process, distribution of data
sources and an evaluated list of situational factors for the MCR
process to support software engineers’ sustainability.

A. Study Selection Process Results

In the initial search, 9295 papers are found based on
defined study main terms. The studies mentioning exclusive
information concerning table of content, workshop or
conference preceding details or having disparate titles are
eliminated, and 1096 studies are selected. The 1096 studies are
assessed for relevancy concerning main terms of the study i.e.
Situational, Modern Code Review, Sustainable Software
Engineer. The studies not representing any of the study main
terms are rejected and 187 studies are included. Afterward, 187
obtained studies are checked for replication. After replication
assessment 162 studies are obtained for their quality
assessment. After quality assessment 158 studies are included
for deep review for the identification of situational factors for
the MCR process to support software engineers’ sustainability.

B. Distribution of Data Sources

Total 9295 papers obtained after an initial search from
defined databases. Finally, 158 papers are selected after going
through inclusion/exclusion and quality assessment.

C. Situational Factors

The study results reported 23 situational factors grouped
into five categories i.e. people, organization, project, source
code, and technology. The classification of the identified
situational factors is discussed in subsections. Table VI
summarizes the situational factors along with their classification
for the MCR process to support software engineers’ sustainability.

1) People: This category includes factors that are directly

related to people. The situational factors included in this

category are team, team interaction, reviewer response, and

knowledge sharing [17], [19], [26], [34], [41], [42], [43], [44],

[45], [46], [47], [48].

2) Source code: It refers to a list of human-readable

instructions that a programmer writes using code editors. The

source code runs through a compiler to turn it into machine

code, that a computer can understand and execute [49]. The

situational factors grouped under this category are source code

attributes, source code change attributes, source code change

documentation, testing, review concentration, and defect [17],

[18], [19], [32], [43] [50], [51], [52], [53], [54], [55].

3) Organization: It refers to the group of people and

facilities with an arrangement of tasks, authorities, and

relations [56]. The situational factors included in this category

are resources [26], organization policy, organization practices,

organization standards, organization attributes, and

information dissemination [26], [41], [43], [50], [57], [58].

4) Project: The project is an arrangement of tasks that are

prearranged from beginning to end bounded by resources and

required outcomes [56]. This category involves two situational

factors i.e. project attributes and project release management

[16], [17], [43], [59], [60].

Data coding, continuous comparison, and memoing from

grounded theory

SLR to identify situational factor for MCR process to support
software engineers’ sustainability

Expert Review

Unique data units organize into
situational Factors

Evaluated list of situational
factors and categories

Pertinent data sources

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

502 | P a g e

www.ijacsa.thesai.org

TABLE. VI. SITUATIONAL FACTORS AND THEIR CATEGORIES

Categories
Situational

Factors
References

People

Team

[17], [19], [26], [34], [41], [42],

[43], [65], [66], [61], [67], [50],

[68]

Team Interaction
[17], [26], [42], [43], [65], [50],

[69], [70],[59], [71], [72]

Reviewer
Response

[16], [17], [18], [26], [32], [42],
[43], [66], [44], [45], [73]

Knowledge

Sharing

[26], [43], [61], [67], [69], [46],

[47]

Source Code

Source Code

Attributes

[17], [18], [19], [30], [31], [32],
[33], [41] [42], [43], [66], [70],

[59], [44], [47] [74], [51] , [52],
[75], [76], [77], [66]

Source Code
Change Attributes

[16], [17], [18], [19] [26], [30],

[32], [43] [50], [70], [59], [71]

[51], [52], [75], [78]

Source Code
Change

Documentation

[16], [18], [19], [26], [30], [42],
[43], [65] [50], [59], [51], [76],

[79]

Testing
[18], [19], [50], [51], [52], [53],
[54]

Review

Concentration
[17], [32], [42], [55]

Defect [32], [41], [70], [71], [55], [62]

Organization

Resources [26]

Organization

Policy
[26], [57]

Organization

Practices
[26], [41], [43], [50], [57], [58]

Organization
Standards

[17], [18], [26], [41], [61], [57]

Organization

Attributes
[17], [26], [41], [61]

Information

Dissemination
[57]

Project

Project Attributes [16], [17], [43], [59]

Project Release

Management
[17], [18], [43],

Technology

Process
[17], [18], [26], [31], [34] [41]

[43], [61], [71], [57]

Tool
[18], [26] [34], [61], [50], [69],
[70], [59], [71], [74], [62], [63],

[64]

Technology
Maturity

[26]

Technology

Accessibility
[26], [61]

Training [17], [18], [26], [70]

5) Technology: It refers to the approaches, skills, and

processes used in the creation of goods or services in the

achievement of aims [49]. The situational factors included in

this category are process, tool, technology maturity,

technology accessibility, and training [18], [26], [31], [34]

[41] [43], [61], [62], [63], [64].

V. DISCUSSION

This study has provided a comprehensive list of classified
and validated situational factors for the MCR process to
support software engineers’ sustainability through SLR and
expert review. The identified situational factors that can impact
the sustainability of software engineers can be an important
reference for researchers involved in research concerning
situational software engineering, sustainable software
engineering, and MCR. The work can support the sustainability
of software engineers involved in the MCR process by
providing the list of situational factors. The identified list can
also act as a guide for the researchers and practitioners working
in situational software engineering, and sustainable software
engineering.

The study presents the situational factors based on
literature. Although effort has been made to cover all the
related research papers to present the comprehensive list of
situational factors for MCR process to support software
engineers’ sustainability, however, there can be a possibility
that some research may not be covered.

VI. CONCLUSION AND FUTURE WORK

 This work has provided a unique, classified, and validated
list of situational factors for the MCR process to support
software engineers’ sustainability. A total of 23 situational
factors have been identified as a result of this work. The
identified factors are broadly grouped under five categories i.e.
People, Organization, Process, Source code, and Technology.
These factors can support the sustainability of software
engineers.

In the future, a more inclusive list will be shaped, the
ongoing research objectives. In addition to this, a
comprehensive and enhanced MCR process will be produced
with situational factors. This work provided situational factors
for MCR activity of software engineering that allows the
investigators to extend this research by determining other
situational factors in other software engineering activities.

VII. CONTRIBUTION

 The examination contributed to the software engineering
body of knowledge (SWEBOK), Situational software
engineering and sustainable software engineering by
highlighting the worth of situational factor identification for the
sustainability of the software engineers involved in MCR.

REFERENCES

[1] B. Penzenstadler and H. Femmer, “Towards a Definition of Sustainability
in and for Software Engineering at Sustainable System : Product,” p.
2013, 2013.

[2] S. Naumann, E. Kern, M. Dick, and T. Johann, “Sustainable Software
Engineering: Process and Quality Models, Life Cycle, and Social
Aspects,” ICT Innov. Sustain. Adv. Intell. Syst. Comput., vol. 310, pp.
191–205, 2015.

[3] R. Chitchyan, I. Groher, and J. Noppen, “Uncovering sustainability
concerns in software product lines,” J. Softw. Evol. Process, vol. 29, no.
2, pp. 1–20, 2017.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

503 | P a g e

www.ijacsa.thesai.org

[4] B. Penzenstadler et al., “Software Engineering for Sustainability: Find the
Leverage Points!,” IEEE Softw., vol. 35, no. 4, pp. 22–33, 2018.

[5] S. Naumann, M. Dick, E. Kern, and T. Johann, “The GREENSOFT
Model: A reference model for green and sustainable software and its
engineering,” Sustain. Comput. Informatics Syst., vol. 1, no. 4, pp. 294–
304, 2011.

[6] A. D. Komeil Raisian, Jamaiah Yahaya, “Sustainable Software
Development Life Cycle Process Model Based on Capability Maturity
Model Integration : a Study in Malaysia,” J. Threoretical Appl. Inf.
Technol., vol. 95, no. 21, pp. 5723–5734, 2017.

[7] B. Penzenstadler, A. Raturi, D. Richardson, C. Calero, H. Femmer, and
X. Franch, “Systematic Mapping Study on Software Engineering for
Sustainability (SE4S),” in Proc. 18th International Conference on
Evaluation and Assessment in Software Engineering, 2014, pp. 1–14.

[8] R. Chitchyan, L. Duboc, C. Becker, S. Betz, B. Penzenstadler, and C. C.
Venters, “Sustainability Design in Requirements Engineering : State of
Practice,” in IEEE/ACM 38th IEEE International Conference on
Software Engineering, 2016, pp. 533–542.

[9] A. A. Abbood and G. Sulong, “Segmentation and Enhancement of
Fingerprint,” Springer Int. Publ., vol. 5, no. 3, 2018.

[10] P. Clarke, R. V. O. Connor, R. V. O. Connor, and B. Leavy, “A
complexity theory viewpoint on the software development process and
situational context,” no. May, 2016.

[11] H. H. Khan and M. N. Malik, “Software Standards and Software Failures:
A Review with the Perspective of Varying Situational Contexts,” IEEE
Access, vol. 5, pp. 17501–17513, 2017.

[12] P. Clarke and R. V. O’Connor, “The situational factors that affect the
software development process: Towards a comprehensive reference
framework,” Inf. Softw. Technol., vol. 54, no. 5, pp. 433–447, 2012.

[13] S.Nazir, N. Fatima, and S. Chuprat “Individual Sustainability Barriers
and Mitigation Strategies : Systematic Literature Review Protocol.”

[14] S. Nazir, N. Fatima, S. Chuprat, H. Sarkan, N. F. Nilam, and N.A. Sajarif,
“Sustainable Software Engineering:A Perspective of Individual
Sustainability,” Int. J. Adv. Sci. Eng. Inf. Technol.

[15] G. Marks, R. V. O’Connor, and P. M. Clarke, “The impact of situational
context on the software development process – A case study of a highly
innovative start-up organization,” Commun. Comput. Inf. Sci., vol. 770,
pp. 455–466, 2017.

[16] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proc. International Conference on Software
Engineering, 2013, pp. 712–721.

[17] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process
Aspects and Social Dynamics of Contemporary Code Review: Insights
from Open Source Development and Industrial Practice at Microsoft,”
IEEE Trans. Softw. Eng., vol. 43, no. 1, pp. 56–75, 2017.

[18] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code Review Quality:
How Developers See It,” in Proc. International Conference on Software
Engineering, 2016, pp. 1028–1038.

[19] A. Ram, Achyudh ; Sawant, Anand; Castelluccio, Marco; Bacchelli,
“What Makes a Code Change Easier to Review? An Empirical
Investigation on Code Change Reviewability,” in Proc. ESEC/FSE, 2018.

[20] M. L. Gibson, C. C. Venters, M. Palacin-silva, and N. Seyff, “Mind the
chasm: A UK fisheye lens view of sustainable software engineering,”
2017.

[21] R. Ahmad, F. Baharom, and A. Hussain, “Software Sustainability
Development : Impactibility Characteristic Focuses on Social Approach,”
in Proc. 6th International Conference on Computing and Informatics,
2017, no. 093, pp. 595–600.

[22] H. Koziolek, “Sustainability Evaluation of Software Architectures : A
Systematic Review,” in Proc. QoSA+ISARCS, 2011, pp. 3–12.

[23] C. Becker et al., “Requirements: The key to sustainability,” IEEE Softw.,
vol. 33, no. 1, pp. 56–65, 2016.

[24] E. Kern et al., “Sustainable software products—Towards assessment
criteria for resource and energy efficiency,” Futur. Gener. Comput. Syst.,
vol. 86, no. 3715, pp. 199–210, 2018.

[25] I. Manotas et al., “An empirical study of practitioners’ perspectives on
green software engineering,” in IEEE/ACM 38th IEEE International
Conference on Software Engineering, 2016, pp. 237–248.

[26] L. MacLeod, M. Greiler, M. A. Storey, C. Bird, and J. Czerwonka, “Code
Reviewing in the Trenches: Challenges and Best Practices,” IEEE Softw.,
vol. 35, no. 4, pp. 34–42, 2018.

[27] N. Fatima, S. Chuprat, and S. Nazir, “Challenges and Benefits of Modern
Code Review-Systematic Literature Review Protocol,” in Proc.
International Conference on Smart Computing and Electronic Enterprise,
2018, pp. 1–5.

[28] S. Nazir, N. Fatima, and S. Chuprat, “Modern Code Review Benefits–
Primary findings of a systematic literature review,” in The 3rd
International Conference on Software Engineering and Information
Management.

[29] C. K. Chang, “Situation Analytics: A Foundation for a New Software
Engineering Paradigm,” Computer (Long. Beach. Calif)., vol. 49, no. 1,
pp. 24–33, 2016.

[30] E. W. dos Santos and I. Nunes, “Investigating the Effectiveness of Peer
Code Review in Distributed Software Development,” in Proc. 31st
Brazilian Symposium on Software Engineering, 2017, pp. 84–93.

[31] T. Baum, F. Kortum, K. Schneider, A. Brack, and J. Schauder,
“Comparing pre-commit reviews and post-commit reviews using process
simulation,” J. Softw. Evol. Process, vol. 29, no. 11, pp. 1–15, 2017.

[32] F. Armstrong, F. Khomh, and B. Adams, “Broadcast vs. Unicast Review
Technology: Does It Matter?,” in Proc. 10th IEEE International
Conference on Software Testing, Verification and Validation, 2017, pp.
219–229.

[33] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion in Code
Reviews: Reasons, Impacts, and Coping Strategies,” SANER 2019 -
Proc. 2019 IEEE 26th Int. Conf. Softw. Anal. Evol. Reengineering, pp.
49–60, 2019.

[34] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: : A Case Study at Google,” in Proc. ACM/IEEE
40th International Conference on Software Engineering: Software
Engineering in Practice, 2018, pp. 181–190.

[35] B. Kitchenham and S. Charters, “Source: " Guidelines for performing
Systematic Literature Reviews in SE " , Kitchenham et al Guidelines for
performing Systematic Literature Reviews in Software Engineering
Source: " Guidelines for performing Systematic Literature Reviews i,”
pp. 1–44, 2007.

[36] F. Terms, “ M. Petticrew and H. Roberts. Systematic Reviews in the
Social Sciences: A Practical Guide . Oxford: Blackwell 2006. 352 pp.
ISBN 1 4051 2110 6. £29.99 ,” Couns. Psychother. Res., vol. 6, no. 4, pp.
304–305, 2006.

[37] Kathy Charmaz, Constructing Grounded Theory, A practical Guide
through Qualitative Analysis. 2007.

[38] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research,” no. October 2017, pp. 120–131, 2016.

[39] B. Ayyub, “A practical guide on conducting expert-opinion elicitation of
probabilities and consequences for corps facilities,” Inst. Water Resour.
Alexandria, VA, USA, no. January, 2001.

[40] R. Boring, D. Gertman, J. Joe, and J. Marble, “Simplified expert
elicitation guideline for risk assessment of operating events,” … Natl.
Lab. INL …, no. June, p. 65, 2005.

[41] T. Baum, O. Liskin, K. Niklas, and K. Schneider, “Factors influencing
code review processes in industry,” Proc. 2016 24th ACM SIGSOFT Int.
Symp. Found. Softw. Eng. - FSE 2016, pp. 85–96, 2016.

[42] M. Di Biase, M. Bruntink, and A. Bacchelli, “A security perspective on
code review: The case of chromium,” in Proc. IEEE 16th International
Working Conference on Source Code Analysis and Manipulation, 2016,
pp. 21–30.

[43] O. Kononenko, T. Rose, O. Baysal, M. Godfrey, D. Theisen, and B. De
Water, “Studying Pull Request Merges : A Case Study of Shopify ’ s
Active Merchant,” in Proc. 40th International Conference on Software
Engineering: Software Engineering in Practice, 2018, pp. 124–133.

[44] S. McIntosh and Y. Kamei, “Are Fix-Inducing Changes a Moving
Target? A Longitudinal Case Study of Just-In-Time Defect Prediction,”
IEEE Trans. Softw. Eng., vol. 44, no. 5, pp. 412–428, 2018.

[45] S. Ruangwan, P. Thongtanunam, A. Ihara, and K. Matsumoto, “The
Impact of Human Factors on the Participation Decision of Reviewers in
Modern Code Review,” Empir. Softw. Eng. Manuscr., pp. 1–43, 2018.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

504 | P a g e

www.ijacsa.thesai.org

[46] C. Parnin et al., “The Top 10 Adages in Continuous Deployment,” IEEE
Softw., vol. 34, no. 3, pp. 86–95, 2017.

[47] X. Yang, R. G. Kula, N. Yoshida, and H. Iida, “Mining Code Review
Repositories : People , Process and Product,” IEEE Work. Conf. Min.
Softw. Repos., pp. 16–19, 2016.

[48] S. Nazir, N. Fatima, and S. Chuprat, “Situational factors affecting
Software Engineers Sustainability: A Vision of Modern Code Review,” in
6th IEEE International Conference on Engineering Technologies and
Applied Sciences (ICETAS) , in press.

[49] ISO/IEC and IEEE, “ISO/IEC/IEEE 24765:2010 - Systems and software
engineering -- Vocabulary,” Iso/Iec Ieee, vol. 2010, p. 410, 2010.

[50] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development,” in Proc. 38th International
Conference on Software Engineering, 2016, pp. 285–296.

[51] S. Fakhoury, “The Effect of Poor Source Code Lexicon and Readability
on Developers´s Cognitive Load,” in Proc. ICPC, 2018, pp. 286–296.

[52] D. Spadini, A. Bacchelli, M. Bruntink, F. Palomba, and L. Pascarella,
“Information Needs in Contemporary Code Review,” in Proc. ACM on
Human-Computer Interaction, 2018, vol. 2, no. CSCW, pp. 1–27.

[53] J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s talk about it: evaluating
contributions through discussion in GitHub,” in Proc. 22nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering - FSE 2014, 2014, pp. 144–154.

[54] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for It:
Determinants of pull request evaluation latency on GitHub,” in Proc.
IEEE International Working Conference on Mining Software
Repositories, 2015, vol. 2015-Augus, pp. 367–371.

[55] C. Thompson and D. Wagner, “A Large-Scale Study of Modern Code
Review and Security in Open Source Projects,” Proc. 13th Int. Conf.
Predict. Model. Data Anal. Softw. Eng., pp. 83–92, 2017.

[56] I. Standard, ISO/IEC/IEEE Systems and software engineering -- System
life cycle processes, vol. 8. 2013.

[57] D. M. German, U. Rey, and J. Carlos, “‘ Was my contribution fairly
reviewed ?’ A Framework to Study the Perception of Fairness in Modern
Code Reviews,” in Proc. ACM/IEEE 40th International Conference on
Software Engineering Synthesizing, 2018, no. 2, pp. 523–534.

[58] M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri, “Helping developers help
themselves: Automatic decomposition of code review changesets,” Proc.
- Int. Conf. Softw. Eng., vol. 1, no. August 2014, pp. 134–144, 2015.

[59] P. C. Rigby and C. Bird, “Convergent Contemporary Software Peer
Review Practices Categories and Subject Descriptors,” in Proc.
ESEC/FSE, 2013, pp. 202–212.

[60] S. Nazir, N. Fatima, and S. Chuprat, “Does Project Associated Situational
Factors have Impact on Sustainability of Modern Code Review
Workforce?,” in 6th IEEE International Conference on Engineering
Technologies and Applied Sciences (ICETAS) , in press.

[61] A. Kalyan, M. Chiam, J. Sun, and S. Manoharan, “A Collaborative Code
Review Platform for GitHub,” in Proc. IEEE International Conference on
Engineering of Complex Computer Systems, 2017, pp. 191–196.

[62] D. Singh, V. R. Sekar, K. T. Stolee, and B. Johnson, “Evaluating how
static analysis tools can reduce code review effort,” IEEE Symp. Vis.
Lang. Human-Centric Comput., pp. 101–105, 2017.

[63] Z. X. Li, Y. Yu, G. Yin, T. Wang, and H. M. Wang, “What Are They
Talking About? Analyzing Code Reviews in Pull-Based Development
Model,” J. Comput. Sci. Technol., vol. 32, no. 6, pp. 1060–1075, 2017.

[64] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for
pull-requests in GitHub: What can we learn from code review and bug
assignment?,” Inf. Softw. Technol., vol. 000, pp. 1–15, 2015.

[65] A. Bosu, J. Carver, R. Guadagno, B. Bassett, D. McCallum, and L.
Hochstein, “Peer impressions in open source organizations: A survey,” J.
Syst. Softw., vol. 94, pp. 4–15, 2014.

[66] A. Ouni, R. G. Kula, and K. Inoue, “Search-based peer reviewers
recommendation in modern code review,” in Proc. - IEEE International
Conference on Software Maintenance and Evolution, 2017, pp. 367–377.

[67] N. Kitagawa, H. Hata, A. Ihara, K. Kogiso, and K. Matsumoto, “Code
Review Participation: Game Theoretical Modeling of Reviewers in Gerrit
Datasets,” in Proc. 9th International Workshop on Cooperative and
Human Aspects of Software Engineering, 2016, pp. 64–67.

[68] C. Bird, T. Carnahan, and M. Greiler, “Lessons learned from building and
deploying a code review analytics platform,” IEEE Int. Work. Conf. Min.
Softw. Repos., pp. 191–201, 2015.

[69] T. Baum, O. Liskin, K. Niklas, and K. Schneider, “A Faceted
Classification Scheme for Change-Based Industrial Code Review
Processes,” Proc. - 2016 IEEE Int. Conf. Softw. Qual. Reliab. Secur.
QRS 2016, pp. 74–85, 2016.

[70] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion detection
in code reviews,” in Proc. IEEE International Conference on Software
Maintenance and Evolution, 2017, pp. 549–553.

[71] H. Lal and G. Pahwa, “Code review analysis of software system using
machine learning techniques,” in in Proc. 11th International Conference
on Intelligent Systems and Control, 2017, pp. 8–13.

[72] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Communicative
Intention in Code Review Questions,” 2018.

[73] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Investigating
code review practices in defective files: An empirical study of the Qt
system,” IEEE Int. Work. Conf. Min. Softw. Repos., vol. 2015-Augus,
pp. 168–179, 2015.

[74] J. Kim and E. Lee, “Understanding review expertise of developers: A
reviewer recommendation approach based on latent Dirichlet allocation,”
Symmetry (Basel)., vol. 10, no. 4, pp. 5–7, 2018.

[75] A. Luxton-reilly, A. Lewis, and B. Plimmer, “Comparing Sequential and
Parallel Code Review Techniques for Formative Feedback,” in Proc. 20th
Australasian Computing Education Conference, 2018, pp. 45–52.

[76] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code reviews:
An empirical study at Microsoft,” in Proc. IEEE International Working
Conference on Mining Software Repositories, 2015, vol. 2015-Augus, pp.
146–156.

[77] Z. Xia, H. Sun, J. Jiang, X. Wang, and X. Liu, “A Hybrid Approach to
Code Reviewer Recommendation with Collaborative Filtering,” in
SoftwareMining 2017, Urbana-Champaign, IL, USA, 2017, pp. 24–31.

[78] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: which problems do they fix?,” in Proc.
11th Working Conference on Mining Software Repositories, 2014, pp.
202–211.

[79] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey,
“Investigating code review quality: Do people and participation matter?,”
in Proc. IEEE 31st International Conference on Software Maintenance
and Evolution, 2015, pp. 111–120.

