
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

55 | P a g e

www.ijacsa.thesai.org

Performance Comparison of CRUD Methods using

NET Object Relational Mappers: A Case Study

Doina Zmaranda1, Lucian-Laurentiu Pop-Fele2, Cornelia Győrödi3, Robert Győrödi4, George Pecherle5

Department of Computer Science and Information Technology, University of Oradea, Oradea, Romania1, 3, 4, 5

Faculty of Electrical Engineering and Information Technology, University of Oradea, Oradea, Romania2

Abstract—Most applications available nowadays are using an

Object Relational Mapper (ORM) to access and save data. The

additional layer that is being wrapped over the database induces

a performance impact in detrimental of raw SQL queries; on the

other side, the advantages of using ORMs by focusing on domain

level through application development represent a premise for

easier development and simpler code maintenance. In this

context, this paper makes a performance comparison between

three of the most used ORM technologies from the .NET family:

Entity Framework Core 2.2, nHibernate 5.2.3 and Dapper 1.50.5.

The main objective of the paper is to make a comparative

analysis of the impact that a specific ORM has on application

performance when realizing database requests. In order to

perform the analysis, a specific testing architecture was designed

to ensure the consistency of tests. Performance evaluation for

time responses and memory usage for each technology was done

using the same CRUD (Create Read Update Delete) operations

on the database. The results obtained proved that the decision to

use one of another is dependent of the most used type of

operation. A comprehensive discussion based on results analysis

is done in order to support a decision for choosing a specific

ORM by the software engineers in the process of software design

and development.

Keywords—ORM (Object Relational Mapper); domain-level

development; performance evaluation; CRUD (Create Read Update

Delete) operations

I. INTRODUCTION

ORM (Object Relational Mapper) is a pattern for accessing
a relational database from an object-oriented language, with
several implementation for almost every language. Basic
features of an ORM include support for at least one specific
persistence engine and CRUD operations. Some ORM
features also include custom-SQL extensions for query
building. Consequently, an ORM is a library that uses the
object-oriented paradigm in a specific language to write a
query that will return a set of data mapped into an object type
that is needed [1].

Generally, the use of ORMs will have a negative impact
on the application’s execution time because it is being
wrapped over the relational database and, in comparison to
raw SQL queries, which can be stored as procedures or
functions in a database, it provides slower return time values
for all types of requests. However, ORM libraries could be
preferred by developers in detrimental of raw SQL queries
because of the easiness of writing data accessing code, faster
debugging, ORMs being more readable than raw SQL [2],
thus resulting better quality software. Nowadays, there are

many ORM libraries free of charge or with a paid license
which are offering a great set of functionalities ready to be
used out of the box and with constant updates. The main
advantage of using an ORM is represented by the fact that
development is focused on the domain (model) level that
describes at higher level of abstraction how program data is
stored and retrieved from the database, leading to easier
development and code maintenance. On the other side, by
introducing an additional layer, performance issues arise.
Depending on the ORM, this performance downsides are
introduced either by internal way of entity-model design
approach or, by using reflection [3].

From several ORMs that exists nowadays, this paper
focuses on the three of the most used ORMs for .NET
applications development: Entity Framework Core [4],
nHibernate [5] and Dapper: EF Core 2.2.3 with EF Core
Proxies 2.2.3 and EF Core SqlServer 2.2.2 libraries alongside
with Dapper 1.50.5 library and using Dapper.Bulk 1.4.2 for
bulk operations and nHibernate 5.2.3, configured with
FluentNHibernate 2.1.2. A complex analysis and comparison
between these ORMs impact on application’s data
interrogation methods performance is presented in the paper,
by analyzing multiple CRUD calls with different levels of
complexity. The main objective is to provide an overall
experimental study that helps developers and architects when
considering the trade-off between benefits of ORMs and their
performance drawbacks when developing an application.

Execution time and memory footprint are considered the
metric to realize the comparisons; a specific testing
architecture was developed for running the tests and
comparing ORM’s performance results depending on different
CRUD operation. This architecture implies the development
of an application that targets a custom-made database and uses
a specific benchmarking library, DotNetBenchmark [6],
together with ORM’s specific-developed repository class, to
test the execution time and memory usage of multiple CRUD
operations, as well as testing on multiple runtimes.

The paper is organized as following: in the first chapter, a
short introduction emphasizing the motivation of the paper is
presented, followed by chapter two that reviews related work.
The method and testing architecture are illustrated in chapter 3
and the obtained experimental results are presented in chapter
4. An overall analysis and discussion about the results is
described in chapter 5 and finally some conclusions are drawn.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

56 | P a g e

www.ijacsa.thesai.org

II. RELATED WORK

Several comparisons were done in the literature between
different .NET ORM technologies, but they are generally
targeting only two at the time. Solutions are generally
analyzed in terms of performance, as in [7], but also in terms
of their impact on application development [8].

Translation overhead for persistence operation is analyzed
in [9] from the perspective of the additional layer introduced
by the ORMs, by making a comparative analysis from the
software development point of view of the two most used
ORM tools in .NET programming environment: Entity
Framework and nHibernate. Other studies analyze the benefits
of using an ORM versus the drawback performance induced
by ORM [10], by giving an insight look to the generated code.
A study of the performance of Entity Framework and
nHibernate for different types of databases (MS SQL Server
and PostgreSQL) and using different query languages (lambda
expressions and LINQ for Entity Framework and HQL and
Critera API for NHibernate) in comparison with using
SqlClient queries is presented also in [11]. Another arising
issue is related to energy efficiency of ORM approaches, as it
is described by the authors in [12], a study that experimentally
evaluates energy efficiency of three different approaches to
programmatically access SQL databases from PHP
applications.

When coming to the recent versions of the .NET ORMs
practical performance issues (caching, lazy loading, future
queries) when building robust and scalable data access layer
using NHibernate's are described in [13]; also, in [14] an
approach for detection of ORM performance anti-patterns in
the source code regarding database access details is presented.
From the performance point of view, in [15] a fetch
performance comparison by conducting experiments on
common test data set of selected data access libraries:
ADO.NET, Dapper and Entity Framework Core with tracking
and no-tracking change is investigated. A common conclusion
that results is that generally, using ORMs for application
development introduce several benefits when compared to a
plain SQL approach. On the other side, these techniques have
well known disadvantages; but, as outlined in [8], the latest
versions of skilfully developed ORMs is likely to generate
well-tuned code that minimizes the performance impact on
modern applications. The simpler ORMS, as Dapper, tend to
work faster but exhibits fewer functionalities than the most
complex ones, like EF Core or NHibernate. However, since
performance issues could depend on the type and complexity
of operation and on the volume of entries, none of these
studies presents a comparison between all three and analyze
multiple CRUD calls with different levels of complexity.

III. METHOD AND TESTING ARCHITECTURE

The method used for testing performs experimental tests
for all three different ORMs: Entity Framework Core,
nHibernate and Dapper. For each ORM, different type of
queries (Insert, Get, Update and Delete) with different degree
of complexity were run on the same database. Execution time
and memory consumption were monitored over different
number of entries implied in the operation. The testing
architecture, used to realize the comparisons in the present

study, is presented in Fig. 1. The testing architecture implies a
custom developed targeted database used for benchmarking
testing.

Fig. 1. Testing Architecture.

In order to separate the main concepts for each ORM
technology, a project was developed as a Console Application
in Visual Studio 2017 Professional. Furthermore,
DotNetBenchmark specialized library was used by the
application for benchmarking on the database by using
different CRUD operations on multiple runs [6]. An Intel Core
i7-6700HQ CPU 2.6GHz (Skylake) with 8 logical and 4
physical cores, 16 GB RAM and 256 GB SSD was used as
underlying hardware support. It runs Windows 10 Pro
operating system. For this purpose, a repository class was
created inside the application for defining the CRUD methods
for each ORM. Finally, all CRUD operations were tested
through this unique application in a consistent way.

A. The Database

MSSQL Server 2018 and SQL Server Management Studio
were used for direct access and table visualization in the
development process. The database schema can be observed in
Fig. 2; it was created so that it includes all types of table
relationships (one-to-one, one-to-many and many-to-many), in
order to be able to test and observe the performance impact of
those relation types on different operations.

B. Application Project Structure

An application project UniversityDBenchmark was created
for analysing the three different ORM technologies (Dapper,
EntityFramework Core 2.2 and nHibernate); application
structure was designed specifically to separate the main
concepts for each used technology. The project structure is
presented Fig. 3a and consists of the following modules:

 Benchmark–represents container with a class
developed to configure the methods used for
benchmarking

 Context–a container with a class used to configure the
Entity ramework context class (UniversityContext.cs)

A

p
p

l

i
c

a

t
i

o

n

EF

CRUD

methods

nHybernate
CRUD

methods

Dapper

CRUD

methods

Repository

DotNetBenchmark

Database

EF

Model

nHybernate

Model

Dapper

Model

Models

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

57 | P a g e

www.ijacsa.thesai.org

 Helpers–container for a class that is returning the
database connection string from appsettings.json file

 Logger–container for class that provides logic to log
the SQLs generated by the entity framework methods

 Repository–a container with repository classes that
contains CRUD methods for accessing the database for
each ORM

 Program.cs–represents the main gate to the Console
application, used to call to run benchmark analysis
methods

C. Benchmark Analysis

The benchmarking was realized using the specialized
library DotNetBenchmark which is offering means of testing
the execution time of multiple methods as well as testing
different runtimes, as described in [6]. The
BenchmarkAnalysis class provides also access to each
repository CRUD methods that will be dynamically called;
each method was marked with the [Benchmark] attribute, by
this approach telling the library which methods to include in
the current benchmark session (Fig. 3b). The RankColumn
defines a column in the results table, after the benchmarking
process has been finished, that contains the execution time
ranks in ascending order of the declared methods.

MinIterationCount/MaxIterationCount attributes are
forcing the benchmarking library to execute between 10 and
20 times each method. MemoryDiagnoser is an attribute by
which memory surveillance during the actual method calls is
enabled, so that in the results table, the memory used to execute
these methods will be shown. MinColumn and MaxColumn
have the purpose of displaying the observed minimum and
maximum analysis values for each tested method that will be
used to compute the average final benchmark analysis value.
An example about how to declare the repository methods so
that it will be included into benchmarking analysis is the
following (for InsertStudents method):

[Benchmark]

public void InsertStudentsWithNHibernate() =>

_NHibernateRepository.InsertStudents(iterationNumber);

[Benchmark]

public void InsertStudentsWithEF() =>

 _EFRepo.InsertStudents(iterationNumber);

[Benchmark]

 public void InsertStudentsWithDapper() =>

 _DapperRepo.InsertStudents(iterationNumber);

For all three ORMs used for testing, the repository class
implements all specific CRUD methods targeting the same
tables from the database. Thus, a series of CRUD calls to the
database using each targeted technology (Entity Framework
Core, nHibernate and Dapper) were created, with two types of
method calls: one for simple scenarios (in which 3 tables in
one-to-one relationship, having 2 one-to-one relationships are
targeted) and one for a more complex scenario (in which 4
tables which are in one-to-one and one-to-many relationship
were targeted - 3 tables linked by 2 one-to-one relationship
and 2 tables linked by a one-to-many relationship). In order to
obtain the results, all these methods will be called by a defined

number of times: 500, 1000, 2000, 5000 and 10000. The
targeted operations are:

 INSERT–with the corresponding methods insert
students and insert teachers with affiliated courses

 GET–with the corresponding methods getting a number
of students and teachers and getting all students
participating to a teacher’s courses. This method, was
run on a high number of entities

 UPDATE–with the corresponding methods update
student’s address and update teacher’s address and
courses description; before the actual update a get to
take a specific number of students/teachers is run, these
calls being also monitored and decreased from the
overall update execution time

 DELETE–with the corresponding methods delete
students and delete teachers and corresponding
courses; in this case a get method to take a specific
number of entries which will be targeted for deletion
was run prior to deletion and its execution time was
decreased from the overall deletion execution time.

Fig. 2. University Database Schema.

Fig. 3. (a) Project Structure. (b) Benchmark Attribute.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

58 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENTAL RESULTS

Performance comparison was using DotNetBenchmark

benchmarking library for execution time and memory

allocation for each called method. Each framework will store

in memory the results after running the generated SQL

statements. The logic that translates the methods into

equivalent SQL will also cost memory. EF Core for example

is using reflection and thus, the first call will be slower and

more time consuming than the rest of them because of the

caching used. Dapper is not using reflection but is having

logic for mapping results from the SQL that was generated

and ran and the expected entities. nHibernate is also using first

level of cache for optimization, but the mappings behind the

scenes will put a mark on the memory consumption.

A. Insert

Two scenarios were used for testing INSERT operation
with the targeted technologies. First scenario represented by
insert students method implies inserting entities that have two
one-to-one relationship (Student-Person-Address) that means
the logic will add first an address, person and finally a student.
The second scenario, represented by insert teachers with
affiliated courses method, implies inserting entities which
have besides the one-to-one relationship also one-to-many
(Teacher-Person-Address, Teacher->Courses), that means the
logic will add first an address, person, teacher and then a list
of courses for each teacher entity.

The insert method used for the first insertion scenario
(insert students) is the same for all three technologies; the one-
to-one relationship between Student-Person-Address implies
that 3 inserts for each student entity insert process will be
made:

foreach Student
 create Address;
 create Person;
 add Address to Person
 create Student;
 add Person to Student
 save Student;

However, some particularities were considered for each
ORM:

 Entity Framework Core: since behind the scenes it
uses transactions, there is no need to include the simple
save statement into a new transaction;

 nHibernate: in order to make calls to the database using
this technology it is necessary to manually open a
session

 and a transaction and all operations to be made inside
this opened transaction. After each transaction has
ended, it is recommended to clear (flush) the session;

 Dapper: to benefit of using a library that is adding bulk
data, the approach of separately adding entities was
chosen.

The obtained results after the executing the benchmark
analysis are represented in Fig. 4 and Table I. Is obviously that

the best timing results for insert students scenario are obtained
by nHibernate, mainly because of its simple underlying logic
and also because of the simplicity of the next SQL statement
which is called after an INSERT, that for nHibernate has a
simple form: SELECT scope_Identity().

Dapper is also very close to nHibernate’s results, being a
bit slower because under the hoods, Dapper is running a
lightly different SQL in the form of: SELECT CAST
(scope_identity()), and that particular cast operation will mark
its effect upon the total result. EF Core is on the last position
because, after the INSERT, it is running a much more
complex SQL query: SELECT where @@rowcount = 1 and
[id] = scope_identity(), which is time-costly compared to the
other two.

For the second insertion scenario (represented by insert
teachers with affiliated courses) for each teacher inserted, a
new address, a new person and a list of courses will be added
(one-to-one/one-to-many relationships). Consequently, when
adding a new teacher, a new address and a new person entity
are required. The insert method used is the following:

foreach teacher create Address;
 create Person;
 add Address;
 create Teacher;
 add Person;
 create Courses;
 add Courses to Teacher;
 save teacher;

The obtained results are presented in Fig. 6 and Table I.

When adding more complex entities, nHibernate has still
be best values than EF Core and Dapper, just the same as for
the last scenario. Thus, from the time results that overall,
nHibernate would be the best option for realising Insert
operations followed closer by Dapper; if memory usage is
considered, the best is still nHibernate followed by EF Core.
Memory allocation for each technology is presented in Fig. 5
and Table II. An explanation for EF Core time results is that
behind the scene, is adding the Teacher entity and then all
courses are being saved into a temporary table that is merged
with the Course table using a select on Course table joined
with the temporary table. In comparison, Dapper and
nHibernate are realizing simple inserts with the given values.

Fig. 4. Insert Students (One-to-One).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

59 | P a g e

www.ijacsa.thesai.org

Fig. 5. Memory used – Insert.

TABLE. I. INSERT METHOD EXECUTION TIME

Entries

/Time(s)

Insert methods Time(s)

Tab Entity

Framework Core
nHibernate Dapper

Students Teachers Students Teachers Students Teachers

500 0.28 0.82 0.22 0.56 0.29 0.67

1000 0.55 1.44 0.41 1.24 0.53 1.51

2000 1.16 3.21 0.81 2.29 1.04 2.56

5000 2.99 7.28 2.04 5.92 2.64 7.98

10000 6.6 15.01 4.75 11.76 5.41 13.65

TABLE. II. INSERT METHOD MEMORY USAGE

Entries

/MB

Insert methods memory usage (MB)

Tab Entity

Framework Core
nHibernate Dapper

Students Teachers Students Teachers Students Teachers

500 21.93 53.45 13.1 29.16 30.83 66.68

1000 43.83 106.74 26.2 57.9 61.65 133.34

2000 86.8 12.85 52.43 115.88 123.28 266.67

5000 217.45 535.5 130.66 291.04 261.16 666.65

10000 435.57 1071 261.16 582.05 616.35 1333.29

Fig. 6. Insert Teachers with Corresponding Courses (One-to-many).

B. Update

The same testing approach from Insert was applied also to
Update methods, by using two scenarios: updating students
addresses and updating teacher’s address and corresponding
courses in order to test the update process of entries being in a
one-to-one respectively one-to-many relationship. Each
method will update a specific number of students and teachers
that will be updated: 500, 1000, 2000, 5000, 10000. The
database on which update statements were called has a
constant 10.000 entries in Student, Person and Address table
for the first scenario and a constant of 10.000 entries in
Teacher, Person and Address and 40.000 in Course table for
the second one. During benchmarking process, the Get
methods will also be considered so that the exact time for the
update statement alone is computed. For the first scenario of
updating student’s addresses, the same update statement is
used for all three technologies:

get Students (with Person and Address)
foreach Student

 change Address; update Student

All three technologies have the same logic flow, with
minor differences:

 EF Core: uses the Include option to retrieve the related
one-to-one entities; afterwards, a simple build-in
Update method is called upon the retrieval of Student
entities which will detect all changes then update them
accordingly. Even there are multiple Update calls, all
updates effectively take place only when context’s
SaveChanges() method is hit;

 NHibernate: just like EF Core, firstly it retrieves a
given number of Students alongside with all related
entities by using the call QueryOver; then each
student’s address will be changed, and the build-in
Update call is triggered. Just as for EF Core, there are
multiple Update calls, but only when committing the
opened transaction, the statements will be triggered;

 Dapper: in particular for Dapper, all the auto-generated
SQL calls that EF Core is generating behind the scenes
when is getting the Student entity were re-created in
order to provide a much more accurate analysis
between these technologies. After getting all students
and related entities, the addresses were modified then
the Update method was called.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

60 | P a g e

www.ijacsa.thesai.org

The obtained results after the execution time benchmark
analysis of updating student’s addresses are presented in Fig. 8
and Table III. The best timing results for update students
scenario are obtained by EF Core that uses by default eager
loading when nHibernate is using lazy loading by default:
when realising a student entity update, firstly it is needed to
return from database all data that did not have yet been loaded.
EF Core has better timing results also in comparison with
Dapper mainly because of the underlying logic from EF Core
Update method, because from the code perspective, EF Core
Update Students and Dapper Update Students are logically the
same.

The second update scenario is approaching to update
entities via both one-to-one and one-to-many relationships. In
this case, Teacher’s table is selected, which is linked with a
one-to-one relationship with Person that is linked with
Address also with a one-to-one relationship just as for Student
table. Besides this link, it has a one-to-many link to Course
table. During this scenario tests, the Address and a Course
from each Teacher considered will be changed. A get
statement needs to be run first in order to obtain all Teachers
that need update and simulate through this multiple update
calls.

 get Teachers;
 foreach Teacher get Courses;
 foreach Teacher;
 update Address;
 update Course.Description; update Teacher;

As it results from Fig. 9 and Table III, all three
technologies are having higher time results for updating
teacher’s courses in comparison with updating the Student
table, but nHibernate has the biggest time result from all three.
This can be explained also by the fact that nHibernate is using
by default lazy loading and so, even if all teachers were
returned with an initial Get call (simple Select from database)
a call the database every time other inner-entities from
Teacher object are accessed is needed.

Therefore, the overall timing for the nHibernate update
call is increasing. Entity Framework and Dapper are using
eager loading and therefore they do not need to access the
database each time an object which was not previously loaded
is changed. Nevertheless, EF Core, in this case, is slightly
overcome by Dapper but the difference is relatively small.

The update methods memory allocation for each
technology used is presented in Fig. 7 and Table IV. For the
one-to-one approach, the the consequences of using lazy
loading by default for nHibernate can be seen, that implies
extra memory usage when realising the Update statement
because of the need to return and save the entities in the same
Update call before saving the changes.

When also one-to many relationships are involved, EF
Core and Dapper are having higher memory usage when
updating entities than nHibernate because of the used
underlying logic. Consequently, EF Core is generally having
the best results from both time and memory perspectives
followed closely by Dapper, except the situation of memory
usage, where slightly higher memory consumption can be seen
when updating entities with one-to-many relationship to EF
Core.

TABLE. III. UPDATE METHOD EXECUTION TIMES

Entries

/Time(s)

Update methods Time(s)

Tab Entity

Framework Core
nHibernate Dapper

Students Teachers Students Teachers Students Teachers

500 0.081 0.703 0.176 2.61 0.175 0.45

1000 0.191 1.625 0.361 5.78 0.339 0.88

2000 0.38 3.23 0.726 11.56 0.654 1.75

5000 1.03 7.36 2.03 25.27 1.66 2.48

10000 1.85 14.53 3.96 56.31 3.51 5.12

TABLE. IV. UPDATE METHOD USED MEMORY

Entries

/MB

Update methods used memory (MB)

Tab Entity

Framework Core
nHibernate Dapper

Students Teachers Students Teachers Students Teachers

500 7.6 52 19.2 35 8.84 60.24

1000 15.2 104.72 38.4 69.61 17.68 120.46

2000 30.4 211.57 76.8 138.77 35.37 240.97

5000 76 537.62 192 494.56 88.67 602.28

10000 159 1075.24 374 989.12 177.08 1125.93

Fig. 7. Memory used – Update.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

61 | P a g e

www.ijacsa.thesai.org

Fig. 8. Update Students (One-to-One).

Fig. 9. Update Teachers with Corresponding Courses (One-to-Many).

For nHibernate in particular, as it is using lazy loading by
default when realising an Update, if the targeted entity is not
yet loaded, it will make a Select statement first, the will
update the returned entity’s values with the new ones, then
will realise the UPDATE on the database. All these operations
are very costly from the execution time point of view.

When looking at memory usage, a considerable difference
when updating entities with one-to-one relationship versus
one-to-many can be observed. This could be explained by the
underlying logic which translates the .NET code into SQL
statements because, when checking with SQL Profiler, in all
cases, simple SQL Update statements are being made.

C. Delete

Delete operation follows the same approach by taking into
consideration two scenarios: delete students and delete
teachers and corresponding courses. Delete students implies
deleting entries from student, person and address tables
involving only one-to-one relationships; delete teachers
implies deleting entries from teacher, person and address
tables including corresponding courses (both on-to-one and
one-to-many relationships). As in the previous methods that
were analysed, a Select statement to get top
500/1000/2000/5000/10000 entries from Student and Teacher
tables with all related entries will be previously run. The select

queries will be then measured and extracted from the total
results, after a delete process, in order to obtain only delete
operation values. For the first scenario of deleting all students,
the same delete statement is used for all three targeted
technologies:

get Students and related entities;
for each Student
 delete Address; delete Person; delete Students;
end;

Just as for Insert and Update cases, also Delete operation
has some particularities depending each targeted technology:

 EF Core: because of the foreign key AddressId present
in Person table and PersonId present in Student table,
the Address table is seen as the parent, so deleting the
Address will automatically cascade delete also to the
corresponding Person and Student

 NHibernate: because of the mapping classes, entities
for cascade deletion can be directly marked and
consequently, by simply deleting the teacher entity, all
other related entities will be deleted; this behaviour is
different when compared to EF Core and Dapper where
in order to trigger the cascade deletion it is needed to
delete the parent entity;

 Dapper: the simple Delete method from SimpleCRUD
Dapper library was used to remove the parent Address
entity and the BulkDelete method from Dapper-PLUS
library was used to remove all related Teacher Course
entities just as for EF Core case.

Before making the deletion statements, a Select query will
be run to return a top 500/1000/2000/5000/10000 teachers
from the database whose execution time was measured so that
only the delete statement time for each used technology could
be computed. From Fig. 11 and Table V it is obvious that EF
Core is having the best timing results, close to Dapper,
nHibernate having the worst time results in this case.
NHibernate in this case is affected by the lazy loading default
setting by having to load all yet unloaded entities before
deleting them. Dapper and EF Core are having very close
timing results, as the simplest delete option from each of them
has been used, the difference between them could be
explained by the logic behind the scenes which is
transforming the code to SQL statements.

The second scenario used for deletion is running the
Delete queries with the purpose of removing a given number
of teachers with their corresponding courses. This will require
a deletion of two one-to-one relationship (Teacher-Person-
Address) and one one-to-many relationship (Teacher-
Courses):

get Teachers and related entities;
foreach Teacher
 delete Address; delete Person;
 delete Teacher; delete Courses (if any);
end;

In this scenario, Dapper and EF Core have close results for
delete statements and much higher than nHibernate for the
case of deleting one-to-many entities, where nHibernate is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

62 | P a g e

www.ijacsa.thesai.org

having the best results in comparison with the case when is
deleting only one-to-one relationship (Fig. 12 and Table V).
This could be explained mainly because of the underlying
logic for Dapper and EF Core that translates the Remove (EF
Core) / BulkDelete (Dapper) methods into explicit delete SQL
statement that could have an impact on execution time.

Dapper and EF Core are having better deleting timing
results than nHibernate until reaching the level of 1000
deleted entries. By analysing the resulted SQL statements after
a deletion command, the SQLs are very much the same for all
three technologies, with the exception for EF Core that is
running also a Select @@Rowcount to check return the
number of effected entries. The delete methods memory
allocation for each technology used is presented in Fig.10 and
Table VI.

According to all these results, nHibernate has the highest
memory usage when deleting entities in both one-to-one and
one-to-many relationship. An explanation for this massive
memory usage in comparison with EF Core and Dapper could
be the fact that nHibernate is using lazy loading by default.

Consequently, instead of the real objects, it has some
proxys that will be replaced with real object upon accessing
their values.

Both EF Core and Dapper have good memory usage
results, Dapper being more efficient than EF Core when
deleting entities in one-to-many relationship, maybe because,
behind the scenes EF Core and Dapper are having a better
logic implemented than nHibernate and possible because EF
Core and Dapper are using eager loading when returning
entities without the need of the proxy objects that nHibernate
is using to replace the objects not yet returned from the
database.

D. Get

Get queries have been already run in the scenarios
presented before to obtain a specific number of entities on
which update or delete queries where run afterwards. Two

scenarios were considered also here: getting a number of
students and getting all students participating to a teacher’s
courses to return entities with one-to-one and one-to-many
relationships respectively. These methods were run on a
higher number of entities. Consequently, first the Get calls
were made upon a database with 10.000 entries on Student
table, then cleared the database and its cache and re-entered
10.000 Teacher entities alongside with 40.000 Courses (each
teacher will have 4 courses). The is the following:

get Students (including Person and Address);

TABLE. V. DELETE METHOD EXECUTION TIMES

Entries

/Time(s)

Delete methods Time(s)

Tab Entity

Framework Core
nHibernate Dapper

Students Teachers Students Teachers Students Teachers

500 0.15 2.61 0.38 3.59 0.19 2.84

1000 0.28 8.43 0.72 6.36 0.31 9.34

2000 0.64 20.07 1.54 13.13 0.68 27.05

5000 1.49 39.12 2.82 26.72 1.74 53.75

10000 2.81 75.16 5.78 53.44 3.56 108.43

TABLE. VI. DELETE METHOD USED MEMORY

Entries

/MB

Delete methods used memory (MB)

Tab Entity

Framework Core
nHibernate Dapper

Students Teachers Students Teachers Students Teachers

500 12.78 4.21 27.98 87.31 3.98 8.53

1000 26.02 8.56 55.98 144 7.77 42.96

2000 52.26 17.14 112.98 289 15.56 85.93

5000 131.26 34.8 279.9 720 38.85 214.8

10000 262.52 69.6 559.9 1440 77.7 429.6

Fig. 10. Memory used – Delete.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

63 | P a g e

www.ijacsa.thesai.org

Fig. 11. Delete Students (One-to-One).

Fig. 12. Delete Teachers with Corresponding Courses (One-to-Many).

The Select (Get) operation has some particularities
depending each targeted technology, that implies few
differences as follows:

 EF Core: for data retrieval, the Include and
ThenInclude functions were used, which will return
multiple levels of related data also using the method
Take() in order to select a given top entities from
database. Eager loading is used (by default) when
returning data, as lazy loading needs to be specifically
turned on as from EF Core 2.1;

 Nhibernate: QueryOver<EntityType> generic method
is used to retrieve all data regarding the given entity as
parameter and also the Take() method to select a top
from database. Lazy loading is used as it is the default
behaviour for nHibernate.

 Dapper: the same SQL codes which EF Core is
generating when running a Get Students was replicated
used by injecting the SQL with Query<EntityType>
method, to test the speed of Dapper when running and
retrieving the result entities. Also, eager loading is used
here, as Dapper being a direct-SQL library.

The obtained results are presented in Fig. 13 and Table
VII. Dapper has the best timing results when returning entities
on one-to-one relationship because of the missing entity
tracking logic which is present behind the scenes for EF Core
and nHibernate.

The second scenario used for Get method implies the
retrieval of teachers alongside with their corresponding
courses. A simple pseudocode to describe this can be seen
below:

get Teachers(including Person and Address);
 get Courses;

The obtained results after the execution time benchmark
analysis are presented in Fig. 14 and Table VII. Dapper has
registered very inefficient results, having the worst results
from all three technologies when it comes to returning a
higher number of entities. One possible cause for this could be
the use of the generated EF Core SQL into Dapper database
call, indeed, and not using a Dapper built-in method to retrieve
one-to-many entities. The reason for that is that, after testing
Dapper’s abilities to manage the same SQL code EF Core is
generating behind the scenes, it was considered preferable not
to use predefined Dapper get method.

Fig. 13. Get Students (One-to-One).

Fig. 14. Get Teachers with Corresponding Courses (One-to-Many).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

64 | P a g e

www.ijacsa.thesai.org

Fig. 15. Get Memory usage.

TABLE. VII. GET METHOD EXECUTION TIMES

Entries

/Time(s)

Get methods Time(s)

Tab Entity

Framework Core
nHibernate Dapper

Students Teachers Students Teachers Students Teachers

500 0.005 0.024 0.004 0.004 0.003 0.024

1000 0.008 0.037 0.008 0.011 0.007 0.042

2000 0.018 0.077 0.019 0.018 0.014 0.080

5000 0.050 0.201 0.064 0.058 0.034 0.185

10000 0.106 0.444 0.122 0.110 0.053 0.343

NHibernate is using by default lazy loading and thus
having low timing results when returning one-to-many results,
but this will be compensated by the calls that will have to be
realised when accessing entities that have not yet been loaded.
When returning one-to-one results, it is close to EF Core, both
being overcome by Dapper, thing that could be easily
explained by the simple fact that Dapper is in fact a micro-
ORM and thus not having all the backside logic a fully-
featured ORM has behind the scene. However, EF Core using
eager loading has very close results to nHibernate in
comparison to Dapper, but still 3 times slower than nHibernate.

By analysing the memory results in the one-to-one
approach, it can be seen that nHibernate using proxy objects
when returning entries using lazy loading (Fig. 15 and Table
VIII).

TABLE. VIII. GET METHOD USED MEMORY

Entries

/MB

Get methods used memory (MB)

Tab Entity

Framework Core
nHibernate Dapper

Students Teachers Students Teachers Students Teachers

500 0.83 2.61 1.34 1.35 0.31 2.67

1000 1.51 4.98 2.68 2.69 0.78 5.32

2000 3.29 9.95 5.36 5.39 1.96 10.64

5000 7.81 26.43 13.4 13.97 4.07 26.8

10000 17.69 53.07 26.8 26.44 8.12 53.59

But, when selecting more complex entities (one-to many
approach), EF Core and Dapper have higher memory usage
for returning one-to-many entities, in comparison with the
case of returning one-to-one entities, because of the impact of
the logic used there to map all returned courses to each teacher
while nHibernate is using proxy objects.

V. RESULTS AND DISCUSSION

For Insert operations, nHibernate has the best results,
followed by EF Core and then by Dapper. For Update
operations EF Core has the best results when considering one-
to-one relationships; but when considering also one-to-many
relationships, Dapper has the best results.

A similar situation was observed for the Delete operations,
where, when considering one-to-one relationships, EF Core
has best execution time results followed relatively closely by
Dapper and then by nHibernate; but, when considering also
one-to-many relationships, nHibernate has on average the best
results in terms of execution time for high number of entries
(over 1000) followed closely by EF Core and then by Dapper.
This performance is obtained to the detriment of memory
usage.

When realizing Get calls, nHibernate and EF Core execution
times are very close; for one-to-one relationships, Dapper is
having better results as number of entries increases, followed by
EF Core and then by nHibernate; but, when also one-to-many
relationships are involved, nHibernate has, on average, the best
results in terms of execution time followed by Dapper, EF Core
having the worst performance as the number of entries
increases. Significant differences could be observed for Get
operations from an overall perspective.

If using nHibernate’s default settings, it will make use of
lazy loading and thus showing great timing results and
memory when one-to-many relationships are involved; but, for
only one-to-one relationships its performance is the lowest
one. EF Core with lazy loading being disabled exhibits good
results when returning entities in one-to-one relationship but
memory and time consuming when returning complex double
one-to-many entities.

In a real-life project, all technologies could be used just with
the statements on which are showing the best results, such as:
nHibernate for Insert, nHibernate (using default lazy loading) or
EF Core for Get, EF Core or Dapper for Update and Delete.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

65 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSIONS

After analyzing the results, it can be concluded that none
of the three technologies targeted for benchmarking analysis is
having the very best results both from the time point of view
and memory usage. The decision to use one of another is
dependent of the most used type of operation.

This paper’s work could be further developed by testing all
three technologies over an Azure stored database. This could
bring another live scenario to test, when there is a need to
measure time responses of queries that target a remote
database. Nevertheless, this approach will definitely have its
downsides, for example, the internet connection stability,
bandwidth, database type chosen from Azure, location of the
Azure Storage in accordance with the server location on which
the application is running, all will have a major role in
realizing measurements.

REFERENCES

[1] K. Roebuck, Object-Relational Mapping: High-impact Strategies - What
You Need to Know. Samford, Australia: Lightning Source Publisher,
633p., 2011.

[2] P. Van Zyl, D.G. Kourie, A. Boake, “Comparing the performance of
object databases and ORM tools”, Proceedings of the 2006 Annual
research conference of the SAICSIT on IT research in developing
countries, SAICSIT 2006, Somerset West, South Africa, DOI:
10.1145/1216262.1216263, pp. 1–11, 2006.

[3] A. Haug, J. Arlbjorn, F. Zachariassen, J. Schlichter, “Master data quality
barriers: an empirical investigation”. Industrial Management & Data
Systems, Emerald Group Publishing Limited, DOI:
10.1108/02635571311303550, 113 vol. 2, pp. 234-249, 2013.

[4] J.P. Smith, Entity Framework Core in Action. New York: Manning
Publications Company, 520p., 2018.

[5] G. Liljas, A. Zaytsev, J. Dentler J., NHibernate 4.x Cookbook - Second
Edition. UK: Packt Publishing, 448p., 2017.

[6] Khan O.M.A., Benchmarking .NET Core 2.0 applications. In: C# 7 and
.NET Core 2.0 High Performance: Build highly performant, multi-

threaded, and concurrent applications using C# 7 and .NET Core 2.0.
UK: Packt Publishing Ltd., 281p., 2018.

[7] Basheleishvili I., A. Bardavelidze, and K. Bardavelidze. "Study And
Analysis Of The .Net Platform-Based Technologies For Working with
the Databases, " Proceedings of the 33rd International Conference on
Information Technologies (InfoTech-2019), Bulgaria, pp.1-8, 2019.

[8] V.J. Mehta, ORM Patterns and Domain-driven Design. In: Pro LINQ Object
Relational Mapping with C#. New York: Apress Publisher, pp.17-43, 2008.

[9] S. Cvetković, D. Janković, “A Comparative Study of the Features and
Performance of ORM Tools in a .NET Environment”, in: A. Dearle,
R.V.Zicari, Objects and Databases, ICOODB 2010. Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, DOI: 10.1007/978-3-
642-16092-9_14, vol. 6348, pp.147-158, 2010.

[10] A. Joshi, S. Kukreti, “Object Relational Mapping in Comparison to
Traditional Data Access Techniques”, International Journal of Scientific
& Engineering Research Vol. 5, Issue 6, pp.540-543, 2014.

[11] A. Gruca, P. Podsiadło, “Performance Analysis of .NET Based Object–
Relational Mapping Frameworks”, 10th International Conference,
BDAS Ustron, Poland, Springer International Publishing, DOI:
10.1007/978-3-319-06932-6, pp.40-49, 2014.

[12] G. Procaccianti, P. Lago, W. Diesveld, “Energy Efficiency of ORM
Approaches: An Empirical Evaluation”, Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement ESEM, Ciudad Real, Spain, ACM, DOI:
10.1145/2961111.2962586, pp.185–198, 2016.

[13] Suhas Chatekar, Learning NHibernate 4: Explore the full potential of
NHibernate to build robust data access code. 402p. UK: Packt
Publishing, 2015.

[14] T. H. Chen, W. Shang, Z. M. Jiang, A.E. Hassan, M. Nasser, P. Flora,
”Detecting performance anti-patterns for applications developed using
object-relational mapping.”, Proceedings of the 36th International
Conference on Software Engineering. ACM, pp.1001–1012,
DOI:10.1145/2568225.25682592014, 2014.

[15] W. Wiphusitphunpol, T. Lertrusdachakul. "Fetch performance
comparison of object relational mapper in. NET platform." In 2017
IEEE 14th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and
Information Technology ECTI-CON, DOI:
10.1109/ECTICon.2017.8096264, pp. 423-426, 2017.

