
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

139 | P a g e

www.ijacsa.thesai.org

An Investigative Study of Genetic Algorithms to

Solve the DNA Assembly Optimization Problem

Hachemi Bennaceur
 1
, Meznah Almutairy

2
, Nora Alqhtani

3

Faculty of Computer and Information Sciences, Computer Science Department

Al Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Saudi Arabia

Abstract—This paper aims to highlight the motivations for

investigating genetic algorithms to solve the DNA Fragments

Assembly problem (DNA_FA). DNA_FA is an optimization

problem that attempts to reconstruct the original DNA sequence

by finding the shortest DNA sequence from a given set of

fragments. We showed that the DNA_FA optimization problem is

a special case of the two well-known optimization problems: The

Traveling Salesman Problem (TSP) and the Quadratic

Assignment Problem (QAP). TSP and QAP are important

problems in the field of combinatorial optimization and for

which there exists an abundant literature. Genetic Algorithms

(GA) applied to these problems have led to very satisfactory

results in practice. In the perspective of designing efficient

genetic algorithms to solve DNA_FA we showed the existence of a

polynomial-time reduction of DNA-FA into TSP and QAP

enabling us to point out some technical similarities in terms of

solutions and search space complexity. We then conceptually

designed a genetic algorithm platform for solving the DNA-FA

problem inspired from the existing efficient genetic algorithms in

the literature solving TSP and QAP problems. This platform

offers several ingredients enabling us to create several variants of

GA solvers for the DNA assembly optimization problems.

Keywords—Genetic Algorithms; Traveling Salesman Problem;

Quadratic Assignment Problem; DNA fragments assembly problem

I. INTRODUCTION

The DNA fragment assembly problem attempts to
reconstruct the original DNA sequence by finding the shortest
DNA sequence from a large number of fragments [1].
DNA_FA is a hard optimization problem due to its high
complexity, the larger the sequence, the larger the fragments
set input and consequently the higher and harder computation
[2]. Metaheuristics have been shown to be the best alternative
techniques to solve this problem. Especially, the DNA_FA
problem was tackled with some metaheuristic algorithms such
as Genetic Algorithms [3], Tabu Search [4], Simulated
Annealing [5], Particle Swarm Optimization [6], and Ant
Colony Optimization [7].

The famous Traveling Salesman Problem (TSP) and the
Quadratic Assignment Problem (QAP) are two important
problems in the field of combinatorial optimization and for
which there exists an abundant literature. Genetic Algorithms
applied to these problems have led to very satisfactory results
in practice [8],[9],[10].

Our main contributions are: first, we presented a formal
proof of the existence of a polynomial-time reduction of

DNA_FA into TSP and QAP enabling us to point out some
technical similarities in terms of solutions and search space
complexity. Particularly, we have theoretically demonstrated
that all these three optimization problems have a similar
topological structure and they need to explore a search space
of solutions with a same complexity to find an optimal
solution. Notice that although many works mentioned the
relationship between DNA_FA with the TSP problem, but to
the best of our knowledge none provided a formal
demonstration enabling to take advantages from the existent
solvers of TSP and QAP problems to treat efficiently the
DNA_FA problem. For this purpose, we revisited the
relationship and the similarities between DNA_FA and TSP
and established a new relationship and similarities between
DNA_FA and QAP. Second, as the TSP and QAP problems
were solved efficiently using GA algorithms, we believe it is
worth to exploit these similarities in order to deeply
investigate the use of GA algorithms for solving the DNA_FA
problem. Based on these facts, we proposed a genetic
algorithm platform including main GA concepts and tools
(selection, crossover, mutation, …) enabling us to design
several variants of GA solvers for the DNA_FA. The platform
regroups the best GA concepts inspired from the existing
efficient genetic algorithms in the literature solving TSP and
QAP problems such that when they are used synergistically,
we lead to efficient GA solvers. Few research works based on
GA have been developed to solve the DNA_FA problem; the
more recent GA algorithm used a basic schema with
traditional simple GA concepts [11]. We think there is ample
room for improvements by integrating the more recent
advanced GA concepts used for solving TSP and QAP
problems.

The remaining sections of the paper are structured as
follows. The related work is discussed in Section II.
Section III presents the DNA_FA, TSP, and QAP problems
formally and provides formal proof of the equivalence
between these three problems. In Section IV the existing GA
solutions to solve the DNA_FA problem, TSP, and QAP are
presented and discuss these solutions in Section V. Finally, we
proposed, in section VI a GA platform for designing efficient
GA solvers for the DNA_FA problem.

II. RELATED WORK

Through research in the previous literature, we found some
studies that indicated a relationship between TSP and
DNA_FA problem [12],[13],[14]. In 1995 Parsons et al. [12]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

140 | P a g e

www.ijacsa.thesai.org

noticed the similarity between DNA_FA and TSP but they
argued that the mapping is not easy for some issues; some of
these issues are (i) the DNA_FA problem is a maximization
problem where the TSP is a minimization problem, and (ii) the
TSP seeks to find a Hamiltonian circuit where the DNA_FA
seeks to find a Hamiltonian path. In 2013 Mallén and
Fernández [15] tried to overcome these issues by adding a
dummy city with zero distance to all the other cities to form an
open Hamiltonian path instead of a Hamiltonian circuit. Also,
they multiplied the objective function by (-1) to convert the
maximization into minimization.

There are many studies mentioned the relationship
between TSP and QAP [16],[17],[18],[19]. However, no study
has formally shown the relationship between the DNA_FA
problem with the TSP and QAP problems. Moreover, no study
has explored the numerous similarities between the DNA_FA
problem with the TSP and QAP problems to take advantage of
the many efficient techniques developed for these two
problems in order to solve the DNA_FA problem.

Few genetic algorithms have been developed to solve the
DNA_FA problem (see section IV for more details), compared
to what have been developed for the TSP and QAP problems
[9], [10], [20],[21], [22]. Moreover, these GA algorithms did
not exploit the recent progress performed in the context of
TSP and QAP problems. For instance, if we consider the
crossover operator which is the main concept of GA
algorithms, recently many modern crossover types (e.g. the
Sequential Constructive Crossover) have been designed and
successively tested for the TSP and QAP problems that have
yielded to better performances. Due to the numerous
similarities with the TSP and QAP problems shown in this
paper, we believe and expect that well-designed GA solvers
inspired from existing GA for these two problems would
produce similar performance for DNA_FA problem.
Unfortunately, no work investigated deeply these similarities
in order to exploit the more advanced genetic algorithms
designed for TSP and QAP for solving the DNA_FA problem.
For this purpose, it is worth to investigate how these advanced
operators originally designed for the TSP and QAP behave
when they are applied to the DNA_FA problem.

III. DNA_FA VERSUS TSP AND QAP

In this section we describe the optimization problems
DNA_FA, TSP and QAP, then we provide formal proofs
showing the existence of polynomial-time reductions of the
DNA_FA problem into the TSP and QAP problems
respectively.

A. DNA_FA Problem

Given a set of DNA fragments drown from a finite
alphabet {A, T, C, G}, Adenine (A), Thymine (T), Guanine
(G), and Cytosine (C). The goal of the DNA_FA problem is to
find the shortest superstring sequence covering all fragments
that is a superset of all input fragments. Intuitively, the goal is
to find an optimal permutation of the fragments maximizing
the number of overlaps between the fragments.

Formally, given a set of fragments ,
drown from a finite alphabet Σ={𝐴,𝐶,𝐺,𝑇}, the problem
consists in finding an optimal permutation of the fragments

 that maximizes the number of overlaps
between every pair of two consecutive fragments and thus
minimizes the length of .

 𝐴

 ∑

)

) (1)

B. TSP Problem

Given a set of n cities along with the distance information
between every pair of those cities, the goal of the Travelling
Salesman Problem is to find the shortest tour that visits all
cities once and returns to the starting city.

The TSP problem can be modeled as follows. Let
 , the goal is to find the lowest
cost tour such that.

 ∑))

)) (2)

where)) is the distance between city and city

 , and)) is the distance between city and the

starting city .

C. QAP Problem

Given two sets of equal size “facilities” and “locations”,
for each pair of locations, a distance is specified and for each
pair of facilities a weight or a flow is specified. The problem
is to assign all facilities to different locations with the goal is
to minimize the total distances weighted by the corresponding
flows.

Formally, given two sets P ("facilities") and L
("locations"), with a weight function w: P × P → R and a
distance function d: L × L → R. The goal is to find the
assignment f : P → L such that the cost function (the distance
multiplied by the weight) is minimized:

 ∑) ())) (3)

{\displaystyle\sum_{a,b\in P}w(a,b)\cdot d(f(a),f(b))}

D. Polynomial Reduction of DNA_FA into TSP and QAP

Notice that although many works mentioned the
relationship between DNA_FA with the TSP problem [12],
[13], [14], but to the best of our knowledge none provided a
formal demonstration enabling to take advantages from the
existent solvers of TSP and QAP problems to treat efficiently
the DNA_FA problem. For this purpose, we revisited the
relationship and the similarities between DNA_FA and TSP
presented in [15] and established a new relationship and
similarities between DNA_FA and QAP. Namely, we showed
that DNA_FA is a special case of TSP and QAP problems.

The DNA_FA problem can be represented as a directed
complete weighted graph 𝐺) where represents the
set of fragments and is the set of edges. The weight of an
arc of G expresses the overlap cost between the two
corresponding fragments and it is set to zero if there is no
overlap. An optimal solution of DNA_FA corresponds to a
Hamiltonian path in 𝐺. DNA_FA can be easily transformed
into a TSP problem. Let’s consider 𝐺) the
complete graph G of DNA_FA augmented by the virtual

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

141 | P a g e

www.ijacsa.thesai.org

vertex s connected to every vertex of V. For each vertex v of

V, two arcs (s,v)E’ and (v,s)E’ with zero weights are added
to G. We can easily see that the problem of finding a
Hamiltonian path in G amounts to find an optimal solution to
the TSP represented by the graph G’. Hence, DNA_FA is a
special case of the TSP problem.

Regarding the QAP, we established a new relationship
between the DNA_FA problem and the QAP, we showed that
DNA_FA is a special case of QAP problem as follows. Let’ us
consider the set of fragments of the problem as a set of n
facilities and the possible positions of each fragment in the
solution sequence as a set of n locations. Taking into account
the distance between a pair of locations as the overlap cost
between their corresponding fragments, and set the flow equal
to 1 for every pair of facilities, we can see that finding the
optimal permutation assigning to each location exactly one
facility so as to minimize the total cost (the distances
multiplied by the weight) amounts to find an optimal solution
to the associate DNA_FA problem. Thus, clearly DNA_FA is
a special case of the QAP problem.

As the famous TSP and QAP problems are NP-Hard [23],
it follows automatically from this demonstration DNA_FA is
also NP-hard.

In the perspective of designing an effective and robust
genetic algorithm platform for solving DNA_FA, Table I.
points out some technical similarities in order to get out the
most profit from the efficient genetic algorithms designed to
solve TSP and QAP problems.

From Table I, we can see that the three optimization
problems need to explore a same size search space to find an
optimal solution.

TABLE I. TECHNICAL SIMILARITIES BETWEEN DNA-FA, TSP, AND QAP

Characteristics DNA_FA TSP QAP

Variables Fragments Cities
Facilities,

locations

Constraints

Every fragment

must be present
in the final

sequence.

No duplicate
fragment is

allowed.

Every city

should be

present in the
tour.

No duplicate

city is allowed.

Every facility
should be

assigned to one

location.
No duplicate

facility or

location is
allowed.

Objective

Function

Find an optimal

permutation of

the fragments in
which the length

of the sequence is

minimized.

Find an optimal

permutation of

cities (an

optimal tour) in

which the total
cost of the tour

is minimized.

Find an optimal

permutation of
facilities

(assignment of

facilities to
locations) in

which the cost

of the
assignment is

minimized.

Feasible solution

A sequence that

contains all the

fragments.

A tour that

visits all cities

once.

An assignment

of each facility

to one location

Complexity NP-hard NP-hard NP-hard

IV. GENETIC ALGORITHM (GA) SOLUTIONS

Basic genetic algorithm schema contains various concepts
such as population encoding, population initialization, fitness
function, selection, crossover, mutation and replacement
operators, and stopping conditions.

Each concept has its importance in the algorithm; for
instance, encoding the population represents a feasible
solution of the problem. Basically, the type of the problem
determines the appropriate encoding type (e.g., in the TSP a
tour (individual) is usually encoded as a sequence of integers,
where each integer represents a city). The initial population
may influence the overall behavior of finding solutions.
Getting a good initial population can strongly influence the
performance of the search. The fitness function is used to
evaluate the quality of each individual within the population.
The fitness function has to be designed to accurately assess the
individual's quality in order to select the best and the fittest
individuals for crossover and mutation operations. Selection is
the operation where the parents (individuals) are selected from
the population according to the fitness function for crossover
and mutation operations. The purpose of selection is to ensure
that the fitter individuals in the population will be maintained
so that the offspring produced has a higher fitness. The
crossover operator plays the most crucial role in GA as it aims
to explore the huge search space of the problem. Traditionally,
it is a binary operation taking two individuals as parents to
create new offspring. Recently, the crossover operator has
been generalized to take more than two parents to generate
new offspring. This type of crossover is called Multi-Parents
Crossover (MPX) [24]. The mutation operator aims to ensure
diversity in the population by allowing a certain change in the
individual, which helps to escape local optima. The
replacement allows individuals from the current generation to
be replaced by better newly generated offspring. The stopping
condition is a vital operator; it is necessary to identify a
tradeoff between the algorithm stopping criteria and the
algorithm performance.

The fundamental concept behind GAs is inspired by
natural evolution, where the GA operators evolve generations
of potential solutions of a given problem. More in detail, the
GA initiates a population of possible solutions (i.e.,
individuals) after defining the appropriate solution encoding.
Then, calculates the fitness for each individual within the
population using the fitness function. The selection operator
then selects individuals (parents) based on their fitness to
produce a new offspring by carrying out the crossover and
mutation operations. The new offspring will inherit the
parent’s characteristics and will be added to the next
generation via a replacement strategy. This process keeps on
iterating until the stopping condition is reached, and hence the
solution with the best fitness value is returned. The GA
procedure is illustrated in Fig. 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

142 | P a g e

www.ijacsa.thesai.org

Fig. 1. GA Procedure.

A. GA solutions for the DNA_FA problem

Here we review the previous works using genetic
algorithms for the DNA_FA. As aforementioned, the
DNA_FA problem reconstructs the original DNA from a large
number of fragments. To illustrate the problem, consider the
following example:

An input of five fragments could look like:

TCGG, GCAG, ATCG, CAGC, GATC.

Two possible final sequences involving all input fragments

are:

CAGCAGATCGG (length = 11)

GATCGGCAGC (length = 10)

The latter sequence is better since its length is 10, compared to

11 for the former sequence.

In order to deal with this problem, let us introduce the

following terms:

Prefix: A substring comprising the first n characters of

fragment f.

Suffix: A substring comprising the last n characters of

fragment f.

Overlap (w): Common sequence between the suffix of one

fragment and the prefix of another fragment.

Contig: overlapped fragments without gaps.

By applying the overlapping measure to the above
example, we found that w (GCAG, CAGC) = 3 whereas w
(CAGC, GCAG) = 2. This means that these two fragments can
be represented in a sequence of 5 letters (4+4-3): GCAGC,
which is better the other sequence of length 6: CAGCAG.

The overlaps between fragments can be represented as a
directed weighted complete graph. The set V of nodes in this
graph corresponds to the set of fragments. A directed edge

from fragment a to a different fragment b with weight t  0
exists if the suffix of a with t characters is a prefix of b.

Table II shows the overlap (w) matrix for the
aforementioned example, the symbol (-) means there is no
edge.

TABLE II. THE OVERLAP MATRIX

w TCGG GCAG ATCG CAGC GATC

TCGG - 1 0 0 1

GCAG 0 - 0 3 1

ATCG 3 1 - 0 1

CAGC 0 2 0 - 0

GATC 2 0 3 1 -

Once the overlap weighted directed complete graph is built
as a pre-processing step, the DNA fragments assembly
problem can be transformed into the problem of finding a
Hamiltonian path that goes through every vertex (i.e. a
complete order of the fragments). The quality of each path
(i.e. sequence of fragments) is measured by the sum of the
weights of its edges, which represents the total overlaps
between fragments.

There were relatively few historical studies in the area of
DNA fragments assembly using genetic algorithms. Some
preliminary works were carried out in the early 1990s [3],
[12]. In later works GA algorithms were enhanced by
combining them with other searching metaheuristics in order
to achieve better results. For instance [25] proposed a method
named SAX, it combines GA algorithm enhanced with the
simulated annealing metaheuristic to solve the DNA-FA. SAX
implemented a greedy approach to generate the initial
population, the order crossover (OX) operator, and the
inversion mutation operator. SAX enhanced the GA approach
with the simulated annealing metaheuristic to escape local
optima. The proposed method was able to achieve relatively
better overlapping scores on different datasets that reach the
size of 400k bp (characters). However, the drawback of this
GA solver is its high computational time. The authors in [26]
examined different types of the population initialization
including random initialization, 2-opt heuristics, and greedy
methods. The crossover operators implemented in this study
were the Cycle crossover (CX), Edge Recombination (ERX),
Order crossover OX, and Partial Mapped crossover (PMX).
According to their results, when using the 2-opt to initialize
the population, the quality of the solution is improved without
a significant increase in the overall execution time, regardless
of the type of the applied crossover.

Another work using GA approach is presented in [27], it
combines different GA variations in different ways: (1)
Recentering-Restarting GA (RRGA) in order to avoid getting
stuck on local optima, (2) Island Model GA (RRGA+IM)
which divides the population into multiple islands. And
finally, (3) GA which uses Ring Species (RRGA+RS), where
the population is treated as a ring. The first and last
individuals of the population are considered adjacent. They
used two methods to initialize the population; the identity
permutation and the 2-opt heuristic method proposed in [26].
The PMX crossover and swap mutation operators are
implemented for all GA variations. These methods proved to
be better since it records more overlapping score for all the
tested datasets than the results obtained in [25]. However,
among these three methods (RRGA, RRGA+IM, RRGA+RS)
there is not a dominatrix; they all have the same convergence

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

143 | P a g e

www.ijacsa.thesai.org

performance. For that reason, some restarting strategies were
implemented in the next work [28] in order to distinguish the
performance of the above three GA variations. These
strategies include dynamic restart where the search restarts
after convergence, forcing initial restart where the search is
forced to restart again in order to escape local optima. The
experimental results showed that the RRGA has better
convergence performance than RRGA+IM and RRGA+RS. In
[29] the authors used RRGA along with the Power Aware
Local Search (PALS) as a genetic operator and the 2-opt
heuristic for initializing the population. Three types of
experiments were performed with the objective function is
minimizing the number of contigs and maximizing the overlap
score. In the first experiment, PALS was used as a genetic
operator, in the second experiment PALS is used after
executing the GA. Whereas, in the last experiment, PALS was
used as a genetic operator and utilized after GA execution as
well. The results show that the first experiment using PALS as
a genetic operator performs better than the other two
experiments.

Despite the importance of the DNA fragments assembly
problem, most of the previously mentioned studies ignore
reporting the accuracy of their works (the degree to which the
assembler covers the reference genome). However, there are
some studies that assessed the accuracy as in [11]. In contracts
with previous works that focused on maximizing the
overlapping score as a fitness function, in [11] the fitness
function is defined to minimizing the total length of a scaffold
(the sum of the length of the contigs), and the number of
contigs on the scaffold. The basic one-point order crossover
has been implemented in this study. They assessed the
accuracy and measured how the assembler actually covers the
reference genome. In the next work [30] some improvements
have been applied; the first one is to merge any two contigs
that have overlapped between them longer than the length of
the fragment. The other improvement is a post-processing step
to merge each left chaff contigs into the appropriate location
on long contigs (chaff means a contig of length shorter than 3–
4 times the fragment length). The experimental results showed
that the algorithm found a single correct contig identical to the
reference in over 95% of 200 runs for most instances and
decreases to 87.5% for the largest instances. However, as they
mentioned, the main drawback of their method is the higher
computational time.

Table III shows genetic algorithm performances in terms
of the overlapping score for the DNA_FA problem. The first
column represents the datasets used mainly in the literature
with its mean fragment’s length and sequence length (within
brackets), obtained from the National Center for
Biotechnology Information NCBI

1
. The first 10 datasets were

fragmented (i.e., cutting the original sequence into fragments)
using a tool called GenFrag and denoted by the dataset name-
the coverage. These datasets are obtained from four

1 The National Center for Biotechnology Information (NCBI) is part of

the United States National Library of Medicine(NLM), a branch of the
National Institutes of Health (NIH). The NCBI houses a series of databases

relevant to biotechnology and biomedicine and is an important resource for

bioinformatics tools and services. Major databases include GenBank for DNA
sequences. https://www.ncbi.nlm.nih.gov/guide/.

sequences, ranging in length from 3 to 77 thousand bp. The
“Acin” datasets fragmented using a different tool called the
DNAgen; the “Acin” sequences are longer (except “Acin1”,
which is the smallest one in this table) and more difficult since
they contain longer and more fragments). The “Acin” datasets
are obtained from six sequences, ranging in length from 2 to
426 thousand bp. The rest columns are the references with the
used method name (reference, method name), and for each
method the sum of the generated overlapping score for each
dataset is recorded. The symbol (-) means that this reference
has not applied this method to the corresponding dataset. We
considered in this table only references that report the
overlapping score for their work.

From Table III, SAX presents competitive results for the
small datasets. RRGA_RS was more performant for the long
datasets (“Acin”) comparing with the other methods, namely,
it obtained more overlapping scores for three out of six “Acin”
datasets. RRGA_IM gave satisfying results for eight out of
sixteen reported datasets. GA2o is outperformed by the two
other methods on the tested datasets.

In view of all that has been mentioned so far, such studies
suffer from a lack of efficiently dealing with the accuracy, the
time and space complexities. While DNA fragments assembly
is a growing field, although GA gave very satisfactory results
for similar hard optimization problems TSP and QAP,
research works based on genetic algorithms for DNA
assembly remains relatively poor. From reviewing and
studying the previous related works of the GA, we can see that
there are different ways to initialize and to represent the
population. Also, it is obvious that the type of crossover
affects the produced results in terms of solution quality and
computational time. However, combining the GA with other
good metaheuristics algorithms could improve the solution
quality.

B. GA Solutions for TSP and QAP

This section reviews GA algorithms designed to solve the
TSP and QAP problems, and their associated experimental
results. This review is not exhaustive, we considered only
more recent GA algorithms designed with advanced concepts.

GA design mainly begins with encoding the population.
Different types of encoding were used for the optimization
problems TSP and QAP. Most works of the wide literatures
used the identity permutation such as for TSP in [10] [31] and
QAP in [9]. Another advanced types of population encoding
were used for TSP such as value encoding [20], and real
number encoding [21].

The common strategies of generating of initial populations
are the random generation as investigated for TSP in [21] and
the greedy procedure as in [21]. Recently more advanced
strategies have been designed; the Multi-Agent Reinforcement
Learning (MARL) was proposed in [31] for solving TSP
problems. The sequential sampling method has been
implemented in [9] for solving QAP problem in order to
improve the GA algorithm and to speed up the convergence.

https://en.wikipedia.org/wiki/United_States_National_Library_of_Medicine
https://en.wikipedia.org/wiki/National_Institutes_of_Health
https://en.wikipedia.org/wiki/Biotechnology
https://en.wikipedia.org/wiki/Biomedicine
https://en.wikipedia.org/wiki/GenBank

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

144 | P a g e

www.ijacsa.thesai.org

TABLE III. THE OVERLAPPING SCORE GENERATED BY THE GA FOR THE DNA FRAGMENTS ASSEMBLY PROBLEM. (* INDICATES THAT THE REFERENCE

IMPLEMENTED MORE THAN FOUR METHODS, THE TABLE DISPLAYS THE RESULT OF THE BETTER ONE)

Dataset (reference, method)

Dataset (fragment length, sequence length) ([25],SAX) ([26], GA2o*) [27],RRGA) ([27],RRGA_RS) [27],RRGA_IM)

x60189-4 (395, 3835) 11478 - 11478 11478 11478

x60189-5 (286, 3835) 14027 13988.20 14161 14161 14161

x60189-6 (343, 3835) 18301 18293.03 18301 18301 18184

x60189-7 (387, 3835) 21268 21221 21228 21257 21218

m15421-5 (398, 10089) 38726 37967.13 38675 38668 38667

m15421-6 (350, 10089) 48048 - 48034 48048 48052

m15421-7 (383, 10089) 55072 53041.89 55094 55020 54986

j02459-7 (405, 20000) 115301 109513.62 116198 116110 116336

bx842596-4 (708, 77292) 223029 - 227151 227090 227171

bx842596-7 (703, 77292) 417680 - 441893 441867 442100

Acin1 (182, 2170) 46865 - 47436 47450 47437

Acin2 (1002, 147200) 144567 - 151285 151253 151243

Acin3 (1001, 200741) 155789 - 167035 166882 167214

Acin5 (1003, 329958) 145880 - 163061 163066 163027

Acin7 (1003, 426840) 157032 - 179835 179932 179886

Acin9 (1003, 156305) 314354 - 342936 342949 342965

The selection operator can have an impact on the overall
performance of the GA algorithm [21]. The roulette wheel is
the common selection operator used for optimization problems
[20],[31],[32] [21], the tournament selection was implemented
for TSP [22], and the stochastic remainder selection was used
for QAP [33]. More recently in [21], a greedy method was
designed as a selection operator for TSP.

The crossover operator is the main operator of GA as it
plays a crucial role to explore efficiently the search space of
the optimization problem. Hence, several advanced crossover
operators have been designed for solving TSP as well as QAP
using GA algorithms. The parents' characteristics are mainly
inherited by crossover operators. The Sequential Constructive
Crossover SCX is an intelligent crossover designed by Ahmed
[10] to solve the TSP. A comparative study between SCX,
ERX and generalized N-point crossover (GNX) for some
benchmark TSPLIB

2
 instances found SCX outperforms ERX

and GNX in term of the solution quality. Most recently, a
modified version of sequential constructive crossover, named
greedy SCX (GSCX) was proposed for solving TSP [34]. The
reverse greedy sequential constructive crossover (RGSCX)
and the comprehensive sequential constructive crossover
(CSCX) are two new crossover operators enhancing SCX for
solving TSP [35].

The encouraging results obtained using SCX proved its
effectiveness to solve the TSP problem. Wherefore, Ahmed
[33] investigated its effectiveness for the QAP problem. He
compared SCX with one-point crossover (OPX) and swap

2 The TSPLIB is a library of samples for the TSP and other problem such

as Hamiltonian cycle problem, Sequential ordering problem, and Capacitated

vehicle routing problem. http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/.

path crossover (SPX), and concluded that SCX was better in
terms of solution quality. An Improved Genetic Algorithm
(IGA) adapting and implementing SCX with the combined
mutation for finding effective solution to the QAP was
proposed in [9]. The performance of IGA using the adaptive
and exchange mutation was evaluated on some QAPLIB
instances and compared to a simple GA algorithm. The results
showed that the IGA was better in terms of solution quality.
The gaps with the best-known solutions were improved by
0.83% to 5.82% over the simple GA. However, the IGA takes
longer time than the simple GA. SCX was also applied
successfully for solving QAP with a combination of sequential
sampling and random algorithms to generate the initial
population [36]. Notice as well, the multi-point crossover
implemented in [31] showed satisfying performance for
solving TSP problems relatively to the classical crossover
operators.

Another types of advanced crossover operators were
designed in [32] to solve the QAP relying on the idea of a
frequency model. Three crossover operators were introduced
for enhancing GA, namely, the Highest Frequency crossover
(HFX), the Greedy HFX (GHFX), and the Highest Frequency
Minimum Cost crossover (HFMCX). The authors presented a
detailed comparative study between One Point crossover,
Swap Path crossover, SCX, and the new three crossover
operators. The experimental results showed that the frequency
models were better in term of computational time, precisely,
HFX and GHFX were faster by 2 and 1.5 times than SCX,
respectively. However, in term of solution quality all
crossover operators found good near-optimal solutions on the
tested benchmarks.

In order to compare the effectiveness of different types of
crossover operators for solving the QAP using GA algorithm,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

145 | P a g e

www.ijacsa.thesai.org

Misevicius and Kilda [37] implemented twelve different
crossover operators; including the uniform like crossover
(ULX) and its modifications (the randomized ULX crossover
(RULX), the ULX crossover combined with repair procedure
(RX), the block crossover (BX), the uniform partially-mapped
crossover (UPMX), the distance preserving crossover (DPX),
the cycle crossover, the swap path crossover, the one point
crossover, the order-based crossover, the cohesive crossover
(COHX), and, finally, the multi-parent crossover (MPX). The
comparison showed that the multi-parents’ crossover led to
better performances.

Various types of mutation have been investigated for the
TSP and QAP problems, including the Exchange Mutation
[31],[21],[22], the Reciprocal Exchange Mutation[10]. The
principle of these two mutation operators is similar to the
Swap Mutation, which randomly selects two positions in the
individual and swap the corresponding values. More advanced
mutation operators have been designed for the TSP and QAP
problems such as the interchange mutation in [20], and the
inversion mutation in [22] which it selects two positions
within an individual and then inverts the substring between
these two positions. The adaptive and combined mutation
operators were proposed for solving QAP in [36]. The
adaptive mutation assigns highest probability values for the
fittest individuals; therefore, all individuals will not have the
same likelihood of mutation. Whereas, the combined mutation
combines more than one type of mutation operators.

Table IV shows the results obtained for TSP in terms of
the tour cost for some TSPLIB instances. The rows correspond
to the results obtained for a problem instance by different

types of crossover operators. The first column represents the
dataset and its best-known solution (within parentheses), (e.g.,
bayg29 means the instance named “bayg” with 29 cities and
the best-known solution 1610). The remaining columns
display for each reference the name of the GA crossover
operator as well as the obtained solution (tour cost). The
symbol (-) means this crossover type has not been applied in
this reference to the corresponding dataset. The table clearly
shows that the Sequential Constructive Crossover (SCX) and
the Smart Multi-Point Crossover (SMX) achieved better
solutions for the tested datasets.

Table V shows the results obtained for solving the QAP
problem in terms of the solution quality, which measured by
the percentage of deviation (excess%) of average solution
value over the best-known solution value reported in
QAPLIB. The lower the percentage the better the solution
quality. The datasets used for the QAP were obtained from the
QAPLIB [38], which is a library with instances size varies
from 12 to 256 facilities (or locations). The table displays in
the first column the names and the sizes of datasets (e.g.,
“tai20a” means the dataset named tai contains 20 facilities or
locations; the character “a” means random instances, and the
character “b” as in “tai20b” means real-life like instances)
[38]. The remaining columns represent for each reference the
name of the GA crossover operator types as well as the
obtained solutions. The symbol (-) means this crossover type
has not been applied in this reference to the corresponding
dataset. From this table we can notice that the multi-parents’
crossover (MPX) followed by the Sequential Constructive
Crossover (SCX) dominate the other crossover types.

TABLE IV. THE IMPACT OF GA CROSSOVER OPERATORS ON THE RESULTING TOURS OF TSP USING DIFFERENT DATASETS (TSPLIB INSTANCES)

TSPLIB instances
Ref [10] Ref [31] Ref [21] Ref [34] Ref [35] Ref [35]

SCX SMX PMX GSCX RGSCX CSCX

bayg29 (1610) 1610 - - 1634 - -

Ftv33 (1286) - - - 1380 1396 1341

Ftv35 (1473) - - - 1531 1583 1499

Ftv38 (1530) - - - 1613 1672 1550

P43 (5620) - - - 5631 5625 5627

Ftv44 (1613) - - - 1706 1627 1613

Ftv47 (1776) - - - 1846 1919 1833

Ry48p (14422) - - - 15469 15293 14983

att48 (33522) - 33522 33523.06 - - -

eil51 (426) 426 426 - 436 - -

berlin 52 (7542) 7542 7542 - 7926 - -

eil76 (538) 538 538 - - - -

pr76 (108159) 108159 108159 - 116844 - -

kroa100 (21282) 21282 21282 - - - -

eil101 (629) 629 629 - - - -

lin105 (14379) 14379 14379 - 15921 - -

bier127 (118282) - 118678 - - - -

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

146 | P a g e

www.ijacsa.thesai.org

TABLE V. THE IMPACT OF GA CROSSOVER OPERATORS ON THE RESULTING SOLUTION QUALITY OF QAP USING DIFFERENT DATASETS (QALIP INSTANCES).
(** INDICATES THAT THE REFERENCE IMPLEMENTED 12 DIFFERENT TYPES OF CROSSOVER OPERATORS, THE TABLE DISPLAYED THE BEST OBTAINED RESULT).

QALIP instances
Ref [32] Ref [33] Ref [37]** Ref [36]

HFX GHFX HFMCX OPX SPX SCX MPX SCX

Tai20a 6.81 5.59 4.82 6.57 5.59 4.50 0.246 1.20

Tai20b 8.45 8.31 7.67 8.73 9.12 6.56 0.000 0.44

Tai25a 6.18 5.82 5.33 5.01 5.61 4.58 0.150 1.71

Tai25b 10.05 10.73 7.45 12.92 15.42 5.24 0.000 0.14

Tai30a 6.11 6.12 5.66 5.16 5.49 4.29 0.035 2.30

Tai30b 11.32 10.04 9.05 13.4 10.55 8.78 0.001 0.18

Tai35a 5.78 5.21 5.71 4.92 5.35 4.95 0.194 2.42

Tai35b 8.45 7.11 6.02 7.49 6.76 5.00 0.019 0.33

Tai40a 7.44 6.23 4.23 4.97 5.76 4.53 0.374 2.48

Tai40b 9.22 10.52 8.11 9.44 11.57 7.30 0.000 0.03

Tai50a 7.13 5.47 5.46 5.00 4.91 4.51 0.583 3.07

Tai50b 8.15 8.43 5.28 7.46 6.68 5.60 0.014 0.56

Tai60a 6.73 6.00 5.74 4.89 4.60 4.54 0.572 3.28

Tai60b 7.83 7.11 5.11 6.95 8.14 5.12 0.010 0.34

Tai80a 5.41 4.55 4.02 4.32 3.83 4.35 0.218 3.41

Tai80b 7.05 6.41 5.39 6.15 6.07 6.63 0.016 2.17

Tai100a 5.49 5.04 3.65 4.04 3.22 4.02 0.108 2.92

Tai100b 8.34 7.09 5.23 9.33 5.39 5.08 0.064 0.95

Tai150b - - - - - - 0.241 1.81

From the literature review we noticed that the TSP and
QAP problems have been treated with various GA designs,
including different advanced GA concepts. The SCX
crossover emerges from the lot as it is shown experimentally
to be the most performant crossover for the TSP and QAP
problems. We also noticed that the exchange mutation
operator is mostly used for TSP in the literature. The datasets
used for the TSP were obtained from the TSPLIB, which is a
library of instances of the TSP and related problems from
various sources and of various types with number of cities
varies from 14 to more than 33k cities.

The QAP literature review included other types of
performant crossover operators; as the frequency models and
the multi-parents’ crossover.

V. DISCUSSION

In the light of what has been studied and reviewed so far,
we noticed that GA algorithms applied to the TSP and QAP
problems have led to very satisfactory performances in
practice. We likewise noticed that some advanced types of
genetic algorithm operators have been widely used for the two
problems, and their effectiveness has been investigated to
solve these two problems. Unfortunately, these advanced GA
operators have not yet been exploited for solving the
DNA_FA problem. The similarities between DNA_FA and
these two problems pointed out in this paper are strong
indicators of the benefit that the use of the advanced GA
algorithms can bring to solve the DNA_FA problem. That is

why it is worth to design GA platform including advanced GA
operators and to investigate its effectiveness for solving the
DNA_FA problem.

More in detail, we have noticed that the most efficient
crossover operators SCX, frequency model and the multi-
parent crossovers have not been adapted and exploited for the
DNA_FA problem. Likewise, the 2-opt heuristics for
initializing the population was used few times for the
DNA_FA problem. Regarding the mutation operators, the
Adaptive and Combined mutation designed for the TSP and
QAP problems can be exploited for the DNA_FA problem.

In order to design GA platform including advanced GA
operators, Table VI summarizes the main GA operators and
their values and Table VII shows the used GA operators so far
for each problem (DNA_FA, TSP, QAP). As well as the
different GA parameters tunings: such as the population size,
the crossover and mutation probabilities, the number of
generations, and the number of runs. Defining a proper setting
for GA parameters can drastically improve the algorithm
performance. However, it is not an easy task, generally the
parameters are set experimentally, and Table VII supplies
some GA parameter settings for the three optimization
problems. From Table VII, we can clearly see the advanced
operators that have not been adapted and implemented so far
for the DNA_FA problem.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

147 | P a g e

www.ijacsa.thesai.org

VI. GA PLATFORM TO SOLVE THE DNA_FA PROBLEM

Our GA platform design to solve the DNA_FA problem is
inspired from the efficient GA approaches developed for the
TSP and QAP problems. The GA platform gathers several
advanced GA operators and tools which have shown their
effectiveness in the TSP and QAP contexts. The GA platform
contains the best advanced GA tools for our problem
DNA_FA and one could build many variants of GA
algorithms for solving it by integrating in different and
judicious ways the ingredients of this platform.

A. The Flowchart of the GA Platform

Fig. 2 presents the flowchart of our GA platform to solve
the DNA_FA problem.

B. The GA Concepts of the Designed Platform

1) Initial population: Our GA platform design includes

the random, the greedy and the 2-opt heuristics strategies

which yielded to good performances as shown in [27][28][29].

The previous works showed that the computational time when

using the 2-opt and greedy initialization strategies was better

than when using the random way.

2) Fitness function: As the fitness function is repeatedly

applied to each individual of each generation it should be

relatively easy to compute and should also give an accurate

evaluation of the quality of each individual. We reported two

related fitness functions from the literature. The first one is a

simple fitness function that sums the overlap for each of the

adjacent fragment’s pairs, as expressed by the formula (4) in

[3].

 ∑
 (4)

where is the overlap between fragment i and
fragment i + 1. This function attempts to maximize the value
F1.

TABLE VI. GA OPERATORS AND THEIR VALUES

GA operator values

Population encoding Integer encoding, value encoding.

Population initialization Random initialization, greedy initialization, 2-opt heuristics initialization, and sequential sampling initialization.

Crossover operator

Multi-parents crossover, order crossover, cycle crossover, edge recombination crossover, partial mapped crossover, sequential

constructive crossover, greedy sequential constructive crossover, reverse greedy sequential constructive crossover, comprehensive

sequential constructive crossover, one-point crossover, highest frequency crossover, greedy highest frequency crossover, highest
frequency minimum cost crossover, uniform like crossover, randomized uniform like crossover, block crossover, uniform

partially mapped crossover, distance preserving crossover, cohesive crossover, and smart multi-point crossover.

Mutation operator
Inversion mutation, swap mutation, reciprocal mutation, exchange mutation, interchange mutation, combined mutation, and

adaptive mutation.

Selection operator Roulette wheel selection, tournament selection, greedy selection, and stochastic reminder selection.

Stopping condition Number of generations, CPU time, no improvement for number of iterations.

TABLE VII. THE EXISTING GA DESIGN AND EXPERIMENTAL SETTINGS FOR DNA_FA, TSP AND QAP

GA design and

experimental settings
DNA_FA TSP QAP

Population encoding

Integer number

(sequence of integer numbers, each of

which represents a city to be visited)

 integer numbers, value encoding (sequence of

some values such as real numbers, characters,

each of which represents a city to be visited)

Integer numbers

Population initialization Random, greedy, 2-opt heuristics Random, greedy, MARL Sequential sampling, random

Population size
Varies from 11 to 2500
Individuals.

Varies from 20 to 200 individuals. Varies from 30 to 200 individuals.

Selection Tournament. Roulette wheel, tournament, greedy.
Roulette wheel, stochastic

reminder selection.

Crossover
OX, ER, PMX,

one-point order. CX

SCX, ERX, GNX, PMX, smart multi point

crossover, order insert crossover.

SCX, OPX, SPX, HFX, GHFX,

HFMCX, MPX.

Mutation Inversion mutation, swap mutation
Reciprocal mutation, exchange mutation,

interchange mutation, inversion mutation

Reciprocal exchange mutation,

combined mutation, adaptive
mutation, swap mutation

Crossover probability Varies from (60% to 100%) Varies from (90% to 100%) 100%

Mutation probability 2% Varies from (1% to 20%) Varies from (5% to 15%)

Stopping condition No improvement for number of iterations. Optimal rout, number of generations. Number of generations, CPU time.

Number of runs From 5 runs to 30 runs From 10 runs to 30 runs. 20 runs.

Number of generations Varying from (1 K to 512 K) generations Varying from (20 to 10k) generations.
Varying from (5000 to 10k)

generations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

148 | P a g e

www.ijacsa.thesai.org

Fig. 2. GA Platform Design for the DNA Fragments Assembly Problem.

The second fitness function F2 is expressed by the formula
(5) in [3].

 ∑ ∑ | |

 (5)

The fitness function F2 considers the overlap between

adjacent fragments and the overlap between non-adjacent

fragments as well. However, the complexities of F1 and F2 are

different, F1 takes O() where F2 is of O() because all

pairs of fragments must be considered [3]. These two fitness

functions are included in the platform.

3) Selection operator: Several selection operators were

used for these three problems as shown in Table VI (e.g.,

roulette wheel selection, rank selection, elitist selection, and

tournament selection). As roulette wheel selection widely used

and consumes least amount of time, and tournament selection

can maintain diversity by giving an equal chance to all the

individuals to compete [39]; The roulette wheel selection and

the tournament selection are selected to be added to the

platform.

4) Crossover operator: Several crossover operators SCX,

CX, PMX, ERX, and Order Crossover are candidate to be

included in the platform. A special attention should be given

to the SCX crossover as it was one of the best operators for

the TSP and QAP problems and we predict same performance

in the DNA_FA context.

5) Mutation operator: The swap mutation operator with

its variants were widely used for DNA_FA, TSP, and QAP.

Combined and adaptive mutation was designed for the QAP

problem. The last one seems more suitable as it was

performant for the QAP problem.

VII. CONCLUSION

This paper aims to show why it is worth to investigate
genetic algorithms for solving the DNA fragment assembly
problem. We have provided a simple formal proof showing
the relationship between this problem and the famous TSP and
QAP problems enabling us to extract some similarities
between these three optimization problems. TSP and QAP
have been solved efficiently using GA algorithms designed
with advanced GA operators and tools. For this reason, we
exploited the extracted similarities between the DNA_FA
problem and the TSP and QAP problems to design an efficient
GA platform integrating several advanced operators used for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

149 | P a g e

www.ijacsa.thesai.org

TSP and QAP. Our future work is to implement the designed
GA platform and to conduct comprehensive experiments in
order to get the best combination of integrating the different
operators of GA to build a robust solver for the DNA_FA
problem.

REFERENCES

[1] G. Luque and E. Alba, “Metaheuristics for the DNA Fragment
Assembly Problem,” 2005, doi: 10.5019/j.ijcir.2005.28.

[2] Pavel A. Pevzner, Computational Molecular Biology An Algorithmic
Approach. The MIT Press, 2000.

[3] R. J. Parsons, S. Forrest, and C. Burks, “Genetic Algorithms for DNA
Sequence Assembly,” Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 1, pp.
310–318, 1993.

[4] J. Błażewicz, P. Formanowicz, M. Kasprzak, W. T. Markiewicz, and J.
Wȩglarz, “Tabu search for DNA sequencing with false negatives and
false positives,” Eur. J. Oper. Res., vol. 125, no. 2, pp. 257–265, Sep.
2000, doi: 10.1016/S0377-2217(99)00456-7.

[5] G. Minetti and E. Alba, “Metaheuristic assemblers of DNA strands:
Noiseless and noisy cases,” in IEEE Congress on Evolutionary
Computation, Jul. 2010, pp. 1–8, doi: 10.1109/CEC.2010.5586524.

[6] K. Huang, J. Chen, and C. Yang, “A Hybrid PSO-Based Algorithm for
Solving DNA Fragment Assembly Problem,” in 2012 Third
International Conference on Innovations in Bio-Inspired Computing and
Applications, Sep. 2012, pp. 223–228, doi: 10.1109/IBICA.2012.8.

[7] C. Blum, M. Y. Vallès, and M. J. Blesa, “An ant colony optimization
algorithm for DNA sequencing by hybridization,” Comput. Oper. Res.,
vol. 35, no. 11, pp. 3620–3635, Nov. 2008, doi:
10.1016/j.cor.2007.03.007.

[8] A. Hussain, Y. S. Muhammad, M. Nauman Sajid, I. Hussain, A.
Mohamd Shoukry, and S. Gani, “Genetic Algorithm for Traveling
Salesman Problem with Modified Cycle Crossover Operator,” Comput.
Intell. Neurosci., vol. 2017, pp. 1–7, 2017, doi: 10.1155/2017/7430125.

[9] Z. H. Ahmed, “An improved genetic algorithm using adaptive mutation
operator for the quadratic assignment problem,” in 2015 38th
International Conference on Telecommunications and Signal Processing
(TSP), Jul. 2015, pp. 1–5, doi: 10.1109/TSP.2015.7296481.

[10] Z. H. Ahmed, “Genetic Algorithm for The Traveling Salesman Problem
Using Sequential Constructive Crossover,” 2010.

[11] D. Bucur, “De Novo DNA Assembly with a Genetic Algorithm Finds
Accurate Genomes Even with Suboptimal Fitness,” in Applications of
Evolutionary Computation, vol. 10199, G. Squillero and K. Sim, Eds.
Cham: Springer International Publishing, 2017, pp. 67–82.

[12] R. J. Parsons, S. Forrest, and C. Burks, “Genetic algorithms, operators,
and DNA fragment assembly,” Mach. Learn., vol. 21, no. 1–2, pp. 11–
33, 1995, doi: 10.1007/BF00993377.

[13] A. B. Ezzeddine, S. Kasala, and P. Navrat, “Applying the Firefly
Approach To The Dna Fragments Assembly Problem,” p. 13.

[14] W. Wetcharaporn, N. Chaiyaratana, and S. Tongsima, “DNA Fragment
Assembly by Ant Colony and Nearest Neighbour Heuristics,” in
Artificial Intelligence and Soft Computing – ICAISC 2006, vol. 4029, L.
Rutkowski, R. Tadeusiewicz, L. A. Zadeh, and J. M. Żurada, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1008–1017.

[15] G. M. Mallén-Fullerton and G. Fernández-Anaya, “DNA fragment
assembly using optimization,” in 2013 IEEE Congress on Evolutionary
Computation, Jun. 2013, pp. 1570–1577, doi:
10.1109/CEC.2013.6557749.

[16] E. Çela, The Quadratic Assignment Problem, vol. 1. Boston, MA:
Springer US, 1998.

[17] E. Çela, “Problem Statement and Complexity Aspects,” in The
Quadratic Assignment Problem, vol. 1, Boston, MA: Springer US, 1998,
pp. 1–25.

[18] E. Çela, V. G. Deineko, and G. J. Woeginger, “The multi-stripe
travelling salesman problem,” Ann. Oper. Res., vol. 259, no. 1, pp. 21–
34, 2017, doi: 10.1007/s10479-017-2513-4.

[19] R. E. Burkard, E. Çela, P. M. Pardalos, and L. S. Pitsoulis, The
Quadratic Assignment Problem. .

[20] S. S. Juneja, P. Saraswat, K. Singh, J. Sharma, R. Majumdar, and S.
Chowdhary, “Travelling Salesman Problem Optimization Using Genetic
Algorithm,” in 2019 Amity International Conference on Artificial
Intelligence (AICAI), Feb. 2019, pp. 264–268, doi:
10.1109/AICAI.2019.8701246.

[21] W. Xueyuan, “Research on Solution of TSP Based on Improved Genetic
Algorithm,” in 2018 International Conference on Engineering
Simulation and Intelligent Control (ESAIC), Aug. 2018, pp. 78–82, doi:
10.1109/ESAIC.2018.00025.

[22] R. Liu and Y. Wang, “Research on TSP Solution Based on Genetic
Algorithm,” in 2019 IEEE/ACIS 18th International Conference on
Computer and Information Science (ICIS), Jun. 2019, pp. 230–235, doi:
10.1109/ICIS46139.2019.8940186.

[23] S. Sahni and T. Gonzalez, “P-Complete Approximation Problems,” J.
ACM JACM, vol. 23, no. 3, pp. 555–565, Jul. 1976, doi:
10.1145/321958.321975.

[24] Alfonsas Misevičius, Dalius Rubliauskas, “Performance of Hybrid
Genetic Algorithm for The Grey Pattern Problem♣,” Information
technology and controL, 2005.

[25] G. Minetti, G. Leguizamon, and E. Alba, “SAX: a new and efficient
assembler for solving DNA Fragment Assembly Problem,” p. 12, 2012.

[26] G. Minetti, E. Alba, and G. Luque, “Seeding strategies and
recombination operators for solving the DNA fragment assembly
problem,” Inf. Process. Lett., vol. 108, no. 3, pp. 94–100, Oct. 2008, doi:
10.1016/j.ipl.2008.04.005.

[27] J. Hughes, S. Houghten, G. M. Mallén-Fullerton, and D. Ashlock,
“Recentering and Restarting Genetic Algorithm variations for DNA
Fragment Assembly,” in 2014 IEEE Conference on Computational
Intelligence in Bioinformatics and Computational Biology, May 2014,
pp. 1–8, doi: 10.1109/CIBCB.2014.6845500.

[28] J. A. Hughes, S. Houghten, and D. Ashlock, “Restarting and recentering
genetic algorithm variations for DNA fragment assembly: The necessity
of a multi-strategy approach,” Biosystems, vol. 150, pp. 35–45, Dec.
2016, doi: 10.1016/j.biosystems.2016.08.001.

[29] Uzma and Z. Halim, “Optimizing the DNA fragment assembly using
metaheuristic-based overlap layout consensus approach,” Appl. Soft
Comput., vol. 92, p. 106256, Jul. 2020, doi:
10.1016/j.asoc.2020.106256.

[30] D. Bucur, “A stochastic de novo assembly algorithm for viral-sized
genomes obtains correct genomes and builds consensus,” Inf. Sci., vol.
420, pp. 184–199, Dec. 2017, doi: 10.1016/j.ins.2017.07.039.

[31] M. M. Alipour, S. N. Razavi, M. R. Feizi Derakhshi, and M. A. Balafar,
“A hybrid algorithm using a genetic algorithm and multiagent
reinforcement learning heuristic to solve the traveling salesman
problem,” Neural Comput. Appl., vol. 30, no. 9, pp. 2935–2951, Nov.
2018, doi: 10.1007/s00521-017-2880-4.

[32] H. Bennaceur and Z. Ahmed, “Frequency model based crossover
operators for genetic algorithms applied to the quadratic assignment
problem,” Int Arab J Inf Technol, vol. 14, pp. 138–145, 2017.

[33] Z. H. Ahmed, “A Simple Genetic Algorithm using Sequential
Constructive Crossover for the Quadratic Assignment Problem,” vol. 73,
p. 4, 2014.

[34] Zakir Hussain Ahmed, “Solving the Traveling Salesman Problem using
Greedy Sequential Constructive Crossover in a Genetic Algorithm,”
Fabruary 2020.

[35] Zakir Hussain Ahmed, “Genetic Algorithm with Comprehensive
Sequential Constructive Crossover for the Travelling Salesman
Problem,” IJACSA Int. J. Adv. Comput. Sci. Appl. Vol 11 No 5, 2020.

[36] Z. H. Ahmed, H. Bennaceur, M. H. Vulla, and F. Altukhaim, “A Hybrid
Genetic Algorithm for the Quadratic Assignment Problem,” p. 7.

[37] A. Misevicius and B. Kilda, “Comparison of Crossover Operators for
The Quadratic Assignment Problem,” 2015, doi:
10.5755/j01.itc.34.2.11999.

[38] R. E. Burkard, S. Karisch, and F. Rendl, “QAPLIB-A quadratic
assignment problem library,” Eur. J. Oper. Res., vol. 55, no. 1, pp. 115–
119, Nov. 1991, doi: 10.1016/0377-2217(91)90197-4.

[39] N. Saini, “Review of Selection Methods in Genetic Algorithms,” Int. J.
Eng. Comput. Sci., vol. 6, no. 12, Art. no. 12, Dec. 2017.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

150 | P a g e

www.ijacsa.thesai.org

APPENDIX

TABLE VIII. SYMBOLS AND NOTATIONS

Symbol Refer to

DNA_FA DNA Fragments Assembly problem.

TSP Traveling Salesman Problem.

QAP Quadratic Assignment Problem.

GA Genetic Algorithms.

A Adenine (A).

T Thymine (T).

G Guanine (G).

C Cytosine (C).

MPX Multi-Parents Crossover.

OX order crossover.

CX Cycle Crossover.

ERX Edge Recombination Crossover.

PMX Partial Mapped crossover.

SCX Sequential Constructive Crossover.

GSCX Greedy Sequential Constructive Crossover.

RGSCX Reverse Greedy Sequential Constructive Crossover.

CSCX Comprehensive Sequential Constructive Crossover.

OPX One-Point Crossover.

HFX Highest Frequency Crossover.

GHFX Greedy Highest Frequency Crossover.

HFMCX Highest Frequency Minimum Cost Crossover.

ULX Uniform Like Crossover.

RULX Randomized Uniform Like Crossover.

BX Block Crossover.

UPMX Uniform Partially Mapped Crossover.

DPX Distance Preserving Crossover.

COHX Cohesive Crossover.

SMX Smart Multi-Point Crossover.

MARL Multi-Agent Reinforcement Learning.

RRGA Recentering-Restarting Genetic Algorithm.

RRGA+IM Island Model Genetic Algorithm.

RRGA+RS Ring Species Genetic Algorithm.

PALS Power Aware Local Search.

NCBI The National Center for Biotechnology Information.

TSPLIB TSP library.

QAPLIB QAP library.

