
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

220 | P a g e

www.ijacsa.thesai.org

Modified K-nearest Neighbor Algorithm with

Variant K Values

Kalyani C. Waghmare
1
, Balwant A. Sonkamble

2

Department of Computer Engineering

Pune Institute of Computer Technology, Pune, India

Abstract—In Machine Learning K-nearest Neighbor is a

renowned supervised learning method. The traditional KNN has

the unlike requirement of specifying ‘K’ value in advance for all

test samples. The earlier solutions of predicting ‘K’ values are

mainly focused on finding optimal-k-values for all samples. The

time complexity to obtain the optimal-k-values in the previous

method is too high. In this paper, a Modified K-Nearest Neighbor

algorithm with Variant K is proposed. The KNN algorithm is

divided in the training and testing phase to find K value for every

test sample. To get the optimal K value the data is trained for

various K values with Min-Heap data structure of 2*K size. K

values are decided based on the percentage of training data

considered from every class. The Indian Classical Music is

considered as a case study to classify it in different Ragas. The

Pitch Class Distribution features are input to the proposed

algorithm. It is observed that the use of Min-Heap has reduced

the space complexity nonetheless Accuracy and F1-score for the

proposed method are increased than traditional KNN algorithm

as well as Support Vector Machine, Decision Tree Classifier for

Self-Generated Dataset and Comp-Music Dataset.

Keywords—Classification; K-nearest Neighbor (KNN)

classification algorithm; Indian Classical Music; Performance

measures; Heap data structure

I. INTRODUCTION

The K-nearest neighbors is a simple and effective
classification algorithm. The most important advantage is that
the classification results can be easily interpreted. Despite all
these advantages, it has shortcomings like high computational
cost, large memory requirement, and equal-weighted features
and in last deciding appropriate value of the input parameter K
[1]. There are many variants of the KNN algorithm proposed to
overcome these shortcomings. In [2, 3] the author proposed a
weighted KNN. In [2] first learns weights for different
attributes and according to the weights assigned, each attribute
would affect the process of classification that much only. In [3]
inverse of Euclidean distance is considered as the weight for
load forecasting. In [4] various distance functions are
implemented with KNN on a medical dataset with different
types of attributes. In [5] authors used various pitch
distributions as feature set for KNN with different distance
functions in Raga Identification.

In [6] authors pointed out that traditional KNN has
limitations to solve few problems like imbalance, noisy, sparse
dataset. The authors proposed Hybrid KNN (HBKNN) to sort
out these problems.

In KNN variations the researchers combined KNN with K-
means clustering algorithm to reduce the computation
complexity. In [7] authors applied this approach to improve
accuracy in air quality assessment. This approach worked well
for Big data as well in [8].

The basic assumption of the standard KNN is fixed K value
for all data points to classify. However, many datasets have
uneven distributions of data points, or even experts also not
able to predict optimal K value. So many researchers proposed
various methods for predicting k value. In [9] authors proposed
a local mean representation-based k-nearest neighbor classifier
(LMRKNN) method. In this method the representation-based
distances calculated by the categorical k-local mean vectors
instead of the simple majority vote for making the
classification decision. The LMRKNN is outperformed on
many real datasets downloaded from the University of
California, Irvine (UCI), and Knowledge Extraction based on
Evolutionary Learning (KEEL) repositories than traditional
KNN. In [10] authors proposed an algorithm called Adaptive
K-nearest neighbor (AdaKNN) algorithm which uses the
density and distribution of the neighborhood of a test point and
learns a suitable K for it with the help of artificial neural
networks. This strategy for rightly classifying the test point is
employed by Wettschereck and Dietterich in [11] in which, the
value of K is determined for different portions of input space
by applying cross-validation in its local neighborhood. The
Ada-KNN2 is proposed as an extension to the Ada-KNN
algorithm in which the neural network is replaced with a
heuristic learning method based on local density indicator of a
test point and information about its neighboring training points.

The large value of K would increase the computational cost
and time in case of large data sets. To solve this problem, in
[12] the variant value of K is proposed so that the early break
of the algorithm can be possible, which ultimately saves
computational time.

In [13] Adaptive KNN algorithm is developed by choosing
optimal k for each item by maximizing its expected accuracy
computed on similar points. The evaluation is done on three
different datasets of Geo-Spatial Data.

In [14] the author employed a correlation Matrix, to
reconstruct test data and assign different K values to the
different test data points. The proposed algorithm achieved
high accuracy and efficiency in applications of classification,
regression, and missing data assertion.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

221 | P a g e

www.ijacsa.thesai.org

The prediction of K value with the cross-validation method
is usually time-consuming. In [15] authors introduced the
training phase in the KNN classification algorithm and
proposed a k*Tree method to learn different optimal k values
for different test samples. The proposed K*Tree method
reduced the running cost of the test phase. The efficient
working of the proposed method is observed using 20 different
real datasets.

In ICM the lots of work done in Raga recognition using
KNN algorithm [5, 16, 17, 18, 19]. The researchers focused
either on Features or compared using the different classifiers.
The classifiers are used in their traditional form. In Data
Mining as the application changes, the keen thinking about the
parameters used in classifiers is required. The impact of these
parameters on the performance also need to be observed.

The paper is organized as follows: Section II briefs about
the proposed Modified Variant K Nearest Neighbor (MVKNN)
algorithm. Section III gives details of experimental results and
the analysis. Section IV Conclusion.

II. PROPOSED ALGORITHM

The Ragas is the central notion of Indian Classical Music.
Usually, researchers find Pitch Class Distribution (PCD)
features and apply classifiers. In literature authors used
traditional classifiers. The traditional KNN works as follows.

__

Traditional KNN Algorithm

__

Procedure: - To find a class label for test input using KNN

Input: - D the set of Test samples, T the set of training
samples,

Output: - P the class labels of test samples

__

Steps

1. SET „K‟ Value

2. Read training samples

3. Read test samples

4. P= { }

5. For each d in D

 5.1 For each t in T

 5.1.1 Dis = distance(d,t)

 Endfor

 Endfor

 5.2 Sort Dis in ascending order

5.3 Select first „K‟ entries

5.4 Find class labels of first „K‟ entries

5.5 Allocate class label of maximum in first „K‟ entries

In traditional KNN the K value is expected to provide in
advanced which is very impractical. In this section, a Modified
K Nearest Neighbor algorithm using variant K value for each
test sample is proposed.
__

Modified Variant K Nearest Neighbor (MVKNN)

algorithm using Min_Heap for Raga Identification

__

Procedure: - To find class label for test input

Input: - D the set of Test samples, T the set of training

samples,

Output: - P the class labels of test samples

__

Steps

1. Read training samples

2. Read test samples

3. P= { }

4. For each c in C do // C the count of samples belong to each class

in training set (T)

 4.1 C{c} = count (t) where class_label(t)==c

 Endfor

5. For each c in C do

 5.1 K{c} = round(C{c} *100/length(T))

 5.2 M_K = max(K)

 Endfor

6. For each t in T do

 6.1 For each t1=t+1 in T do

 6.1.1 Dis = distance(d,t)

 6.1.2 Add Dis in min_heap[t][t1]of size M_K{c}

 6.1.3 Add „t1‟ in neighbor_heap[t] of size M_K{c}

 6.1.4 Add Dis in min_heap[t1][t]of size M_K{c}

 6.1.5 Add „t‟ in neighbor_heap[t1] of size M_K{c}

 Endfor

 Endfor

7. For each k in K do

 7.1 Class_neighbor{1.k} =findClass(neighbor_heap)

 7.2 P{d} = max(count(Class_neighbor))

 7.3 TP[k,c]= countif(class_label(t)==class_label(P))

 Endfor

8. For each c in C do

 8.1 K_test[c] = max(TP[c,k])

 Endfor

9. For each d in D do

 9.1 For each t in T do

 9.1.1 T_label = class_label(t)

 9.1.2 Dis = distance(d,t)

 9.1.3 Add Dis in min_heap of size K_test{T_label}

 9.1.4 Add „t‟ in neighbour_heap of size K{T_label}

 Endfor

 9.2 Class_neighbors{1..K} = findClass(neighbour_heap{1..K})

 9.3 P{d} = max(count(Class_neighbour))

 Endfor

Note:

\\ findClass(n) returns class label of samples in mean-heap

\\ max() returns class label appearing in 'K' nearest neighbor

\\ count() returns number of training samples class label is equal to

predicted class label.

The traditional KNN does not have a training phase. It
calculates the distance between every sample in test data with
every sample in training data. The most nearest „K‟ neighbors
are identified for every sample based on distance. The class
having maximum count belong to „K‟ nearest Neighbor is
assign to test sample.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

222 | P a g e

www.ijacsa.thesai.org

In the proposed method algorithm is divided in two phases
training and testing. In step 4.1 the samples per class are
present in training data are calculated. The step5.1 calculates K
value for each class label considering its percentage
contribution in training data. In steps 6 and 6.1 the Euclidean
distance is calculated between every sample in training data
and stored in Min-Heap of size 2M_K. In this M_K is the
maximum size of Heap.

Ones the Min Heap is ready, in step 7.1 the class labels are
identified for every test sample from first entries in Min-Heap.
The class label with maximum count will be assigned to the
test sample in step 7.2. Step 7.3 counts the correctly classified
samples for every class and stored in the TP array. Where TP
gives True Positive values for each class. The steps 7.1 to 7.3
are executed for every distinct value of K which was calculated
in step 5.1. The value of K will vary from minimum to
maximum value of K for classes calculated in step 5.1. After
calculating TP for all different „K‟ values. The optimal 'K'
value for every class is calculated by finding maximum trup
positive count of every class. This completes the training
phase. In the best case for all classes, the same 'K' may come.
In the worst-case, every class will get different optimal 'K'.

In testing phase distance between every test sample and
training sample is calculated and the Min-Heap is constructed
for maximum optimal 'K' value which has got from the training
phase. The nearest neighbors are identified from the first K
entries in Min-Heap. The class label of maximum count of
neighbors is assigned to the test sample.

The computational complexity of KNN is one of the
limitations of KNN. In traditional KNN training phase is not
available. The Time complexity of traditional KNN is (
) () () The complexity for
calculating distance between every testing sample with training
samples is (). After calculating the distance between
samples the sorting algorithm with average-case complexity N
log2N is required to sort the distance array. So to sort D tuples
the sorting complexity will be () . To get „K‟
nearest neighbor from sorted data will be O(K) which will be
finally O(D*K) for D test samples. Even if instead of sorting
the Heap data structure is used to get 'K' nearest neighbor,
complexity will reduced to O(D*Tlog2T) + O(D*Klog2T).

In MVKNN training and testing phases are introduced. The
complexity of training phase is (O(T*(T+1)/2) + O(T*Tlog2K)
+ O(K*Klog2K))}. In the worst-case, number of distinct K
values, will become equal to the distinct value of percentage of
records belonging to the number of classes present in Dataset,
and in the best case, only the same K value is for all classes.
The complexity to calculate the distance between every
training sample with other training sample is O(T*(T-1)/2). To
find the K nearest neighbor first it will create „T‟ number of
Min-Heap of 2K size. So the complexity to create the T
number of Min-Heap with T elements of size 2K will be
O(T*Tlog2K). To get K nearest neighbor Delete_min operation
will be performed K times so its complexity will be
O(Klog2K).

The testing phase complexity will be O(D*T) +
O(D*Tlog2K) + O(Klog2K). The O(D*T) is complexity for
calculating distance between every test sample with training

sample. The O(D*Tlog2K) is complexity for creating Min-
Heap of K size for T distance values. The Heap will be
generated for every test sample.

The computation complexity of traditional KNN is higher
than the computation complexity of the testing phase. If the
complexity of both training and testing phase in MVKNN is
considered then it is higher than traditional KNN but as we
know the training of classifier is done only ones and are not
required to perform whenever testing is executed. So based on
this assumption the computational complexity of MVKNN
testing phase is lower than traditional KNN.

The computational calculations can be understand more
clearly by taking a small example.

Let us consider total samples 1000. Take a 70:30 ratio for
training and testing. So T= 700 and D= 300, the number of
classes present in the dataset are 8.

The total computations in traditional KNN will be.

Distance calculations = 210000.

Finding K nearest neighbor = 20, 32,949.

Total computations = 22, 42, 949.

The total computations in the training phase of MVKNN for

the worst case will be.

Distance calculations = 2, 45, 350.

Finding K nearest neighbor = 25, 14, 780.

Total computations = 27, 60, 130.

The total computations in the testing phase of MVKNN for the

worst case will be.

Distance calculations = 210000.

Finding K nearest neighbor = 10, 75, 379.

Total computations = 12, 85, 379.

This case study shows that computation for the training
phase in the worst-case nearly one and half times of
computations in traditional KNN. The testing computations are
almost half of the computations in traditional KNN. So this
work may conclude that MVKNN is computationally efficient
than traditional KNN provided training should be performed
occasionally.

The space complexity is also reduced. In traditional KNN
O(D*T) memory will be required to store the distance in sorted
array or Heap form. Wherein MVKNN space complexity for
the training phase is O(T*log2K) and testing phase
O(T*log2K).

III. EXPERIMENTAL RESULTS

The proposed algorithm is presented as an extension of the
traditional KNN algorithm. The performance of both
algorithms is compared with our data set and CompMusic
dataset.

In our dataset, 1450 samples of 8 different Ragas are
present sung by different singers. The samples are stored in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

223 | P a g e

www.ijacsa.thesai.org

.wav format with sampling frequency 44100Hz and 16bps. The
frame size is considered as 20ms with 25% overlapping.

CompMusic dataset [16, 17] includes full-length audio
recordings with the Raga label. It is a collection of several
artists' vocal as well as instrumental performances. The clips
were extracted from the live performances and CD recordings
of 13 artists. Total 129 tunes for 08 ragas are considered. The
dataset is downloaded as per instructions given in [20]. The
duration of each tune averages 5-6 minutes. The tunes are
converted to mono-channel, 44100 Hz sampling rate, 16 bit
PCM.

The Pitch values are calculated as mentioned in [21]. The
Pitch values are divided into 36 bins and constructed Pitch
Class Distribution of every sample. Fig. 1 show the PCD for
one sample of Raag Asavari. The PCD of the sample shows the
frequency count of every bin. This sample is sung in the
second octave so the Notes are present between bin numbers
13 to 25.

The PCD is calculated for all the samples and created a
feature vector to give input to traditional KNN and MVKNN
algorithm.

The experimentation for traditional KNN is done for
varying K values from 1 to sqrt(T). The elbow method is
applied and observed that after K=11, the accuracy is nearly
constant up to K=20. Similarly with Decision Tree and SVM
classifiers are also implemented with same datasets. Accuracy
and F1 score is calculate as per following equations 1 and 2
respectively [22]. The results are documented in Table I.

()

()
 (1)

()
 (2)

The PCD input is given to the MVKNN algorithm. For one
instance the dataset is split into 30% testing and 70% training
using train_test_split in Python. The training is performed for
k=10, 11, 12, 13, 14 distinct „K‟ values using Min-Heap. The
confusion matrix containing True Positive, True Negative,
False Positive and False Negative values is calculated for
given dataset. The True Positive values are observed in every
class for each „K‟. The „K‟ having maximum True Positives is
taken as an optimal K value for that class during the testing
phase. In Table II the optimal K values are shown for every
class for one instance.

Fig. 1. PCD for One Sample.

TABLE I. RESULTS OF DECISION TREE, SVM CLASSIFIER

 Self-Generated Data CompMusic Data

Decision Tree Accuracy 94.02% 86.33%

SVM Accuracy 84.74% 82.72%

Decision Tree F1-Score 79.30% 49.13 %

SVM F1-Score 38.99% 38.70%

TABLE II. OPTIMAL K VALUE FOR EACH CLASS

Class No. 1 2 3 4 5 6 7 8

K value 14 12 14 13 13 13 11 12

Table III shows a comparison of Accuracy and F1-score of
traditional KNN and MVKNN for self-Generated data and
CompMusic data. It is observed that Accuracy and F1-Score
are improved for both datasets.

TABLE III. RESULTS OF KNN AND MVKNN

 Self-Generated Data CompMusic Data

KNN Accuracy 89.46% 86.02%

MVKNN Accuracy 95.82% 89.45%

KNN F1-Score 57.90% 44.11 %

MVKNN F1-Score 83.28% 57.81%

The experimentation is done several times by taking an
equal number of samples belonging to each class as well as by
making imbalanced classes. It is observed that the variation in
„K‟ values always improved results than the same value of 'K'.

IV. CONCLUSION

In this paper, the survey of modified KNN algorithms is
done. The KNN algorithm for variant K values for every test
sample is proposed. The training phase is introduced to identify
the optimal K value. The use of the Min-Heap data structure of
'K' size has reduced the space complexity. The algorithm was
implemented using Indian Classical Music for classifying it
based on the Raga. The PCD features of two different datasets
are considered as an input vector. The Accuracy and F1-score
measures are considered for comparing performance. The
improvement in Accuracy and F1-score is observed using the
proposed MVKNN algorithm in comparison with traditional
KNN, Decision Tree and SVM. In Indian Classical Music, the
repeating patterns play a very important role for Raga
identification. In the future, the plan to apply the proposed
algorithm on high dimensional feature vector of repeating
patterns in a signal to improve the results of Raga
identification.

REFERENCES

[1] Alka Lamba and Dharmender Kumar, “Survey on KNN and its
Variants,” in International Journal of Advanced Research in Computer
and Communication Engineering Vol. 5, Issue 5, pp.430- 435, May
2016.

[2] Eui-Hong (Sam) Han, George Karypis and Vipin Kumar, “Text
categorization using weight adjusted k-nearest neighbour classification,”
in Text categorization using weight adjusted k-nearest neighbour
classification, Springer Berlin Heidelberg, 2001, pp. 53–65.

[3] Guo-Feng Fan, Yan-Hui Guo, Jia-Mei Zheng, and Wei-Chiang Hong,
“Application of the Weighted K-Nearest Neighbour Algorithm for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

224 | P a g e

www.ijacsa.thesai.org

Short-Term Load Forecasting,” Energies 2019, 12, 916;
doi:10.3390/en12050916, pp.1-19.

[4] Li-Yu Hu, Min-Wei Huang, Shih-Wen Ke, Chih-Fong Tsai, “The
distance function effect on k-nearest neighbour Classification for
medical datasets,” Springer Plus, Vol. 5, issue 1, Dec.2017, pp.1-9.

[5] Parag Chordia and Senturk Sertan, “Joint recognition of Raag and Tonic
in North Indian Music,” in IEEE Computer Music Journal, Vol. 37, No-
3, Sept. 2013, pp.82-98.

[6] Zhiwen Yu, Hantao Chen, Jiming Liu, Jane You, Hareton Leung, and
Guoqiang Han, “Hybrid k-Nearest Neighbour Classifier,” in IEEE
Transactions on Cybernetics, Vol. 46, No. 6, June2016, pp.1263-1275.

[7] YANG Rui-jun, DING Dan-feng, YAN Feng, “Application of Improved
KNN Algorithm in Air Quality Assessment,” in HPCCT 2019, June 22–
24, 2019, Guangzhou, China, pp.108-112.

[8] Hamid Saadatfar, Samiyeh Khosravi, Javad Hassannataj Joloudari, Amir
Mosavi and Shahaboddin Shamshirband, “A New K-Nearest Neighbors
Classifier for Big Data Based on Efficient Data Pruning,” in
Mathematics 2020, 8, 286.

[9] Jianping Gou, Wenmo Qiu, Zhang Yi, Yong Xu, Qirong Mao, and
Yongzhao Zhan, “ A Local Mean Representation-based K-Nearest
Neighbour Classifier,” ACM Transaction Intelligent System and
Technology, Vol. 10, No. 3, May 2019,pp. 1-29.

[10] Sankha Subhra Mullick, Shounak Datta, and Swagatam Das, “Adaptive
Learning-Based k-Nearest Neighbour Classifiers With Resilience to
Class Imbalance,” in IEEE Transaction on Neural Networks and
Learning systems, Vol. 29, No. 11, Nov.2018, pp.5713-5725.

[11] Dietrich Wettschereck and Thomas G. Dietterich, “Locally adaptive
nearest neighbour algorithms,” Adv. Neural Inf. Process. Systems
(NIPS), vol. 6, 1994, San Mateo, pp. 184–184.

[12] S. Ougiaroglou, A. Nanopoulos, A. N. Papadopoulos, Y. Manolopoulos,
and T. Welzer-Druzovec, “Adaptive k-Nearest-Neighbour Classification
Using a Dynamic Number of Nearest Neighbours,” in Advances in
Databases and Information Systems, Y. Ioannidis, B. Novikov, and B.
Rachev, Eds. Springer Berlin Heidelberg, 2007, pp. 66–82.

[13] Mark Kibanov, Martin Becker, Juergen Mueller, Martin Atzmueller,
Andreas Hotho, Gerd Stumme, “Adaptive kNN using Expected
Accuracy for Classification of Geo-Spatial Data,” in Proceedings of
Symposium on Applied Computing (SAC), 2017, pp.1-9.

[14] Shichao Zhang, Xuelong Li, Ming Zong, Xiaofeng Zhu, and Debo
Cheng, “Learning k for KNN Classification,” in ACM Transactions on
Intelligent Systems and Technology, Vol. 8, No. 3, jan. 2017, pp.1-19.

[15] Shichao Zhang, Xuelong Li, Ming Zong, Xiaofeng Zhu, and Ruili
Wang, “Efficient KNN Classification With Different Numbers of
Nearest Neighbours,” in IEEE Transactions on Neural Networks and
Learning Systems, vol. 29, no. 5, May 2018, pp. 1774-1785.

[16] Sankalp Gulati, J. Serra, V. Ishwar, S. Senturk, Xavier Serra, " Phrased
based Raga Recognition using vector space modelling," in IEEE
International Conference on Acoustics, Speech, and Signal Processing,
Shanghai, China 20th -25th Mar. 2016, pp.66-70.

[17] Sankalp Gulati, J. Serra, K. Ganguli, S. Senturk, Xavier Serra, “Time-
Delayed Melody Surfaces for Raga Recognition,” in Proceedings of 17th
International Society for Music Information Retrieval Conference, New
York, USA, 7th -11th Aug.2016, pp.751-757.

[18] Parag Chordia and Alex Rae, “Raga recognition using Pitch Class and
Pitch Class Dyad Distribution,” in 8th International Society of Music
Information Retrieval Conference, Vienna, Austria, 2007, pp. 431-436.

[19] Gopala Koduri, Sankalp Gulati, Preeti Rao, “ A survey of Raaga
Recognition techniques and improvements to the state-of-the-art,” in
Conference of sound and Music, Padova, Italy, 6th -9th July 2011, pp.1-4.

[20] https://compmusic.upf.edu/node/300.

[21] Kalyani C. Waghmare, Balwant A. Sonkamble, “Timbre with Note
Based Features for Improving Performance of Music Classification,” in
International Journal of Advanced Science and Technology, Vol. 29,
No. 3, (2020), pp. 10328 – 10338.

[22] Jiawei Han, Micheline Kamber and Jian Pei, “Data Mining: Concepts
and Techniques 3rd ed.,” in the Morgan Kaufmann Series in Data
Management Systems, Morgan Kaufmann Publishers, July 2011, ch-8,
sec-8.5, pp.-364-370.

https://compmusic.upf.edu/node/300

