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Abstract—DNA sequencing has recently generated a very 

large volume of data in digital format. These data can be 

compressed, processed and classified only by using automatic 

tools which have been employed in biological experiments. In this 

work, we are interested in the classification of particular regions 

in C. Elegans Genome, a recently described group of 

transposable elements (TE) called Miniature Inverted-repeat 

Transposable Elements (MITEs). We particularly focus on the 

four MITE families (Cele1, Cele2, Cele14, and Cele42). These 

elements have distinct chromosomal distribution patterns and 

specific number conserved on the six autosomes of C. Elegans. 

Thus, it is necessary to define specific chromosomal domains and 

the potential relationship between MITEs and Tc / mariner 

elements, which makes it difficult to determine the similarities 

between MITES and TC classes. To solve this problem and more 

precisely to identify these TEs, these data are classified and 

compressed, in this study, using an efficient classifier model. The 

application of this model consists of four steps. First, the DNA 

sequence are mapped in a scalogram’s form. Second, the 

characteristic motifs are extracted in order to obtain a genomic 

signature. Third, MITE database is randomly divided into two 

data sets: 70% for training and 30%for tests. Finally, these 

scalograms are classified using Transfer Learning Approach 

based on pre-trained models like VGGNet. The introduced model 

is efficient as it achieved the highest accuracy rates thanks to the 

recognition of the correct characteristic patterns and the overall 

accuracy rate reached 97.11% for these TEs samples 

classification. Our approach allowed also classifying and 

identifying the MITES Classes compared to the TC class despite 

their strong similarity. By extracting the features and the 

characteristic patterns, the volume of massive data was 

considerably reduced. 

Keywords—DNA scalograms; genomic signature; 

classification; deep learning; transfer learning; VGGNET; 
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I. INTRODUCTION 

DNA is a molecule composed of a long chain of four 
nucleotides: Adenine (A), Thymine (T), Cytosine (C) and 
Guanine (G) [1, 2]. It comprises a multitude of periodic 
structures; the majority of which have an unknown biological 
function. This molecule adopts a three-dimensional double-
helix having a curve shape [3]. In our work, the character’s 
string was mapped into a scalogram form, based on wavelet 

transform applied on a signal extracted from experimental 
measurements of the DNA curve. From these scalograms, we 
extracted patterns to classify some DNA regions. We chose, as 
model, the Caenorhabditis Elegans organism, which is an 
invertebrate combining simplicity and complexity. This 
duality makes it the most widely used versatile model for 
nearly all aspects of biological and genomic research. We also 
investigated a recently-described ET group, called Miniature 
Inverted-repeat Transposable Elements (MITEs). The latter 
were first discovered when studying the genes of several grass 
species including maize [4,5], rice [6] and barley [7]. They are 
genomic components abundant in many species, such as green 
pepper [8] and Arabidopsis [9, 10], as well as in several 
animal genomes including Caenorhabditis elegans [11], 
insects [12], humans [13] and zebrafish [14]. These species 
represent 1 % to 2% of the total sequence of the genomes. In 
these MITEs, we focused on four families, which are Cele1, 
Cele2, Cele14 and Cele42, because they have distinct 
chromosomal distribution patterns. In fact, Cele14 MITEs 
show clustering near the autosomes’ ends. In contrast, the 
Cele2 MITEs display an even distribution through the central 
autosome domains, with no evidence for clustering at the 
ends. These patterns complicate the classification tasks. So 
far, there is no model for the systematic classification of 4 
MITEs family. 

However, more extensive sequence relationships between 
the MITEs and the Tc / mariner elements were established for 
the first time in C. Elegans. Most MITE families of this 
genome share their endings (~ 20 bp to 150 bp) and their TSD 
sequence with, at least, one of the described Tc1 / mariner 
transposons in this species. The comparison of the Tc 
elements coding of transposase and the numerous MITE 
families suggests possible scenarios for the origin of MITE in 
the C. Elegans genome. 

As the distinction between the MITE families and the 
“transposable elements” (TC1, TC2, TC5) [15, 16, 17, 18] is a 
very difficult task, we thought about creating an efficient 
automatic model to classify them. In this paper, we introduce a 
new approach to classify DNA scalograms employing 
VGGNET while considering these scalograms as 
characteristic motifs of DNA. Our proposed method started 
first by converting the DNA string into DNA scalograms. 
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Afterward, a deep learning approach, that formed a Deep 
Neural Network (VGGNET) [19] for the prediction of 
database-derived tags from the original scalogram, was used. 
It allowed extracting high-level abstraction of characteristics 
from minimal preprocessing data. An evaluation of different 
CNN architectures namely, ResNet [37,38,39], inceptionv3 
[40,41], Mobilnet [35,36] and Xception [42] was performed. 
This assessment shows that transfer learning achieved top-
scoring performance. 

The paper is organized as follows. Section II describes the 
utilized materials (the MITE and Transposons families, etc.) 
and the applied methods (DNA coding, continuous wavelet 
transform and the VGGNET classification methodology). It 
also details the criteria considered to evaluate the model 
performance (Accuracy and Confusion Matrix). Section III 
presents the different proposed approaches applied to classify 
and identify the four MITEs families applying these 
classification techniques. Section IV presents the experiments 
carried out to classify the MITE classes of C. Elegans and 
discusses the obtained results. Finally, Section V presents 
some concluding remarks. 

II. MATERIALS AND METHOD 

A. Materials 

In this study, we focus on Caenorhabditis Elegans as an 
invertebrate combining simplicity and complexity, which 
makes it efficiently used to examine the important biological 
processes relevant to all eukaryotes. C. Elegans sequences 
were extracted from the National Center for Biotechnology 
Information (NCBI) public database [20]. Two sets of 
genomic data (the MITE dataset, composed of Cele1, Cele2, 
Cele14, and Cele42 [12], and non-ITE sequences which are 
the TEs TC1, TC2 and TC5 [15, 16, 17, 18]) are considered. 

The MITEs are small non-autonomous elements derived 
from transposons. Their identification is usually based on the 
presence of target site duplications and terminal inverted 
repeats [10,11,12]. These elements are structurally comparable 
to defective class II. They are characterized by their small size 
(usually varying between 100bp and 458 bp in length) and 
their lack of coding capacity for transposase. They carry 
Terminal Inverted Repeats (TIR) and two adjacent short direct 
repeats called Target Site Duplications (TSD). MITEs are 
often located near or within genes, where they can affect gene 
expression [13,14]. They are preferentially located in single or 
weak copy regions. Thus, they can be used as genetic markers, 
especially for large genomes with low gene content [21]. 
MITEs can be grouped into super-families based on their 
association with TEs because they have almost the same TIRs. 
A relation between a given MITE family and its potential 
source of transposase is often based on limited sequence 
similarity in TIRs. The choice of a given family of TC as a 
non-MITE is justified by the fact that MITEs themselves 
contain TC sequences; which increases considerably MITE 
recognition rates in most bioinformatics tools. The studied 
MITE families are: CELE 1, CELE 2, CELE 14 and CELE 42. 
They have complex and variable structures and sizes. 

Our database is composed of 7862 MITEs elements whose 
frequency occurrence in the C. Elegans genome of varies from 

20 to 458, according to the class of family they belong to 
(Table I). The variability of length, composition and structure 
of these regions complicate their identification. Table I shows 
that MITEs have also a non-uniform distribution in the 
chromosomes. In fact, chromosome I (Chr I) contains the 
largest number of MITEs which is equal to 1799 with a size 
varying between 29 base pair(pb) and 380pb. Table I also 
demonstrate a high variability characterizing the sequences of 
MITE family; hence it is challenging to introduce an 
automated algorithm to predict them. Table II reveals that the 
sequences of Transposon family (TC1, TC2, TC5) are 
completely different. Although TC1, TC2 and TC5 are 
structurally characterized by more reduced numbers, they have 
big sizes (usually varying between 12 and 2088 bp in length). 

NOcc is the number of occurrences of a class in 6 
chromosomes of C. Elegans, and Smin−max  represents the 
range of the minimum and maximum sizes and occurrences of 
a class in 6 chromosomes of C. Elegans. 

In this research work, DNA scalograms are used to 
characterize these regions and transfer learning is applied to 
classify them. 

TABLE I. NUMBER OF OCCURRENCES OF THE FOUR MITES FAMILIES IN 

6 CHROMOSOMES OF C. ELEGANS AND SIZE OF THE SCALOGRAMS OF EACH 

CLASS OF THESE FAMILIES 

 CELE1 CELE2 CELE14 CELE42 

Chr I 
𝐍𝑶𝒄𝒄 509 643 761 336 

𝐒𝒎𝒊𝒏−𝒎𝒂𝒙 [32-371] [36-380] [29-201] [33-251] 

Chr II 
𝐍𝑶𝒄𝒄 148 578 438 101 

𝐒𝒎𝒊𝒏−𝒎𝒂𝒙 [45-372] [34-367] [30-202] [34-247] 

Chr III 
𝐍𝑶𝒄𝒄 362 714 429 179 

𝐒𝒎𝒊𝒏−𝒎𝒂𝒙 [22-382] [37-363] [30-207] [30-245] 

Chr IV 
𝐍𝑶𝒄𝒄 179 430 360 129 

𝐒𝒎𝒊𝒏−𝒎𝒂𝒙 [49-373] [38-379] [43-445] [37-251] 

Chr V 
𝐍𝑶𝒄𝒄 366 394 677 178 

𝐒𝒎𝒊𝒏−𝒎𝒂𝒙 [20-458] [36-363] [34-225] [47-273] 

ChrX 
𝐍𝑶𝒄𝒄 16 56 268 11 

𝐒𝒎𝒊𝒏−𝒎𝒂𝒙 [74-301] [40-317] [40-191] [54-237] 

Total occurrence 1180 2815 2933 934 

Total 7862  

TABLE II. NUMBER OF OCCURRENCES OF TRANSPOSAN FAMILIES IN 6 

CHROMOSOMES OF C. ELEGANS AND SIZE OF THE SCALOGRAMS OF EACH 

CLASS OF THESE FAMILIES 

 TC1 TC2 TC5 

Chr I 
𝐍𝑶𝒄𝒄 36 24 29 

𝐒𝒎𝒊𝒏−𝒎𝒂𝒙 [50-1610] [53-230] [54-1606] 

Chr II 
𝐍𝑶𝒄𝒄 42 19 26 

𝐒𝒎𝒊𝒏−𝒎𝒂𝒙 [62-1611] [47-2074] [24-1611] 

Chr III 
𝐍𝑶𝒄𝒄 21 15 22 

𝐒𝒎𝒊𝒏−𝒎𝒂𝒙 [111-1610] [61-157] [12-1608] 

Chr IV 
𝐍𝑶𝒄𝒄 23 31 34 

𝐒𝒎𝒊𝒏−𝒎𝒂𝒙 [15-1610] [12-154] [35-844] 

Chr V 
𝐍𝑶𝒄𝒄 91 33 62 

𝐒𝒎𝒊𝒏−𝒎𝒂𝒙 [64-1611] [39-2088] [28-1611] 

ChrX 
𝐍𝑶𝒄𝒄 83 52 28 

𝐒𝒎𝒊𝒏−𝒎𝒂𝒙 [33-1610] [12-155] [64-1631] 

Total occurrence 296 174 201 

Total 671 
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In bio-informatics field, two sequences are considered 
homologous if they come from a common ancestor. Multiple 
sequence alignment techniques allow specifying the 
homologous regions of each sequence. Fig. 1, shows that the 
DNA scalograms highlight DNA homology, a degree of 
identity or similarity, between scalograms of different regions 
of CELE2 and similar homology for different elements of 
TC2. It also reveals a slight difference between the CELE2 
and TC2 images [12,21]. 

B. Methods 

To classify the MITE families, it is necessary to 
parameterize the DNA sequences regardless to their 
heterogeneity. Thus, we choose the DNA mapping into image 
based on scalograms. For this reason, we use PNUC coding 
technique [22, 23] and Continuous Wavelet Transform (CWT) 
[24, 25, 26] to highlight features. Then, we extract these 
features from DNA images using VGGNet, a powerful CNN 
architecture, pre-trained on ImageNet. Finally, a classification 
is performed based on deep learning model (VGG19 and 
VGG16) [19, 27]. 

CELE2 Scalogram’s CLASS TC2 Scalogram’s CLASS 

Seq1CELE2: 2771434-2771547 Seq1TC2: 7145- 7259 

  
Seq2CELE2: 2772138- 2772243 Seq2TC2: 4083137-4083248 

  
Seq3CELE2: 2826432-2826540 Seq3TC2: 9172480-9172590 

  
Seq4CELE2: 80842-80948 Seq4TC2: 3536753-3536867 

  

Fig. 1. Samples taken from the CELE2 Scalogram Class and TC2 Scalogram 

Class. 

Transfer Learning consists first in training a base network 
on a dataset and then transferring the learned features to a 
second target network to train them to a target dataset. 

1) PNUC coding technique and Wavelet Transform: For 

our classification technique, we consider DNA images. These 

images represent scalograms which are energy distributions 

obtained by taking the square module of the continuous 

wavelet transform applied to sequences encoded in PNUC [22, 

23]. Considering the square module, time-frequency 

localization is enhanced, and a new database of DNA 

scalograms is generated. 

PNUC coding is based on curvature measurements. This 
curvature is directly related to the nucleosome structures 
presence. Applying this technique, the pairing of the two DNA 
helix (A-T and CG) along the helix is taken into account. 
PNUC coding consists in assigning, to each codon or 
trinucleotide, the numerical value given by the experimental 
values associated with each codon [23]. 

For example, the SDNA is replaced by the numerical 
sequence. 

SDNA= ‘AAG TTT CTT GTG AAA ACG TGC AGC’ 

The Pnuc coding of SDNA is : 

CSDNA = ‘7.3 0 7.3 9.2 0 7.6 8.5 1’ 

DNA has a multitude of periodic structures and the 
wavelet analysis was proposed to reveal the local and 
frequential properties of the DNA periodic motifs. The 
analysis based on the Morlet Complex wavelet allows 
detecting the different periodicities in various types of C. 
Elegans chromosomal DNA [24, 25, 26]. 

Wavelet analysis relies essentially on the signal’s 
decomposition into a sum of time-frequency atoms. The latter, 
called "wavelets", are obtained by dilating or contracting a 
Mother Wavelet ψ (t) [28, 29] and translatin g it along the 
time axis. The versions obtained after these transformations 
are noted ψ [(t-b) / a]. 

The dilation and compression of a mother wavelet depend 
on a scaling factor (a), while the translation is ensured using a 
translation parameter (b). The wavelet family of scales and 
positions is then generated by the following expression: 

 𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓∗ (

𝑡−𝑏

𝑎
) , 𝑎 ≻ 0, 𝑏 ∈  ℝ            (1) 

In general, the wavelet transform of a signal f(t) is given 
by Equation (2): 

 𝑇𝜓(𝑓)(𝑎, 𝑏) =
1

√𝑎
∫ 𝑓(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
)𝑑𝑡

∞

−∞
           (2) 

where the symbol * indicates the complex conjugate. The 
obtained Tψ (a, b) numbers are called coefficients of wavelets. 
The Morlet Complex wavelet is the most efficient technique 
applied to analyze and characterize DNA structures [24] and 
presented as an exponential-modulated Gaussian envelope. It 
is defined by the following equation: 

 𝜓(𝑡) =  𝜋−
1

4 (𝑒𝑖𝜔0𝑡 − 𝑒−
1

2
𝜔0

2
) 𝑒− 

1

2
𝑡2

           (3) 
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where the parameter ω0 designates the number of 
oscillations of the mother wavelet. It must be greater than 5 to 
satisfy the eligibility requirement. Using M scales, we obtain a 
matrix of N × M coefficients representing the time-frequency 
plane where N is the length of the analyzed signal. The 
modulus of wavelet coefficients | Tψ (a, b) | is called 
"scalogram". 

In our study, the performed analysis consists in applying a 
continuous wavelet transform based on the complex Morlet 
wavelet [24, 25, 26]. This analysis highlights the periodicities 
that reside in the DNA (represented by its inverse the 
frequency on the y axis) with precision on location in the 
nucleotides position (equivalent to time in the x axes). The 
result of analysis generates scalograms which are the images 
used in the classification. 

2) VGGNET model for classification of DNA scalograms: 

We are interested in studying the VGGNET which is a 

convolutional neural network trained on more than one million 

images from the ImageNet database [30]. 

We use transfer learning to classify the DNA scalograms. 
The main idea of transfer learning based on very deep neural 
networks is to apply a pre-trained deep learning model, 
previously trained on a large-scale dataset such as ImageNet. 
Containing 1.2 million images with another 50,000 images for 
validation and 100,000 images for testing, on 1000 different 
categories, and re-purpose, to handle an entirely different 
problem [31]. 

The used model treats the input image. Then, it outputs the 
vector containing 1000 values. This vector represents the 
corresponding class classification probability. If a model is 
utilized to predict that an image belongs to class 0, class 1, 
class 2, class 3, class 780, class 999 with probability 1, 0.05, 
0.05, 0.03, 0.72, 0.05, respectively and the remaining classes 
with probability 0, the classification vector of this model 
will be: 

�̂� =

[
 
 
 
 
 
 
 
 
 
 

𝑦0̂ = 0.1
0.05
0.05
0.03

.

.

.
𝑦780̂ = 0.72

.

.
𝑦999̂ = 0.05]

 
 
 
 
 
 
 
 
 
 

 

Softmax function, defined below, is used to ensure that 
these probabilities add to 1: 

 𝑃(𝑦 = 𝑗|𝜃(𝑖)) =  
𝑒𝜃(𝑖)

∑ 𝑒
𝜃
𝑘
(𝑖)

𝑘
𝑗=0

             (4) 

where: 

𝜃 = 𝑤0  𝑥0 + 𝑤1 𝑥1 + ⋯+ 𝑤𝑘 𝑥𝑘= ∑ 𝑤𝑖𝑥𝑖
𝑘
𝑖=0 =𝑤𝑇𝑥 

After learning certain features from a large dataset 
(ImageNET), they are used by VGGNet model as a base to 
learn the presented classification problem. As demonstrated in 
Fig. 2, we employ a popular and reliable CNN architecture 
called VGGNet with 16 convolutional and 3 fully-connected 
layers [27]. The width of convolutional layers (the number of 
channels) is rather small, starting from 64, in the first layer, 
and increasing by a factor of 2, after each max-pooling layer, 
up to 512. The input of the CNN is a fixed-size 224 x 224 
RGB image. Each image passes through a stack of 
convolutional (conv.) layers. Subsequently, the convolution 
stride is added such that the spatial resolution will be 
preserved after convolution, i.e. the padding is considered also 
in Conv. layers. Spatial pooling is carried out by five max-
pooling layers, which follow some but not all of the Conv. 
Layers. Max-pooling is performed over a specific pixel 
window; with stride. A stack of Conv. Layers, having different 
depths in various architectures, are followed by three fully-
connected (FC) layers: each of the two first layers has 4096 
channels, while the third one performs the classification of 2 
after each max-pooling layer, up to 512 [32,33]. 

 

Fig. 2. Overview of the VGG16 Layer Structure (Left) and Corresponding 

Parameters (Right). 

III. PROPOSED APPROACH 

The adopted methodology includes three steps. Fig. 3 
represents the flowchart describing our proposed approach 
whose application consists in: 

¶ Extracting the MITEs sequences (CELE1, CELE2) and 
the TEs (TC1, TC2 and TC5) of all the chromosomes of 
C. Elegans from the NCBI database. The extraction 
phase can be divide into the following two sub-steps: 

o Generating the corresponding PNUC sequences 

to convert the DNA string into a 1D signal. 

o Applying Continuous Wavelet analysis to 

transform the signal to scalogram images. 

¶ Extracting features using convolutional neural networks 

¶ Using the VGGNET model to classify the studied 
sequences. 

A. Creating MITE Signal Database 

In the first step of our methodology, we extract the entire 
DNA sequences corresponding to the C. Elegans genome from 
the NCBI database [20]. Then, we apply PNUC coding on all 
chromosomes (6 chromosomes). Thereby, a chromosomal 
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signal database (1D signal) is created after applying the 
module on the square of the continuous wavelet transform [24, 
25, 26], which enhances time-frequency localization and 
generates a new DNA database of DNA containing images (or 
scalograms) which represent energy distributions). 

B. Extraction of Features using Convolutional Neural 

Networks 

Several models were used to extract the characteristics of 
AND scalograms in the field of deep learning. In this work, 
we use a model adapted for their extraction (Fig. 4). These 
Different values of independent variables are also considered 
as the input of the classifier to predict the corresponding class 
to which the independent variable belongs. The architecture of 
introduced model is presented in Table III. 

As shown in Fig. 4, the shape of the input image is (224, 
224, 3) and the last layer produced from VGGNet has the 
shape (7, 7, 512). This means that VGGNet returns a feature 
vector of 7×7×512 = 25088 features. In order to perform 
transfer learning with VGGNet, we first save the extracted 
features (bottleneck features) from the pre-trained model. 
Then, top model is trained to classify our data using the saved 
bottleneck features. Finally, we combine our training data and 
the VGGNet model with the top model to predict DNA Pattern 
of scalograms [34]. 

 

Fig. 3. Flow Chart of the Proposed Approach. 

TABLE III. CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE 

Feature value 

Convolution layer 3x3 

Max pooling layer 2x2 

Convolution stride 1 pixel 

Padding 2 pixel 

Rectification ReLU 

Fac layer softmax 

Fac layer nodes 4096 

Total layers 19 Layers 

 

Fig. 4. Feature Extraction by VGG19 Model and Corresponding Parameters. 

C. Classification Algorithm 

For our classification algorithm, we use the third 
convolutional layer containing only two channels (one for 
each class). The final layer is the soft-max layer. All hidden 
layers are equipped with the non-linearity rectification 
[19,27]. For each image X of study type T in the training set, 
the weighted binary cross-entropy loss is optimized. The 
VGGNet specifications are described in Fig. 3. 

The major limitation of VGGNet lays in the fact that this 
architecture necessitates huge memory requirements. Because 
of the number of fully-linked nodes and its depth, the size of 
VGGNet is equal to 574 MB, which complicates its use as 
features extractor. 

We also employ the VGG16 and compare its results with 
those provided by the VGG19. The VGG-16 is a 16-layer 
CNN developed by Simon et al. for image recognition in the 
2014 ImageNet large scale visual recognition challenge 
(ILSVRC) [19]. The filters 3 × 3 are employed for all 
convolutional layers. This network accepts the input image 
with a dimension of 224 × 224. The image passes through a 
sequence of 16 convolutional layers. A multilayer perceptron 
(MLP) classifier, including three fully connected (FC) layers 
and the convolutional layers, is utilized in the classification 
step. The Rectified linear unit (ReLU) layers and max-pooling 
layers are also used in the whole network to prevent overfitting. 

To evaluate our classification model, we apply the 
classification rate calculation and the confusion matrix as 
classification criteria. The performance of the proposed 
approach is tested in terms of accuracy, recall, precision, 
sensitivity, specificity, F-measure (F1), Confusion matrix 
illustrated in Fig. 5 and loss functions value to select features 
of DNA scalograms. These measures are described below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
             (5) 

 Recall =
TP

TP+FN
              (6) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (7) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝑇𝑁
             (8) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
             (9) 

𝐹1 = 2 ×
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
           (10) 
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Fig. 5. Confusion Matrix. 

where "TP" (True Positives) refers to the CELE samples 
correctly labeled by the classifier, "TNs" (True Negatives) are 
the Transposon samples correctly labeled by the classifier, 
"FPs" (False Positives) denotes the CELE scalograms 
incorrectly labeled as Transposons TC and "FNs" (False 
Negatives) are the transposon samples mislabeled as CELE. 

The two most crucial and most intensively-employed loss 
functions are: the cross entropy function and the MSE 
function. Both of them are applied in regression and 
classification problems, respectively. The can be formulated 
as follows: 

 ℒ𝑀𝑆𝐸(𝑾) =
1

𝑛−1
∑ (y

i
-y

î
)
2n-1

i=0           (11) 

 ℒcross-entropy(W)=-∑ ∑ 𝑦𝑖,𝑐 log𝑦𝑖,�̂�
M
c=0

n-1

i=0           (12) 

where n is the total number of samples in the dataset, M 

denotes the number of classes with in the dataset, yi,c  
designates a binary indicator indicating if class c represents 

the correct classification for sample i and  yi,ĉ  refers to the 
predicted probability of sample i which belongs to class c. The 
first previously-mentioned loss produces high loss when the 
predicted value is close to the true value; whereas the cross-
entropy loss punishes uncertain prediction probabilities. 

IV. RESULTS 

The main objectives of this study are to characterize MITE 
families and distinguish them from other regions. For this 
purpose, genomic sequences used in this work are composed 
of two parts: a part containing MITE family sequences 
(CELE1, CELE2, CELE14 and CELE42) and another one 
including TC1, TC2, TC5. 

The examination of the structure and distribution of 
MITEs reveals that the number of appearances of these 
elements are variable and that the TC family number of 
scalograms is reduced compared to them, which complicates 
the MITE classification process. To solve this problem of 
unbalanced data, we enlarge the database of TC and MITEs 
signals by grouping all the elements of the TC family in the 
same class and applying a binary classification. Here, the idea 
is based on the identification of the MITE family of elements 
(CELE1 CELE2 CELE14 and CELE42) with respect to other 
non-MITE families (Tc1, Tc2, Tc5). Thereafter, this dataset is 
split into two parts 70% for training and 30% for test). Then, 
VGGNET is applied with softmax activation mode. The 
Recognition process consists of two stages: features extraction 
and features recognition. The performance of the proposed 
system strongly depends on the choice of the extraction 
method. 

The experimental results demonstrate that most of the 
CELE elements are correctly recognized with the Tc elements. 
Obviously, the VGG16 trained model achieves an accuracy 
rate of 97.11% for CELE14 identification, 93.38% for CELE1 
identification, 91.79% for CELE42 identification and 89.66% 
for CELE2 identification. Fig. 6 illustrates the accuracy of the 
VGG-16 model over the Test images. 

Similarly, Fig. 8 illustrates the accuracy rate obtained by 
applying the VGG-19 model on the validation dataset. The 
trained model reaches an accuracy rate equal to 96.44%, 94.52 
%, 91.05 and 90.17 for the identification of CELE14, 
CELE42, CELE1 and CELE2, respectively. 

Fig. 6, 7, 8 and 9 demonstrate that the learning and 
validation curves are remarkably enhanced for VGG16 and 
VGG19 Models. It is also clear that the network converges 
from the second epoch and, with the rise in the epochs, and the 
cross entropy loss tends to zero. 

These figures represent the accuracy curves of train set and 
those of validation set. Each point of the precision curve 
corresponds to the accurate prediction rate for train or 
validation images. The accuracy curve follows similar smooth 
processing as that adopted by the loss curve. It is obvious that 
the train set accuracy and the validation set accuracy approach 
100% after 2 epochs. 

Fig. 6 and 7 show that the VGG16 model accuracy value is 
higher, compare to that of VGG19 model. However, this is not 
true depending on the element to be identified. Thus, the 
accuracy average is computed to classify the 4 MITE families. 
The accuracy rate attains 92.98, for VGG16, and 93.045, for 
VGG19, revealing that VGG16 is more effective in the 
classification of MITES scalograms, compared to VGG19 
model. 

Additionally, testing results are given in Fig. 10 and 11 
representing the Confusion Matrix for the validation data. 

The performance measurement is with four different 
combinations of predicted and target classes which are the true 
positive, false positive, false negative, and the true negative. 
In this format, the number and percentage of the correct 
classifications performed by the trained network are indicated 
in the diagonal. 

The confusion matrix shows that the used models clearly 
differentiate the families of MITE, compared to TC1, TC2, 
TC5, despite the similarities between the CELE and TC1, 
TC2, TC5, as cited in the first part (Section 3) of this paper 
[21]. 

As seen in Fig. 10, all the classes of MITEs are correctly 
classified. Our model, using VGG16, recognizes CELE2 with 
a very promising rate of 99.52%, and 99.19%, for CELE14 
identification, 96.48%, for CELE1 identification, and 86.19% 
for identification of CELE42. 

Comparison of our models with other CNN architectures 

Similarly, a comparative analysis of the results obtained by 
the VGGNET framework, employing four well-known 
methods, was carried out to shed light on the efficiency of 
VGGNET in identifying the four MITE families, as given in 
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this table (Table IV). We show that Mobilnet [35,36], Resnet 
[37,38,39], InceptionV3 [40,41] and Xception [42] give 
average accuracy rates (Acc.) of 88.85%, 86.92%, 86.23% and 
88.06%, respectively, to classify the four MITE families. 

 

Fig. 6. Accuracy Rate Obtained for the Identification of Mites Families to 

Transposon Families DNA Scalograms VGG16. 

 

Fig. 7. Accuracy Rate Obtained for the Identification of Mite Family to 

Transposon Family DNA Scalograms VGG19. 

 

Fig. 8. Loss for the Identification of Mite Family to Transposon Family 
DNA Scalograms VGG16. 

 

Fig. 9. Loss for the Identification of Mite Family to Transposon Family 
DNA Scalograms VGG19. 
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Fig. 10. Confusion Matrix for the Identification of MITE Families to 

Transposon Family of DNA Scalograms VGG16. 

 

Fig. 11. Confusion Matrix for the Identification of MITE Families to 

Transposon Family of DNA Scalograms VGG19. 

However, findings obtained using the VGGNET provide 
the highest accuracy of 97.11% for the identification of the 
CELE1 element. These results reveal that our architectures 
more powerful and promising than other deep models 

Table IV demonstrates also the performance achieved by 
other CNN architectures [43,44] using Loss, Recall (Rec.), 
Precision (Pre.), sensitivity (Sens.), specificity (Spec.) and F1 
metrics. 

The proposed approach shows high performance by 
achieving accuracy, loss, recall, precision and f1-score of 
97.11, 09.03, 99.18, 97.34, and 85.64, respectively. 

TABLE IV. SPLATTING BASED COMPARATIVE WITH OTHER CNN 

ARCHITECTURE TO IDENTIFY CELE 1, CELE2, CELE14 AND CELE42 

CELE1 AcC. LosS REc Pre. Sen. Spec. F1 

VGG16 93,38 18.25 98.48 92.63 74.71 80.98 77.71 

VGG19 91.05 20.04 98.73 89.67 76.81 72.39 74.53 

Resnet152 83.89 35.92 97.97 82.55 82.72 49.69 62.08 

Mobilnet 84.97 33.67 85.60 92.62 71.36 83.43 76.92 

InCEPtionV3 85.86 34.26 99.24 83.80 83.79 53.37 65.2 

Xception 88.01 29.28 95.20 88.70 76.62 70.55 73.45 

CELE2 

CELE2 AcC. LosS REc Pre. Sen. Spec. F1 

VGG16 89.66 23.84 99.51 88.79 87.90 52.14 65.45 

VGG19 90.17 23.58 98.71 89.88 86.88 57.66 69.25 

Resnet152 84.69 34.32 100 83.80 93.52 26.38 41.15 

Mobilnet 86.47 20.578 100 85.41 91.59 34.96 50.60 

InCEPtionV3 86.66 34.66 93.23 90.04 85.65 59.50 70.21 

Xception 87.11 33.97 98.71 86.82 89.75 42.94 58.08 

CELE14 

CELE14 AcC. LosS REc Pre. Sen. Spec. F1 

VGG16 97.11 09.03 99.18 97.34 83.65 87.73 85.64 

VGG19 96.44 07.93 99.18 96.56 84.23 84.04 84.13 

Resnet152 93.56 14.27 99.72 92.92 87.30 65.64 74.93 

Mobilnet 90.45 12.536 100 89.56 90.55 47.23 62.07 

InCEPtionV3 91.56 21.28 99.45 91.06 88.96 55.82 68.59 

Xception 94.56 15.30 99.18 99.45 85.91 73.61 79.28 

CELE42 

CELE42 AcC. LosS REc Pre. Sen. Spec. F1 

VGG16 91.79 12.99 86.19 100 55.82 100 71.64 

VGG19 94.52 14.61 92.46 98.22 58.15 97.54 72.86 

Resnet152 85.57 26.66 98.32 81.13 68.31 66.87 67.58 

Mobilnet 93.53 33.62 98.32 91.43 62.50 86.50 72.56 

InCEPtionV3 80.84 26.93 99.58 75.79 73.23 53.37 57.83 

Xception 82.58 28.48 71.54 98.84 51.50 98.77 67.70 

Table V presents the existing works based on supervised 
machine learning algorithms used in the classification step and 
compares the results obtained employing DNA sequences 
database. As shown in this table, several studies utilized CNN 
(Convolutional neural networks) [47], C-KNN [45] and 
support vector machines utilized [46]. 

Nevertheless, successful categorization rate ranges 
between 70% and 90%. Obviously, a successful categorization 
relies mainly on the entry variability. The majority of the 
studies listed in Table V and those based on the machine 
learning dealt with correctly detecting and classifying the 
highest number of defects applying features extractions and 
classifiers. Measures reported in the literature (classification, 
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accuracy, number of features and computation time) are also 
compared. They demonstrate that transferred VGGNET 
models attain the highest accuracy rate. The major benefit of 
pre-trained VGGNET models, compared to those applied in 
the existing studies, lays in the fact that they do not necessitate 
a feature extraction mechanism or an intermediate feature 
selection phase. 

TABLE V. COMPARISON OF THE TRANSFER LEARNING-BASED VGGNET 

MODELS WITH THE EXISTING WORKS 

Study Method Accuracy 

[43] Nguyen, N.G. 

[44] Amerah Kassim 

DNA Sequence 

Classification by 

CNN 

82 % 

[45] Mochammad Anshori LDA-SVM 92.7% 

[46]Alhersh C-KNN 73.72 % -91.82% 

Proposed Approch 97.11% 

V. CONCLUSION 

In this paper, we focused on DNA images. Our main 
purpose is to identify the MITES Families from Transposan 
families and classify them. The DNA images represent the 
scalograms. In fact, the ATCG chain was first converted, 
using a PNUC coding technique, into a signal based on the 
experimental DNA curve measures. Then, the Continuous 
Wavelet Transform by Morlet Complex wavelet allowed 
converting this signal into particular images. Thirdly, a 
selection of features was performed applying Transfer 
learning approach. Finally, each produced feature set was 
tested by several classifiers to validate the proposed model. 

This approach showed high performance by achieving 
accuracy, loss, recall, precision and f1-score of 97.11%, 09.03, 
99.18, 97.34, and 85.64, respectively. The obtained results are 
the highest among all known published works on the same 
dataset, even if compared to other convolutional network 
models. In fact, the classification rate obtained in previous 
works did not exceed 90%. 
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