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Abstract—Semantic segmentation methods are used in au-
tonomous car development to label pixels of road images (e.g.
street, building, pedestrian, car, and so on). DeepLabv3+ and
PSPNet are two of the best performance semantic segmentation
methods according to Cityscapes benchmark. Although these
methods achieved a very high performance with clear road
images, yet these two methods are not tested under severe imaging
conditions. In this work, we provided new Cityscapes datasets
with severe imaging conditions: foggy, rainy, blurred, and noisy
datasets. We evaluated the performance of DeepLabv3+ and
PSPNet using our datasets. Our work demonstrated that although
these models have high performance with clear images, they show
very weak performance among the different imaging challenges.
We proved that the road semantic segmentation methods must
be evaluated using different kinds of severe imaging conditions to
ensure the robustness of these methods in autonomous driving.

Keywords—Semantic segmentation; deep learning; cityscapes;
DeepLabv3+; PSPNet

I. INTRODUCTION

Autonomous vehicles are vehicles that can move with
little or no human interaction. It collects all the environment
surrounding information to simulate human behavior in driv-
ing safely. Autonomous vehicles rely on sensors, actuators,
driving algorithms, machine learning technologies, and pow-
erful micro-controllers with GPUs to execute the self-driving
software.

Self-driving software uses semantic segmentation algo-
rithms that take road scene images as input and give a label
to each pixel in the input images. These labels describe
the object class that these pixels present (road, traffic light,
vehicle, human, etc.). Fig. 1 shows an example of input and
ground truth images used in semantic segmentation algorithms.
Semantic segmentation is very powerful as it helps self-driving
software with understanding scene images at the pixel level.

In recent years, after the emergence of convolutional neural
networks (CNNs), segmentation made huge progress. Many
semantic segmentation methodologies depending on CNN have
been developed in [1-7]. These methodologies were trained and
evaluated using large scale datasets [8-11].

These networks are designed and tested to work efficiently
with clear images. Also, all the images in the large scale
datasets [8-11] are clear images. Yet, semantic segmentation
methodologies don’t take into consideration the different types
of defects in images coming from video cameras.
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Defects in images could be a result of bad weather or elec-
tronic noise. These defects in images decrease the performance
and the accuracy of semantic segmentation methodologies and
thus lead to a wrong driving decision taken by the vehicle’s
self-driving system.

Overall, the state-of-the-art methods take into consideration
only the performance of these methods on clear images, as
these methods are limited by the existing datasets. These
methods ignore the performance with unclear images. Se-
mantic segmentation methods should take into consideration
these challenges and handle these severe imaging conditions.
Although certain works studied object detection methodologies
with challenges as foggy [12], rainy [13, 14], blurred [15], and
noisy [16-18] images, yet only a few works [12, 19] studied
these challenges with semantic segmentation methodologies.
Here, we are studying road semantic segmentation method-
ologies with different challenges.

In this work, we address different kinds of severe imaging
conditions: fog, rain, blurring, and noise. We study the per-
formance of semantic segmentation with these four imaging
defects. As collecting real datasets with these conditions is very
hard, we decided to use Cityscapes dataset [11] and introduce
fog, rain, blurring, and noise on the clear images of the dataset.

Even that author in [12] addressed the performance of
semantic segmentation methods [1, 2] with fog. These two
methods have very low performance on the Cityscapes bench-
mark. The mIoU of these two methods is 73.6% and 67.1%
respectively on Cityscapes test set.

Fig. 1. Example of the Input Image used with Semantic Segmentation
Methods and the Ground Truth Image that these Methods Seek to Achieve

as an Output.
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In this work, we are not only generating new evaluation
datasets but also studying the performance of two powerful
methods in semantic segmentation against imaging defects
challenges. We study the performance of DeepLabv3+ and
PSPNet [5, 4] which are rated as two of the top methods in
semantic segmentation. DeepLabv3+ and PSPNet score mIoU
of 82.1% and 81.2% respectively on Cityscapes test set.

This work is an expansion to our previous work [20], which
studied the performance of semantic segmentation methods
with fog and blur challenges. In this paper, we added rain and
noise to the challenges used in the performance evaluation of
semantic segmentation methods.

In summary, this work contributions are:

(i) Addressing the performance degradation in semantic
segmentation methods with severe imaging condi-
tions.

(ii) Creating rainy, foggy, blurred, and noisy datasets for
evaluation purposes. We made use of an algorithm
provided by [12] to add fog in Cityscapes dataset.

(iii) Using our newly created datasets in performance
evaluation of two top semantic segmentation meth-
ods(DeepLabv3+ and PSPNet).

This paper is organized as follows: Section 2 reviews
shortly the methods of semantic segmentation used in per-
formance measurement. Section 3 describes the challenging
evaluation datasets. Section 4 shows the experiments and the
performance evaluation results. Finally, Section 5 makes a brief
conclusion.

II. METHODS

In this section, we will describe briefly the semantic seg-
mentation methods used in our methods performance search.
DeepLabv3+ and PSPNet are two of the best-performing
methods according to Cityscapes benchmark. These are two
state-of-the-art road semantic segmentation methods used to
label pixels of road images (e.g., street, building, pedestrian,
car, and so on).

A. DeebLabv3+

DeebLabv3+, the extension of DeebLabv3, is a very
powerful semantic segmentation model invented by Google.
DeebLabv3+ is mainly composed of two phases:

Encoder: In this phase, the model extracts the main
features from the input image. It detects the presence
of the objects and their location. DeepLabv3+ uses
Atrous Spatial Pyramid Pooling (ASPP), which in-
vestigates convolutional features by applying atrous
convolution at multiple scales.
Decoder: In this phase, the model refines the segmen-
tation results along the object boundaries. It applies
1 x 1 convolutions on the low-level features and
concatenates it with the upsampled encoded features.
It then applies 3 x 3 convolutions and upsamples the
features to output the prediction image with the same
size of the input image.

DeebLabv3+ scored a performance of 89.0% using the test
set of PASCAL VOC 2012 benchmark [10] and 82.1% using
the test set of Cityscapes benchmark. Fig. 2 shows the network
structure of DeepLabv3+.

Fig. 2. DeebLabv3+ Method Structure Showing its different Phases. The Predicted Image is the Output of DeebLabv3+ Method using an Input Image from
Cityscapes Clear Dataset.
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B. PSPNet

Pyramid Scene Parsing Network (PSPNet) is a semantic
segmentation model developed to enhance learning the full
context representation of the input scene. PSPNet is mainly
composed of four phases:

(i) Creating the feature map of the input image using
CNN.

(ii) Applying pyramid pooling mechanism. This pooling
mechanism contains four pooling levels presented in
a pyramid hierarchy that is proceeded with a 1x1
convolutional layer. Each pyramid level is responsible
for analyzing different parts from the input image in
different locations.

(iii) Upsampling and concatenating the pyramid levels
outputs to give an initial feature maps which contain
the local and global information of the input image.

(iv) Applying a convolutional layer to the feature maps
to generate the prediction image.

PSPNet scored a performance of 85.4% using the test set of
PASCAL VOC 2012 benchmark and 81.2% using the test set
of Cityscapes benchmark. Fig. 3 shows the network structure
of PSPNet.

III. EVALUATION DATASET

In order to evaluate semantic segmentation methods, we
chose to introduce fog, rain, blur, and noise to Cityscapes
evaluation set which consists of clear images only. In this
section, we will describe in details our proposed challenging
datasets and examples from the datasets are shown in Fig. 4.

Due to the difficulty of collecting and annotating images
for rainy weather, we choose to generate rain into clear weather
images of Cityscapes dataset. In this work, we consider a rain
image as a composition of a rain-free image and a rain layer.
We formulate the rain image O(i,j) at pixel i,j as the following:

O(i, j) = I(i, j) +R(i, j) (1)

where I(i,j) denotes the rain-free image and R(i,j) denotes the
rain layer. The rain layer is created by the following processes:

Algorithm 1 Algorithm of adding rain to clear weather images
1: function ADDRAIN(I(i, j), α) . I(i, j) clear image, α

rain density

. create black layer withe the same size of the Clear
weather image I(i, j)

2: height, width ← I(i, j).shape
3: B(i, j) ← zeros(height,width)

. Add Gaussian noise with standard deviation equals Rain
density α

4: N(i, j) ← B(i, j) + Gaussian noise with standard
deviation α

. Threshold the output to keep white pixels from (150 to
255) only

5: Z(i, j) ← threshold(N(i, j) , 150 , 255)

. Apply diagonal motion filter to the output with kernel
size 50

6: R(i, j) ← Z(i, j) * I50

7: return R(i, j) . R(i, j) rainy image
8: end function

(i) Creating a black layer B(i,j) with the size of the rain-
free image.

(ii) Adding Gaussian noise to the black layer. We used
1D Gaussian distribution. Its standard deviation α
determines the rain density.

(iii) Applying motion blur filter to the black layer with the
Gaussian noise to create the rain layer. We chose the
rain motion to be diagonal. We convolved a 2D filter
(50 x 50) across the image. As the direction of 1’s
across the filter grid gives the direction of the desired
motion, we used an identity matrix as a motion blur

Fig. 3. PSPNet Method Structure Showing its different Phases. The Predicted Image is the Output of PSPNet Method using an Input Image from Cityscapes
Clear Dataset.
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filter.

Our rainy Cityscapes dataset images created are charac-
terized by the parameter α used to create the rain layer. α
determines the rain density. Rain density increases with an
increase of α parameter. We created four rainy datasets with
α of 15, 20, 25, and 30. Alg. 1 describes the procedures of
adding rain to an input clear image.

The author in [12] developed an algorithm to add synthetic

fog to the clear weather images of Cityscapes dataset. We
chose to use this algorithm to create our evaluation foggy
dataset. In this dataset, fog density is defined by the visibility
range of the image. We created four foggy datasets with
visibility ranges of 600, 300, 150, and 75 meters.

In order to evaluate the performance of semantic seg-
mentation methods, we blurred Cityscapes clear dataset. We
convolved the clear images with a Gaussian 2D-kernel that
has a standard deviation γ. The standard deviation γ of

Fig. 4. The First Row shows Example Images from the Rainy Cityscapes with Varying Rain Density α. The Second Row shows Example Images from the
Foggy Cityscapes with Varying fog Density. The Third Row shows Example Images from the Blurred Cityscapes with Varying Blur Density γ. The Fourth

Row shows Example Images from the Noisy Cityscapes with Varying Noise Density σ.
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the Gaussian kernel represents the density of blurring. By
increasing γ blurring density increases. We created four blurred
datasets with γ of 1, 3, 5, and 7.

Noise is defined as aberrant pixels. This means that the
pixels are not representing the color or the exposure of the
scene correctly. Noise in images can make it impossible to de-
termine the objects in the scene. To determine the performance
of the semantic segmentation models with noisy images, we
chose to add noise to the clear images from Cityscapes.

One kind of noise that occurs in all recorded images to a
certain extent is Gaussian noise. This noise can be modeled
with an independent, additive model, where the noise has a
zero-mean Gaussian distribution and described by its standard
deviation σ. We used the standard deviation σ of the Gaussian
model to represent the noise density. As σ increases noise
density increases. We created four noisy datasets with σ of 5,
10, 15, and 20.

IV. EXPERIMENTS

In this section, we evaluated the performance of
DeepLabv3+ and PSPNet methods using foggy, rainy, blurred,
and noisy datasets. We used intersection-over-union metric IoU
to measure the methods’ performance.

IoU =
TP

(TP + FP + FN)
(2)

where TP is the true positive labeled pixels, FP is the false
positive labeled pixels, and FN is the false negative. mIoU is
the mean intersection-overunion of the whole evaluation set.

DeepLabv3+ and PSPNet score mIoU of 78.73% and
76.99% respectively on Cityscapes clear evaluation set. Our
experiment evaluates the performance of these models through-
out different density degrees of fog, rain, blur, and noise.

By comparing the performance of these two methods, we
found that DeepLabv3+ performance overcomes PSPNet per-
formance. Even that the two methods have approximately the
same performance on clear Cityscapes dataset, DeepLabv3+
has a higher performance than PSPNet on foggy, rainy, blurred,
and noisy Cityscapes datasets. The two methods showed a sta-
ble performance on light fog and rain, while the performance
harshly degraded on excessive amounts of fog and rain. Also,
the performance of the two models decreased at a high rate
with low densities of blur or noise.

Although DeepLabv3+ shows a higher performance than
PSPNet during the evaluation of different semantic segmen-
tation challenges, our experiments show clearly that these
two semantic segmentation methods don’t show robust per-
formance with foggy, rainy, blurred, and noisy images. We
demonstrated that our challenging datasets killed the perfor-
mance of both methods. Fig. 5 shows the mIoU of the two
methods among the different density degrees of fog, rain, blur,
and noise.

In order to have safe autonomous vehicles, systems on
these vehicles should work efficiently in all the different
weather conditions. Also, semantic segmentation methods in
autonomous vehicles systems should show robustness against
different types of noise in road images. Fig. 6, Fig. 7, Fig.
8, and Fig. 9 show some qualitative results examples of
DeepLabv3+ and PSPNet with our challenging datasets.

Fig. 5. Performance of DeepLabv3+ and PSPNet with Foggy, Rainy, Blurred, and Noisy Cityscapes Evaluation Datasets.
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Fig. 6. Example of the Qualitative Results of DeepLabv3+ and PSPNet with Samples from the Rainy Dataset.
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Fig. 7. Example of the Qualitative Results of DeepLabv3+ and PSPNet with Samples from the Foggy Dataset.
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Fig. 8. Example of the Qualitative Results of DeepLabv3+ and PSPNet with Samples from the Blurred Dataset.
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Fig. 9. Example of the Qualitative Results of DeepLabv3+ and PSPNet with Samples from the Noisy Dataset.
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V. CONCLUSION

In this paper, we studied the performance of state-of-
the-art semantic segmentation methods with different severe
imaging conditions and challenges. We used Cityscapes dataset
which consists of clear images only to create new challenging
datasets. We created foggy, rainy, blurred, and noisy Cityscapes
datasets. We evaluated the performance of DeepLabv3+ and
PSPNet methods using our new challenging datasets. We
showed that although DeepLabv3+ and PSPNet have good
performance with clear images, these two methods don’t show
a reliable performance with different challenging datasets.

Our created dataset can be used to boost the performance
of semantic segmentation models. This could be done by fine-
tuning these models during training using images from our
datasets.

In this work, we prove that semantic segmentation methods
must be evaluated with different kinds of severe imaging
conditions to ensure the robustness of the methods and so the
safety of autonomous vehicles.
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