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Abstract—A novel control scheme for prosthetic hands
through spatial understanding is proposed. The proposed control
scheme features an imaging sensor and an inertial measurement
unit (IMU) sensor, which makes prosthetic hands capable of
visual and motion sensing. The imaging sensor captures the scene
where the user is willing to grasp the object. The control system
recognizes the target object, extracts its surface features and
estimates its pose from the captured images. Then the spatial
relationship is constructed between the hand and the target
object. With the help of IMU sensors, the relationship can be
tracked and kept wherever the prosthetic hand moves even the
object is out of the view range of the camera. To interact with
the user, this process is visualized using augmented reality (AR)
technology. A test platform based on the proposed control scheme
is developed and a case study is performed with the platform.
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I. INTRODUCTION

Humans grasping objects have two stages: they first glance
at an object and instantly know what orientation, position and
shape it is. Eyes then coordinate the hand to properly grasp
the object. Inspired by the way that human grasps objects,
many studies integrate cameras in the prosthetic hand control
system [1], [2], [3], [4], [5], [6], [7], [8]. Such systems accept
images as input and extract necessary information (e.g. Shape,
orientation, position) for controlling prosthetic hands to adjust
grasp postures. Vision-based control has developed rapidly
in recent years due to the deep learning revolution in the
field of computer vision [9]. State of the art deep learning
algorithms can accurately detect object class and recognize
object pose from a single image [10]. The information can be
further used in planning a grasping movement. For example,
Došen et al. [1] built a control system that uses an ultrasound
distance sensor and an imaging sensor to locate the target
object and estimate object size, so as to determine the grasp
type and open size. Bando et al. [11] used a convolutional
neural network (CNN1) to classify 20 classes of objects,
the classification results help to select the grasp posture
from a group of predefined postures. Shima et al. [12] takes
advantage of object spatial information measured by depth
sensor and classifies the objects in terms of their shapes.
The shape of the object finally results in the grasp posture.
In these studies, the grasp posture can be estimated but to
successfully perform a grasp movement, the user needs to
control the residual upper limb to orientate the prosthetic hand

1https://en.wikipedia.org/wiki/Convolutional neural network

in a proper position relative to the grasp target. Sometimes it
has difficulties for users to do that.

If we look back to the way that humans grasp objects,
it can be found that the vision-based control systems
mentioned above only realize the first stage of grasping an
object: recognizing object class, object position and object
orientation. The orientation adjustment of the prosthetic
hands still needs to be coordinated by human eyes. Since the
control system has already integrated an imaging sensor, it
is possible to use the imaging sensor instead of the human
eyes to coordinate the prosthetic hand to grasp the objects.
An intuitive method is to construct the spatial relationship
between the prosthetic hand and the object using features
from every image frame captured in a grasping session. The
spatial relationship helps the prosthetic hand to adjust its
orientation automatically. However, the algorithm complexity
makes it hard to run in real time, especially when the grasp
movement is relatively fast. In addition, the vision field of
the imaging sensor will be very narrow at the end of the
movement because the imaging sensor is usually fixed in the
prosthetic hand, thus it will be difficult to extract the features.

Essentially, the camera-prosthesis coordination is to track
the spatial relationship between the camera and the target
object. Such a relationship guides the control system to adjust
the orientation of the prosthetic hand. We introduce the combi-
nation of accelerometers and gyroscopes here to measure hand
movement and further track the spatial relationship between
the hand and target object. Compared to estimating the spatial
relationship in every image frame, the spatial relationship
tracked by accelerometers and gyroscopes costs extremely
small computation resources and it is not restricted by the
distance between the hand and the target object. The introduce
of the accelerators and gyroscopes to the vision-based control
system solves the camera-prosthesis coordination problem,
which enables automatic orientation adjustment of prosthetic
hand in reach-to-grasp movements.

The next section describes the proposed control system
followed by some experiments. Then some discussions are
described followed by conclusions with some additional dis-
cussions together with future research works.

II. CONTROL SYSTEM

The overview of the proposed control system is illustrated
in Fig. 1. The control system integrates three sensors
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Fig. 1. System Overview.

(imaging sensor, IMU2 sensor and EMG3 sensor) to help
collect information from the surrounding environment and
the user. Imaging sensors help to recognize the target object
and extract its pose information, IMU sensors help to track
the extracted pose information, and EMG sensors are used
to measure the EMG signals. The signals are further used
to estimate the user intention that if the user is willing
to start/quit/finish a grasp session [13]. The sensors work
together to let the prosthetic hand be aware of the object
pose. To visualize this information and let the user know if
the pose is accurately extracted, we use augmented reality
(AR) technology to generate a 3D object model and match
the model with the object that resides in the real world. The
generated graphics can be viewed through a display. It is
better to use a head-mounted display to merge the generated
graphics with human vision [14].

When a grasp session is triggered by the EMG signal to
start, the camera glances at the scene where the user tries to
grasp an object, and the prosthetic hand instantly knows what
class the object belongs to, where the object stands/lies on
and which orientation it is toward. The pose of the object
can be continuously tracked and updated until a grasping
session finishes. Its processing pipeline is shown in Fig.
2. The imaging sensor captures images of the surrounding
environment and recognizes the target object in the scene.
The system then retrieves the corresponding 3D features of
the recognized object from the feature database and matches
the features with the detected object to extract position and
orientation. The system then generates a 3d graphical model
and overlays the model with the detected object in the image
to visualize the result of the pose estimation. The 3D model
also provides the dimensions and shape information. Finally,
the inertial sensors track the movement of the prosthetic
hand and keep updating the extracted object pose. Since the
position, orientation, and shape of the object are all known
by the prosthetic hand, it is possible to control the prosthetic
hand in a fine way. For example, finger-level control can be
achieved.

Basically, the processing pipeline includes three main
stages: object recognition, object matching and object tracking.

2www.bwsensing.com/product-5.html
3http://www.emgpickups.com/
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Fig. 2. Control Pipeline of the System.

Object recognition includes determining the grasp target object
among several objects and cropping the target object from
the original image for the convenience of feature matching.
Object matching refers to matching the graphic 3D model with
the real object in the image. It includes feature matching and
pose estimation. Object tracking means the continuous tracking
of the object pose without specifically estimating pose from
every frame that camera captures. The three main stages are
discussed sequentially in the following.

A. Object Recognition

Object recognition is a computer vision technique for
identifying objects in images, outputting their categories and
locations in an image. The state-of-the-art deep learning
models can classify objects and regress their locations in
a high degree of confidence [15]. In this study, object
recognition is performed for two reasons. First, we want to
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identify the categories of the objects so that the corresponding
3D graphical models and features can be successfully retrieved
from the database. Second, the locations of the objects are
expected to be used to crop the object image from the original
image to have a pure surface texture for feature matching.

The control system uses YOLO4 for object detection.
YOLO is a real-time object detection system. On a GPU of
Pascal Titan X5 it processes images at 30 FPS and has a
mAP (mean average precision) of 57.9% on COCO6 which
is a large-scale object detection dataset [10]. YOLO has
some variations depending on the structure of the backbone
and the regression/classification header. The main difference
between these variations is that they have different number
of convolutional layers. The selection of YOLO is to find
a trade-off between accuracy and speed. In our study, the
control system only needs to recognize the objects in one
frame at the very beginning of a grasping session, so the
detection speed is not the first thing to consider. We use
the latest version of YOLO which has 53 convolutional
layers in the backbone (feature extractor) to ensure the object
recognition has an acceptable accuracy.

In the context of our study, a grasping session can only
deal with one object. But in most cases, there is more than
one object in camera view. It is necessary to determine the
target among several objects. The control system follows a
simple rule that the object which is closest to the center of
the image is considered as the target object. This rule is also
used in study [4]. Another thing that needs to be concerned
is that sometimes the regression of the object location is
not quite accurate, and some parts of the object may not be
included in the cropped object image. It will have an effect
on the feature matching. To avoid this, on the result of the
location regression, we increase both the width and height
size of the bounding box by 10%.

B. Object Matching

Object matching refers to matching the graphic 3D model
with the real object in the image. The first step is to find the
transformation matrix between the camera coordinate system
(CS) and the world CS using feature matching. The second
step is to map the points of a 3D graphical model from the
world CS to the image CS. They are discussed in the following.

1) Find transformation matrix: The transformation matrix
is represented by a 4 × 4 matrix. It contains rotation and
translation information. With the transformation matrix, the
relative position and orientation between the object and the
camera is always known. So the transformation matrix step is
the key to doing object matching. We use feature matching to
calculate the transformation matrix.

Feature matching is a method that can find the correspond-
ing points in the same object in two scenes. It detects object

4https://pjreddie.com/darknet/yolo/
5https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
6https://cocodataset.org

surface texture features and compares them with pre-scanned
object features (reference) to estimate the object position and
orientation [16]. Given pre-scanned 3D feature points of an
object, (P1, P2, P3, P4, ...) and a bunch of detected 3D feature
points of the same object, (P ′

1, P
′
2, P

′
3, P

′
4, ...) but detected in

run time. The correspondence can be found with matching fea-
tures. The matching results are defined as (P1, P

′
1), (P2, P

′
2),

(P3, P
′
3), ..., (Pn, P

′
n). If we put the origin of the CS where

pre-defined features points defined overlap with the origin of
the camera CS and align their axis, the pre-scanned feature
points will be represented in the camera CS. At the same time,
the detected feature points (transformed points) are also in the
camera CS. If the i-th pre-scanned feature point is defined as
Pi = (Pix, Piy, Piz, 1)T , and its corresponding feature point
detected in run time is P ′

i = (P ′
ix, P

′
iy, P

′
iz, 1)T , the following

equation shows their relationship.P
′
ix
P ′
iy

P ′
iz
1

 =

r00 r01 r02 t0
r10 r11 r12 t1
r20 r21 r22 t2
0 0 0 1


Pix

Piy

Piz

1

 (1)

Thus, the transformation matrix is calculated by
substituting a list of matched feature points to Eq. 1.

2) Project to the image frame: The second step is to map
the points of a 3D graphical model from the world CS to the
image CS using the transformation matrix calculated from the
first step and the camera projection matrix (can be calculated
from the calibration process) for visualization. See Fig. 3. A
camera projection matrix is a 3×4 matrix which describes the
mapping of a pinhole camera from 3D points in the world to
2D points in an image [17]. The visualization process uses Eq.
2 and Eq. 3 to project the 3D points to the 2D image frame.
There are three CS involved: camera, image and world.xcyczc

1

 =

r00 r01 r02 t0
r10 r11 r12 t1
r20 r21 r22 t2
0 0 0 1


xwywzw

1

 (2)

[
µ
ν
1

]
=

[
fk 0 µ0 0
0 fk ν0 0
0 0 1 0

]xcyczc
1

 (3)

C. Object Tracking

After we got the transformation matrix, we know the
spatial relationship between the object and the camera.
The spatial relationship (transformation matrix) needs to be
updated when the hand prosthesis moves. And the movement
of the prosthetic hand is tracked by the combination of the
accelerometer and gyroscope. No matter where the camera
moves with the prosthetic hand, the position and orientation
object are always known to the control system. But this
tracking cannot be kept in a long term due to the sensor
noise and drifting. Since the reach-to-grasp movement is
usually happened in a short term, it guarantees the accuracy
of the tracking to some extent. If the translation and the
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rotation of the camera can be tracked, we can update the
transformation matrix using the translation and the rotation
vector. The movement of the camera is represented by
(α, β, γ, Tx, Ty, Tz), where α, β, γ define the roll, pitch, and
yaw respectively while Tx, Ty, Tz define the translation in
three different axes.

The camera motion tracking has several ways, for example,
visual odometry, visual-inertial odometry or IMU sensors. The
easiest way is to use IMU sensors, which usually features an
accelerometer and a gyroscope. An accelerometer measures
acceleration forces while a gyroscope measures orientation or
angular velocity. They each serve to offset the other’s noise and
drift errors to provide more complete and accurate movement
tracking [18]. The movement of the camera is calculated by
integrating the accelerations and angular velocity using Eq. 4
and Eq. 5. Due to the noise introduced by the IMU sensor, the
tracking accuracy can be only acceptable in a short term.

pos(t) =

∫ t

0

∫ t

0

(acc(µ)− acc(0))d2µ (4)

ori(t) = lim
h→0

bt/hc∏
i=1

∆rotmat((i− 1)h, ih) (5)

where h is the length of the time interval between two
subsequent sample, ∆rotmat is the rotation matrix in each
sample. Putting the Eq. 4 and the Eq. 5 together give the final
formula for the camera pose:

pose(t) =

∫ t

0

∫ t

0

(ori(µ)acc(µ)− acc(0))d2µ (6)

III. EXPERIMENTS

We evaluated the performance of the proposed control
strategy from two aspects: object recognition and object match-
ing/tracking.

A. Performance of the Object Recognition Model

The object detection model is trained from five common
daily used objects: cup, bottle, spray bottle, ball and stapler.
These five objects are selected because we use different pos-
tures to use/hold them. When the intersection over union (IoU)
threshold is set to 0.5, the object detection network achieves
93.28% mAP. We used the trained object detection to detect
a cup and a bottle on a table and then controlled the camera
mounted on a prosthetic hand to perform a reach-to-object
movement. The camera takes a bunch of images during the
movement and these images are input to the object detection
network. The detection results were reported. They are plotted
in Fig. 4. As we can see from the figure, the detection accuracy
in most of the reaching process is over 80%.
The regressed locations included in detection results were
further used to crop the object from the original pictures, which
is shown in the right part of Fig. 4. The cropped image shows
a better view of the surface pattern of the objects, which is
good for feature detection and feature matching. But when
the object is relatively far from the camera, the cropped object
image is not clear enough. If the prosthetic hand detected more
than one object in its view, the hand needs to determine which
object is the grasp target. The simple rule is to find which
object appears nearer to the center of the image.

B. Example of the Object Matching and Tracking

Most smartphones nowadays feature a camera as well
as an IMU sensor. It is convenient to use the smartphone
for a quick demonstration. In addition, the basic concept of
the proposed method is very similar to an augmented reality
(AR) application. The company of Apple and Google releases
ARKit and ARCore7 library for developers to develop AR
applications, they can be used to verify the proposed method.

In the case of an iPhone, ARKit performs features matching
for estimating the transformation matrix and uses visual-
inertial odometry for tracking the camera movement [19]. The
visual-inertial odometry method first uses the phone’s camera
to identify interesting feature points and tracks how those
points move over time. With a combination of the movement
of these points and readings from the phone’s inertial sensors,
both the position and orientation of the phone are determined
as it moves through space.

To verify the proposed method, two 3D models: a bottle
and a cup are created first based on two real objects. We
want to estimate the transformation matrix between the
camera coordinate system and the object local coordinate
system using feature matching (see Fig. 5), then project the
3D models to the real world to make them positioned and
orientated the same as the real object. The camera movement
is tracked by the IMU sensors using the transformation
matrix, and the transformation matrix is updated in every
image frame to reconstruct the AR scene.

The demonstration is shown in Fig. 6. To show that the
orientation is also recognized, we make the bottle lie on the top

7https://www.newgenapps.com/blog/arkit-vs-arcore-the-key-differences/

www.ijacsa.thesai.org 722 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

Time [sec]

Pr
ob

ab
ili

ty
 o

f 
re

co
gn

iti
on

Pr
ob

ab
ili

ty
 o

f 
re

co
gn

iti
on cup

bottle

(a) (b) (c)

(a) 2.25[sec]

(b) 6.00[sec]

(c) 12.00[sec]

Original frame Cropped object image

Fig. 4. Example of the Object Recognition.

Predefined 
texture features

Pose 1 Pose 2 Pose 3

Generate 3D model

Match the objects

Fig. 5. Object Pose Estimation.

of the cup. The white rigid body in the pictures is the 3D model
created previously. After estimating the transformation matrix,
the 3D models of the cup and the bottle are both projected to
the 3D world scene to match their corresponding real objects.
At the same time, the 3D world scene is again projected to a
2D image and shown in Fig. 6. We can find from the figure
that the position and orientation of the cup and the bottle are
both successfully estimated. Then, we try to change the view
angle and move the camera farther from the object to make
sure that the movement of the camera can be tracked. The
scales and the perspective of the object are altered with the
movement of the camera in the 2D image as the rendered 3D
model exists in the real world, which proves that the hand is
tracked properly.

IV. DISCUSSION

The experiment shows that it is possible to estimate the
position and orientation of an object and track it in real-time
using the sensor fusion. The transformation matrix represents
the spatial relationship between the camera and the object.
Estimating and tracking the transformation matrix is the
key to constructing the spatial relationship. This relationship
helps the prosthetic hands to comprehensively understand the

(i) (ii) (iii)

(iv) (v) (vi)

(i)

(ii)

(iii)

(iv)

(v)
(vi)

Hand trajectory

Fig. 6. Example of the Object Tracking.

grasp scene and provides more evidence to control the hand
prosthesis. It introduces many benefits. First, if we know the
shape of an object as well as its 6D pose, the control can go
in a very fine manner. Second, the timing to trigger a hand
close movement in previous studies is usually determined by
estimating the human intention from the EMG signals, but
now it can be inferred from the transformation matrix since
it represents the spatial relationship between the hand and
the object. Third, the spatial awareness makes it possible for
prosthetic hands to coordinate themselves.

However, during the test, we found that the orientation and
position cannot be accurately estimated all the time. Some
failure examples are shown in Fig. 7. The 3D model cannot
perfectly match the real object in the AR scene. It may be
caused for several reasons. But the drift from the IMU sensors
is the biggest influencing factor. Drift is an ever-increasing
difference between where the system thinks it is located and
the actual location. Due to integration of a constant error
in acceleration results in a linear error in velocity and a
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Fig. 7. Some Tracking Failures.

quadratic error growth in position. It is hard to remove the
drift completely, but we can make an effort to reduce the
drift errors. Alternatively, we can use some markers with clear
patterns to track the objects, like the ArUco markers used
in AR applications [20]. But it is unrealistic to put markers
around our living environment for detecting.

V. CONCLUSION

This study introduces a new control scheme to control the
vision-based hand prosthesis by combining the camera with the
IMU sensor and present a demonstration to verify the proposed
control. The proposed method controls the hand prosthesis
based on the construction and tracking of spatial relationship
between the hand and the object. The spatial relationship
is represented by the transformation matrix, which provides
more evidence for controlling a dexterous hand prosthesis. But
as shown in the experiment, the spatial relationship cannot
be perfectly constructed using the introduced method. In the
future, we would like to introduce the deep learning technique
to detect key points of the object and construct the transform
matrix based on these points.
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