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Abstract—Parkinson’s disease is a serious neurological impair-
ment which adversely affects the quality of life in individuals.
While there currently does not exist any cure for this disease,
it is well known that early diagnosis can be used to improve
the quality of life of affected individuals through various types
of therapy. Speech based screening of Parkinson’s disease is
an active area of research intending to offer a non-invasive
and passive tool for clinicians to monitor changes in voice that
arise due to Parkinson’s disease. Whereas traditional methods
for speech based identification rely on domain-knowledge based
hand-crafted features, in this paper, we investigate the efficacy of
and propose the deep acoustic embeddings for identification of
Parkinsonian speech. To this end, we conduct several experiments
to benchmark deep acoustic embeddings against handcrafted
features for differentiating between speech from individuals
with Parkinson’s disease and those who are healthy. We report
that deep acoustic embeddings consistently perform better than
domain-knowledge features. We also report on the usefulness of
decision-level fusion for improving the classification performance
of a model trained on these embeddings.
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I. INTRODUCTION

Parkinson’s Disease (PD) is a progressive neurodegener-
ative disorder caused by decay of neurons in the area of the
brain which controls body movements [1]. It manifests as mus-
cle rigidity, slowness of body movement, compromised gait,
and involuntary shaking amongst other symptoms. Individuals
with Parkinson’s disease also suffer from vocal impairments
such as impoverished speech prosody, hoarse voice quality,
and imprecise articulation [2].

According to a handbook by the World Health Organi-
zation on public health challenges caused by neurological
disorders [3], Parkinson’s disease contributes approximately
2% of the total global burden of diseases. In terms of disability-
adjusted life year (DALY) score, a commonly used metric
which quantifies the number of years lost due to ill-health,
the burden of PD is on a rise, with the number of DALYs
increasing from 1,617,000 in 2005 to 1,762,000 in 2015, and is
expected to increase up to 2,015,000 by the year 2030. Parkin-
son’s disease does not currently have a cure and improving the
quality-of-life of patients is of prime importance. According to
Yousefi et al. [4], early detection can help improve the patients’
quality of life through physiotherapy, mental health counseling,
and in some cases surgery. There also do not exist specific tests
for diagnosis of Parkinson’s disease, therefore, patients are
diagnosed by trained clinicians based on common signs and
symptoms for the disease through physical and neurological
examination as well as medical history [5]. It is common

to recommend brain imaging tests to patients for differential
diagnosis in order to rule diseases than Parkinson’s [6], [7].
While brain imaging has indeed been a successful tool, it
is invasive. Such tests also require patients to visit special
facilities, which may not be convenient for the elderly.

Recently, there has been a growing interest in developing
voice-based screening tools that can identify patients with
Parkinson’s disease based on the characteristics of their voice
alone. For example, Tsanas et al. [8] showed that speech-based
tools can be used to recognize the progression of Parkinson’s in
a telemonitoring setup. Traditional methods for speech based
identification of Parkinson’s disease mostly rely on domain-
knowledge based hand-crafted features [9], [10], [11], [12].
However, advances in the field of natural language processing
have shown that embeddings from pre-trained deep neural
networks often perform better than hand-crafted features. To
this end, we investigate the efficacy of deep acoustic embed-
dings generated from pre-trained deep neural works for the
task of automated identification of Parkinsonian speech. Whilst
using domain-knowledge based features to create a baseline
classification performance, we show that these embeddings can
achieve a better classification performance than those hand-
crafted features. Moreover, we also show that upstream training
tasks for these embeddings are not a limiting factor for its
downstream task of speech paralinguistics. Finally, we report
that decision-level fusion is an effective method to improve the
classification performance of machine learning models trained
to identify Parkinsonian speech.

The rest of the paper is structured as follows: In Section II,
we introduce the concept of deep acoustic embeddings for the
task at hand and briefly describe the four deep neural models
used in our work. In Section IV, we discuss the methodology
followed for data-driven analysis. In Section V, we report the
results of experiments and provide a discussion for each aspect
of the experimentation. A conclusion of our work is provided
in Section VI and supplementary data to support our work is
provided as appendices.

II. DEEP ACOUSTIC EMBEDDINGS

A major limitation of domain knowledge based hand-
crafted features is that they are narrow in scope and often
require subject expertise in order to be used in the correct
context. For example, while Mel Frequency Cepstral Coeffi-
cients (MFCCs) is a popular acoustic feature for representing
cepstral characteristics of audio signals, it is still represented
by a relatively small number of coefficients as compared to
say a Mel spectrogram, which offers a rich time-frequency
representation of an audio signal. Deep neural network models
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for applications based on audio modality are trained to learn
useful features from Mel spectrogram representations of audio
signals, similar to how deep learning based image classification
models learn to recognize useful features from an image. In
the case of audio, spectrograms serve as images. The word
deep acoustic embeddings refer to features learned from deep
neural networks that are trained for audio applications. These
embeddings are typically extracted from the penultimate layer
of the model meaning that these features are representative of
the characteristics of audio signals that were used to train the
models.

In our work, we experiment with embeddings generated
from four deep neural networks which were optimized for
applications based on audio modality. These are VGGish,
YAMNet, openl3: Music, and openl3: Environment sounds.

A. VGGish Embeddings

The VGGish is a deep convolutional neural network pro-
posed by Hershey et al. [13] for large scale audio classification
of Youtube videos based on their audio content. As the name
suggests, VGGish is based on the famous VGGNet [14] which
was once the state-of-art model for image classification and
remains amongst performing models in computer vision. VG-
Gish’s network architecture consists of four blocks, each with
convolutional kernels and maxpooling layers, which serve as
a feature extractor. These are followed by two fully connected
layers that serve as the classifier.

The VGGish was trained on an initial version of Au-
dioSet corpus [15] consisting of more than 2 million video
clips from Youtube which were manually annotated into 527
categories. Examples of these categories include male/female
adult voice, infant babbles, animal sounds, and sounds pro-
duced by various types of machines. VGGish was envisaged
as a model that can learn a meaningful representation of audio
signals for these classification categories but in our recent
work, we showed it to be useful for speech paralinguistic tasks
such as identification of Alzheimer’s dementia [16].

As with most deep neural networks that generate deep
acoustic embeddings, the VGGish accepts spectrogram-based
representation of audio clips. To begin, each audio clip is
segmented into chunks of 1 second in duration and a Mel spec-
trogram is computed over short-time frame duration of 25ms
and frame hop-duration of 10ms whilst using Mel frequency
shaping filter with 96 bins. Our objective is to only compute
deep acoustic embeddings from the VGGish model (and not to
classify our dataset into 527 classes of the AudioSet corpus),
we take the output from the model before the final classifier.
With spectrograms as input, the VGGish model is therefore
used as a feature extractor that produces 128-dimensional
embeddings as its output. An illustration of this workflow
is provided in Figure 1. We posit that these semantically
relevant embeddings are useful for our downstream task of
Parkinsonian speech classification. A pre-trained model for
VGGish has been made available by Google for academic
research 1 and we make use of this model in our work.

1https://github.com/tensorflow/models/tree/master/research/audioset/vggish

Fig. 1. Illustration of Feature Extractor for VGGish Embeddings

B. YAMNet Embeddings

A major drawback of the VGGish model is that with more
than 72 million parameters, it has high computational com-
plexity. This inhibits the use of VGGish in most applications
that are based on mobile embedded systems. The YAMNet
model was developed by Ellis and Chowdhry 2. as a compu-
tationally efficient model for classification of audio events for
the AudioSet corpus. It is based on the MobileNet architecture
proposed earlier by Howard et al. [17] that used depth-wise
separable convolutional kernels to create lightweight models
that can be used for mobile and embedded vision applications.
As a result, the YAMNet model has 4.7 million parameters
versus the 72 million required for VGGish.

The network architecture of YAMNet model consists of
14 blocks of convolutional layers where all except the first
layer are based on depth-wise convolutional kernels. While
there are no differences between VGGish and YAMNet models
in terms of input spectrograms, there are some differences
in terms of training data: the YAMNet is trained with the
larger AudioSet corpus but it has a slightly smaller number of
classes (521 versus 527 for VGGish) since some classes were
removed from AudioSet corpus due to ethical considerations.
Therefore, it is not possible to compare, in a fair manner, the
classification performance of VGGish and YAMNet models
on the AudioSet corpus. Nevertheless, we shall compare their
classification for recognition of Parkinsonian speech through
data-driven analysis and report results in Section V.

C. openL3 Embeddings for Music and Environmental Sounds

In addition to deep acoustic embeddings generated from
VGGish and YAMNet models, which are trained to recognize
human voice amongst various other types of audio events, we
also make use of embeddings generated from openl3 mod-
els [18] 3, which are optimized to identify types of music and
environmental sounds. Our motivation to use these embeddings
is to investigate whether the upstream training task matters
for downstream classification performance for deep acoustic
embeddings. More specifically, we seek to answer whether
embeddings from models trained to recognize music and
environment sounds can be used to recognize characteristics
of speech paralinguistics which are present in Parkinsonian
speech.

2https://github.com/tensorflow/models/tree/master/research/audioset/YAMNet
3https://github.com/marl/openl3
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The openl3 embeddings are based on the Look, Listen,
and Learn (L3) concept which was proposed by Arandjelovic
et al. [19] for training neural networks to learn meaningful
audio representations in a self-supervised manner through
audio-visual correspondence tasks. Their approach seeks to
alleviate stringent requirements for manual annotation of train-
ing data. Cramer et al. [18] developed openl3 models as
an extension to the work from [19] and investigated various
network architecture choices, such as the choice between short-
time-Fourier transform based spectrograms or Mel frequency
scaled spectrograms and a different size for deep acoustic
embeddings. It is important to mention here that the video
recordings used to train openl3 models were also curated
from within the AudioSet corpus, however, the scope of these
models is much smaller than VGGish and YAMNet which
seek to classify between all available classes in the AudioSet
corpus. The network architecture for openl3 models consists of
four blocks of convolutional layers which are used as feature
extractors from spectrograms that are fed to the model as input.
MaxPooling operation is performed to the output of feature
extractor with an option to yield either an embedding of size
512 or an embedding of size 6144.

III. DATASET

We make use of the GITA corpus of Parkinsonian speech
in our experiments which was published by Orozco-Arroyave
et al. [20] as part of work carried out at Applied Telecommuni-
cations Group (GITA) at Universidad de Antioquia, Colombia.
The GITA corpus is one of the most prominent publicly
available datasets on Parkinsonian speech. It consists of speech
recordings from 100 native speakers of Spanish language
amongst whom 50 subjects were diagnosed with Parkinson’s
disease as per the Unified Parkinson’s Disease Rating Scale
(UPDRS) scale [21]. These subjects were matched in terms
of age and gender with their respective healthy counterparts.
The GITA corpus consists of three main speaking tasks which
vary in duration and phonetic content. The first speaking
task is based on diadochokinetic non-words, short-duration
utterances based on the pronunciation of words and phrases,
and long duration utterances which require subjects to read out
a section of text or monologue. A summary of statistics for
time durations for each task is provided in Table I. For a more
thorough description of the dataset such as the age and gender
distribution of subjects, we refer the reader to [20].

IV. METHODOLOGY

The process flow diagram for automated identification of
Parkinsonian speech is illustrated in Fig. 2. Here, one starts
with raw audio recordings from subjects that are preprocessed
into a standard format used in audio signal processing (16
KHz sampling rate, mono-channel, and amplitude normalized
between +/-1). The next step is to compute domain-knowledge
features such as ComParE and eGeMAPS.

In order to compute deep acoustic embeddings such as
VGGish, YAMNet, openl3:Music, and openl3:Environment
Sounds, a Mel spectrogram based representation is generated
for the recording and passed down to feature extractors based
on these models (details of these models were provided in
Section II). Since deep acoustic embeddings are computed
over chunks of audio recordings, these embeddings need to

TABLE I. SUMMARY OF TIME-DURATION STATISTICS FOR EACH
SPEAKING TASK IN THE GITA CORPUS

Speaking Task Time Duration Statistics

Category Task Min Avg Range

DDK ka 0.81 2.76 8.02
pa 0.76 2.94 6.77
pakata 1.39 4.16 7.63
pataka 1.39 4.38 9.13
petaka 1.10 4.14 7.70
ta 0.77 2.92 8.36

Short-duration juan 1.81 3.21 4.48
laura 1.27 2.18 2.65
loslibros 1.84 3.43 5.64
luisa 2.21 4.01 7.42
micasa 1.20 1.96 2.35
omar 1.56 2.65 3.38
preocupado 2.30 4.32 6.16
rosita 2.61 4.36 5.58
triste 1.74 3.26 4.34
viste 4.81 7.88 16.90

Long-duration readtext 10.35 18.12 34.91
monologue 14.10 47.11 149.99

be summarized in order to generate a global representation for
the audio recording. In this work, we use three functionals of
descriptive statistics, namely, average, maximum, and range to
pool a global feature vector for deep acoustic embeddings.

Finally, given the relatively small number of examples
per speaking task (50 each for subjects with Parkinson’s
disease and those who are healthy), we conduct experimen-
tation through leave-one-subject-out (LOSO) cross-validation.
In each iteration, 99 examples are used to form the training set
and the one remaining example is used for testing. Therefore,
in total, the classification performance with each acoustic
feature (domain-knowledge based as well as deep acoustic
embeddings) is computed over 100 examples. We train a logis-
tic regression classifier to differentiate between features from
healthy and Parkinson’s disease groups. Logistic regression
has a hyper-parameter called complexity which needs to be
optimized in order to tune its classification performance. To
this end, we integrate hyper-parameter optimization within the
LOSO cross-validation (we found this strategy to be successful
in [16]) and optimize complexity over a logarithmically spaced
grid between 10−7,10−6,...,103.

In subsequent paragraphs, we provide details of domain-
knowledge and deep acoustic embedding based features which
are used in our experiments.

A. Domain-knowledge based Handcrafted Features

Evidence suggests that muscular dystrophy, where muscles
shrink and weaken, due to Parkinson’s disease causes aphasia,
which leads to changes in paralinguistic characteristics of
speech in terms of prosody, voice quality, and voice spec-
tra [22], [23], [24], [25], [26]. Prosody is defined as the intona-
tion or melodic contour speech and abnormal prosody is a rec-
ognized marker of individuals with Parkinson’s disease [25].
Voice quality describes the degree of hoarseness, breathiness,
or tenseness of voice [22]. It is known that muscular tightening
causes glottis to function improperly which leads to poorer
quality of voice for those with Parkinson’s disease as compared
to individuals who are healthy [11], therefore, acoustic features
which quantify voice quality can be useful for the task of
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Fig. 2. Process Flow Diagram for Automated Identification of Parkinsonian Speech

identifying Parkinsonian speech. The final characteristic of
voice that is popular in speech paralinguistics is voice spectra.
It is reminded that spectral characteristics of voice are shaped
by the movement of the vocal tract. One can surmise that this
vocal tract becomes rigid due to muscular dystrophy therefore
the speech of individuals with the disease will lack in spectral
richness [26]. This suggests that spectral analysis of speech
can be useful for the identification of Parkinsonian speech.

In order to represent these three paralinguistic charac-
teristics of speech quantitatively, we shall compute acoustic
features from two feature sets, (a) Computational Paralinguis-
tics Challenge (ComParE) and (b) Extended Geneva Acoustic
Minimalistic Feature Set (eGeMAPS) using the openSmile
toolkit [27]. These feature sets are de facto standard in the field
of social signal processing for quantification of characteristics
of speech paralinguistics [28], [29].

The ComParE feature set consists of 65 acoustic low-
level-descriptor (LLDs) amongst which 4 LLDs characterize
voice energy, 6 features characterize voice quality, and 55
features represent voice spectra. It is used to develop base-
lines classification performance for the popular Interspeech
Computational Paralinguistic Challenges and as a testament
to its effectiveness, ComParE features have achieved better
performance than deep learning methods as well [30]. The
eGeMAPS feature set is considered as a lower-dimensional
alternate to the ComParE feature set (88 vs 6373-dimensional
feature vectors). eGeMAPS consists of 23 acoustic LLDs
amongst which 13 features describe voice quality, 9 features
describe voice spectra, and one acoustic feature is dedicated
to voice energy. Further details of these features have been
provided in Tables VII and VIII.

B. Deep Acoustic Embeddings based Features

As mentioned earlier, we compute three types of pooling
methods in order to summarize deep acoustic embedding
features which are computed for short-duration chunks of
audio recordings. Therefore, the pooling method is one of
the hyper-parameters which needs to be optimized for deep

acoustic embeddings based features. Furthermore, there exist
two further hyper-parameters for embeddings based on openl3
models. The first hyper-parameter amongst these determines
whether a linear spectrogram or Mel spectrogram should be
used as a representation of audio signal. The second hyper-
parameter determines the dimensionality of openl3 embed-
dings with options of either a 512-dimensional embedding or
a 6144-dimensional embeddings. Given the data-driven nature
of machine learning, these hyper-parameters also need to be
optimized using the cross-validation process.

V. EXPERIMENTATION, RESULTS AND DISCUSSION

In this section, we summarize and report on results from
experiments conducted to determine the efficacy of deep
acoustic embeddings for a variety of speaking tasks, along
with analysis into fusion and performance comparison of deep
acoustic embeddings.

A. Diadochokinesis Tasks

In Table II, we summarize results for experiments per-
formed to identify individuals with Parkinson’s disease based
on six Diadochokinesis (DDK) tasks using two domain-
knowledge based features (which serve as a baseline) and the
four deep acoustic embeddings. Amongst the six tasks, one can
note that music_linear_512 embedding achieves the
best classification performance thrice, i.e. for ka, pakata, and
pekata utterances. This includes the overall best classification
accuracy of 85.0% amongst the six DDK tasks and the highest
average classification accuracy of 79.3% for the six tasks. One
can also note that environment_mel256_512 embedding
offers a competitive performance, with best classification accu-
racy for ka utterance as well as an average classification accu-
racy of 78.0% compared to 79.3% of music_linear_512
embedding. Meanwhile, VGGish and YAMNet embeddings,
which are trained on audio recordings that also contain human
voice perform worst for the DDK tasks amongst all deep
acoustic embeddings.
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TABLE II. CLASSIFICATION ACCURACY FOR VARIOUS ACOUSTIC FEATURES FOR SIX DIADOCHOKINESIS TASKS, ALONG WITH THE AVERAGE ACCURACY
OVER ALL DIADOCHOKINESIS TASKS

Feat Diadochokinesis Average
pa ka ta pakata pekata pataka

ComParE 79.0 72.0 79.0 74.0 76.0 74.0 75.7
eGeMAPS 78.0 79.0 67.0 72.0 74.0 71.0 73.5
VGGish 65.7 66.3 67.0 71.0 65.0 70.0 67.5
YAMNet 66.0 73.0 76.0 69.0 68.0 71.0 70.5
environment linear 512 77.0 77.0 74.0 79.0 77.0 75.0 76.5
environment linear 6144 81.0 81.0 70.0 72.0 72.0 76.0 75.3
environment mel256 512 84.0 77.0 74.0 79.0 79.0 75.0 78.0
environment mel256 6144 79.0 75.0 74.0 77.0 75.0 81.0 76.8
music linear 512 78.0 82.0 77.0 85.0 80.0 74.0 79.3
music linear 6144 74.0 81.0 68.0 77.0 75.0 73.0 74.7
music mel256 512 73.0 81.0 74.0 74.0 79.0 70.0 75.2
music mel256 6144 75.0 81.0 75.0 78.0 73.0 73.0 75.8

Another interesting observation from Table II is that
environment_mel256_6144 embedding performs best
for pakata utterance with a classification accuracy of 81.0%.
In fact, the second placed acoustic feature is also based on en-
vironmental sounds, that is, environment_linear_6144
embedding which achieves an accuracy of 76.0%. This sug-
gests that some characteristics of environmental sounds are
also useful for identifying Parkinsonian speech based on
pakata utterance.

Amongst domain-knowledge based features, ComParE of-
fers competitive performance overall as evident from the
average classification accuracy for all tasks. In fact, ComParE
features even achieved best performance for the ta task.
Overall, however, it is clear that deep acoustic embeddings
are a better alternative to domain-knowledge based features if
the objective is to maximize classification performance based
on diadochokinesis speaking tasks.

B. Short-Duration Utterance Tasks

The results of Parkinsonian speech classification based
on short-duration utterances are summarized in Table III.
On the basis of average classification computed for the ten
utterances, one can note that environment_mel256_512
embedding achieves the best performance overall (77.3%),
closely followed by music_linear_512 (76.5%). Here,
environment_mel256_512 achieved top performances
for most tasks (five out of ten), including laura, luisa, micasa,
preocupado, rosita, and viste) as well as the highest classifica-
tion accuracy of 85.0%, that was achieved with triste utterance.
The second placed acoustic features, music_linear_512,
achieved top performances for juan, loslibros, and omar utter-
ances.

Amongst the two domain-knowledge features, ComParE
again performs much better than eGeMAPS – 74.6% average
classification over the ten utterance tasks for ComParE versus
67.5% for eGeMAPS. Moreover, VGGish and YAMNet em-
beddings also perform poorly with an average classification
accuracy of 70.7% and 69.1%, respectively.

C. Long-Duration Utterance Tasks

The classification results for identification of Parkinsonian
speech for readtext and monologue tasks are summarized in
Table IV. A special characteristic of these tasks is that they

are of a relatively long duration as compared to DDK and
short utterance tasks, therefore, more speech data is available
per subject.

To begin, one can note that music_linear_512 em-
bedding achieves the best classification performance over-
all, with top classification accuracy of 84.0% for the
readtext task and a competitive 79.0% for the mono-
logue task. The best performance for monologue task is
achieved with environment_linear_512 feature but
it lags behind other features for the reading task. As
an example, consider environment_mel256_512, which
achieves 79.0% and 78.0% for reading and monologue
utterances to achieve a higher average accuracy than
environment_linear_512. Furthermore, it is pertinent
to mention here that environment_mel256_512 was also
the best performing model for short-duration utterance tasks
as well which shows that the embedding is consistent in its
efficacy for the task at hand.

D. Decision-Level Fusion

From Tables II–IV, one can note that embeddings from
different upstream tasks achieve varying degrees of suc-
cess at classification of Parkinsonian speech. For example,
environment_mel256_512 and music_linear_512
are embeddings with different upstream tasks but yield top
classification performance for a variety of speaking tasks. This
suggests that machine learning models trained on these embed-
dings carry complimentary information which can be fused
together in order to achieve improved classification accuracy.
This is a well known premise of decision-level fusion [31]
and we have had success at improving the quality of machine
learning models using fusion in our previous works [32], [16].

To this end, we use two types of decision-level fusion,
i.e. confidence based fusion and majority-vote based fusion
for top three acoustic features for each speaking task. In
confidence based fusion, the confidence scores of classifiers
for predicting each class are averaged and judgement about
class labels is made using the averaged confidence scores.
Meanwhile, in majority-vote approach, each classifier makes
its own judgement about class labels before a majority-vote
is carried out to make final judgement about the class labels
using information from all models. It must be mentioned here
that due to data-driven nature of fusion process, one needs
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TABLE III. CLASSIFICATION ACCURACY FOR VARIOUS ACOUSTIC FEATURES FOR TEN SHORT DURATION SPEECH UTTERANCE TASKS, ALONG WITH THE
AVERAGE ACCURACY OVER ALL SHORT UTTERANCE TASKS

Feat Short Utterances Average
juan laura loslibros luisa micasa omar preocupado rosita triste viste

ComParE 73.0 77.0 74.0 76.0 74.0 71.0 81.0 74.0 76.0 70.0 74.6
eGeMAPS 69.0 59.0 69.0 67.0 70.0 69.0 68.0 65.0 70.0 69.0 67.5
VGGish 72.0 70.0 67.0 67.0 69.0 73.0 76.0 69.0 76.0 68.0 70.7
YAMNet 69.0 66.0 70.0 71.0 66.0 74.0 70.0 67.0 69.0 69.0 69.1
environment linear 512 68.0 71.0 72.0 76.0 68.0 68.0 78.0 70.0 85.0 78.0 73.4
environment linear 6144 67.0 70.0 76.0 69.0 68.0 67.0 66.0 72.0 73.0 73.0 70.1
environment mel256 512 72.0 74.0 73.0 78.0 76.0 75.0 84.0 83.0 79.0 79.0 77.3
environment mel256 6144 68.0 71.0 73.0 74.0 72.0 73.0 76.0 74.0 79.0 77.0 73.7
music linear 512 78.0 71.0 76.0 76.0 75.0 77.0 79.0 77.0 82.0 74.0 76.5
music linear 6144 68.0 71.0 75.0 72.0 71.0 74.0 70.0 71.0 75.0 70.0 71.7
music mel256 512 68.0 63.0 74.0 75.0 73.0 67.0 71.0 68.0 79.0 72.0 71.0
music mel256 6144 69.0 68.0 73.0 70.0 71.0 71.0 75.0 70.0 79.0 77.0 72.3

TABLE IV. CLASSIFICATION ACCURACY FOR VARIOUS ACOUSTIC
FEATURES FOR TWO LONG DURATION SPEECH UTTERANCE TASKS, ALONG

WITH THE AVERAGE ACCURACY OVER BOTH LONG UTTERANCE TASKS

Feat Long Utterances Average
readtext monologue

ComParE 69.0 72.0 70.5
eGeMAPS 72.0 80.0 76.0
VGGish 70.0 71.0 70.5
YAMNet 72.0 73.0 72.5
environment linear 512 74.0 81.0 77.5
environment linear 6144 79.0 76.0 77.5
environment mel256 512 79.0 78.0 78.5
environment mel256 6144 77.0 79.0 78.0
music linear 512 84.0 79.0 81.5
music linear 6144 75.0 79.0 77.0
music mel256 512 79.0 77.0 78.0
music mel256 6144 76.0 80.0 78.0

TABLE V. SUMMARY OF CLASSIFICTION ACCURACY FOR EACH
SPEAKING TASK BEFORE AND AFTER DECISION-LEVEL FUSION

Speaking tasks Best result
(pre-fusion)

Decision-level Fusion

Confidence Majority Vote

pa 84.0 85.0 88.0
ka 82.0 85.0 81.0
ta 79.0 77.0 80.0
pakata 85.0 84.0 84.0
pekata 80.0 76.0 80.0
pataka 81.0 81.0 79.0
juan 78.0 78.0 76.0
laura 77.0 72.0 78.0
loslibros 76.0 71.0 80.0
luisa 78.0 83.0 80.0
micasa 76.0 72.0 81.0
omar 77.0 77.0 78.0
preocupado 84.0 86.0 86.0
rosita 83.0 81.0 85.0
triste 85.0 88.0 89.0
viste 79.0 81.0 84.0
read text 84.0 84.0 82.0
monologue 81.0 84.0 83.0

to experiment with both types of decision-level fusion and
determine the one which is best suited for the task hand.

In Table V we summarize the results for experiments
for decision-level fusion for top-3 performing models for
each speaking task. Here, one can note that decision-level
fusion, in most cases, improves the classification performance.
The most notable examples are speaking tasks pa and triste

where classification accuracy was improved from 84.0% to
88.0% and 85.0% to 89.0%, respectively. There are also some
cases where the classification accuracy after fusion actually
decreases, for example, with speaking task pakata where pre-
fusion accuracy of 85.0% decreases to 84.0%. We argue that
fusion is still useful here since the slightly decreased accuracy
is based on confidence of multiple models and it is more likely
to be robust as compared to the accuracy achieved by a single
model.

E. Performance Comparison of Deep Acoustic Embeddings

Finally, we compare the averaged classification accuracy
over the eighteen speaking tasks which form the GITA corpus.
A summary of results has been provided in Table VI where one
can make out a ranking of deep acoustic embeddings based on
their classification performance.

We note that music_linear_512 embedding
performs best with an accuracy of 78.0% and
environment_mel256_512 follows closely in second
place with an accuracy of 77.7%. The third best performing
embedding is environment_linear_512 which achieves
an accuracy of 74.9%. It is most interesting to note that
acoustic embeddings which are trained to recognize types
of music and environmental noise perform much better than
VGGish and YAMNet embeddings, which are trained using
data which also contains human voice. This suggests that the
upstream task does not matter for downstream tasks whilst
using deep acoustic embeddings. however, further testing over
multiple datasets is required in order to reach a conclusion.
For the sake of completeness, a summary of top-3 performing
models including feature name as well as pooling method has
been provided in Tables IX through XI for the three types of
speaking tasks.

VI. CONCLUSION

In this work, we investigated the usefulness of deep
acoustic embeddings as effective representations of speech
paralinguistics for the task of identifying Parkinsonian speech,
benchmarking the classification performance of these embed-
dings against two popular domain-knowledge based hand-
crafted feature sets. Our results show that deep acoustic
embeddings are indeed useful for the task at hand and perform
consistently better than hand-crafted features. We also report
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TABLE VI. AVERAGE CLASSIFICATION ACCURACY COMPARISON OF
VARIOUS DEEP ACOUSTIC EMBEDDINGS FOR EIGHTEEN UTTERANCE

TASKS FOR IDENTIFYING PARKINSONIAN SPEECH

Feat Average
Accuracy

VGGish 69.6
YAMNet 69.9
environment linear 512 74.9
environment linear 6144 72.7
environment mel256 512 77.7
environment mel256 6144 75.2
music linear 512 78.0
music linear 6144 73.3
music mel256 512 73.2
music mel256 6144 74.1

that the upstream training task may not be a limiting factor for
the classification performance in the downstream task. For ex-
ample, models trained on music and environmental sound data
performed much better than embeddings which were trained on
data containing human voice. Finally, we showed that decision-
level fusion is an effective method to improve the stability of
machine learning models for identifying Parkinsonian speech.
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APPENDIX A: LIST OF ACOUSTIC FEATURES IN COMPARE
AND EGEMAPS FEATURE SETS

TABLE VII. ACOUSTIC LOW-LEVEL DESCRIPTORS WHICH FORM THE
COMPUTATIONAL PARALINGUISTICS CHALLENGE (COMPARE) FEATURE

SET

Energy related LLD Group

Sum of auditory spectrum (loudness) Voice Spectra

Spectral LLDs Group

Alpha ratio (50-1000 Hz, 1000-5000 Hz) Voice Spectra
Energy slope (0-500 Hz, 500-1500 Hz) Voice Spectra
Hammarberg index Voice Spectra
MFCCs 1-4 Voice Spectra
Spectral flux Voice Spectra

Voicing related LLDs Group

Fundamental frequency (linear and semitone) Prosodic
Formants 1-2 (frequency, bandwidth, amplitude) Voice Quality
Harmonic differences (H1-H2, H1-A3) Voice Quality
log. HNR, Jitter, and Shimmer Voice Quality

TABLE VIII. ACOUSTIC LOW-LEVEL DESCRIPTORS WHICH FORM THE
EXTENDED GENEVA MINIMALISTIC ACOUSTIC PARAMETER SET

(EGEMAPS) FEATURE SET

Energy related LLD Group

Sum of auditory spectrum (loudness) Voice Spectra
Sum of RASTA-filtered auditory spectrum (loudness) Voice Spectra
RMS energy and zero-crossing rate Temporal

Spectral LLDs Group

RASTA-filtered audio spectrum bands 1-26 Voice Spectra
MFCCs 1-14 Voice Spectra
Spectral energy 250-650 Hz, 1000-4000 Hz Voice Spectra
Spectral roll-off at 0.25, 0.5, 0.75, and 0.9 percentage Voice Spectra
Psychoacoustic sharpness, Harmonicity Voice Spectra
Spectral variance, Spectral skewness, Spectral kurtosis Voice Spectra

Voicing related LLDs Group

Fundamental frequency (SHS and Viterbi smoothing) Prosodic
Probability of voicing Voice Quality
log. HNR, Jitter, and Shimmer Voice Quality

APPENDIX B: SUMMARY OF TOP-3 PERFORMING
FEATURES (ALONG WITH THEIR POOLING METHOD) FOR

DIADOCHOKINESIS, LONG, AND SHORT DURATION
UTTERANCES

TABLE IX. SUMMARY OF TOP-3 PERFORMING FEATURES (ALONG WITH
THEIR POOLING METHOD) FOR DIADOCHOKINESIS BASED SPEAKING

TASKS

Speaking task Feature Pooling Accuracy

pa ComParE x 79.0
environment linear 6144 MaxPool 81.0
environment mel256 512 AvgPool 84.0
environment mel256 6144 AvgPool 79.0

ka environment linear 6144 AvgPool 81.0
music linear 512 AvgPool 82.0
music linear 6144 AvgPool 81.0
music mel256 512 MaxPool 81.0
music mel256 6144 AvgPool 81.0

ta ComParE x 79.0
YAMNet MaxPool 76.0
music linear 512 AvgPool 77.0

pakata environment linear 512 MaxPool 79.0
environment mel256 512 AvgPool 79.0
music linear 512 MaxPool 85.0

pekata environment mel256 512 MaxPool 79.0
music linear 512 AvgPool 80.0
music mel256 512 AvgPool 79.0

pataka environment linear 512 AvgPool 75.0
environment linear 6144 AvgPool 76.0
environment mel256 512 AvgPool 75.0
environment mel256 6144 AvgPool 81.0

TABLE X. SUMMARY OF TOP-3 PERFORMING FEATURES (ALONG WITH
THEIR POOLING METHOD) FOR LONG DURATION UTTERANCE TASKS

Speaking task Feature Pooling Accuracy

readtext environment mel256 512 AvgPool 79.0
music linear 512 AvgPool 84.0
music mel256 512 AvgPool 79.0
environment linear 6144 AvgPool 79.0

monologue eGeMAPS x 80.0
environment linear 512 AvgPool 81.0
music mel256 6144 MaxPool 80.0
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TABLE XI. SUMMARY OF TOP-3 PERFORMING FEATURES (ALONG WITH
THEIR POOLING METHOD) FOR SHORT DURATION UTTERANCE TASKS

Speaking task Feature Pooling Accuracy

juan ComParE x 73.0
VGGish AvgPool 72.0
environment mel256 512 AvgPool 72.0
music linear 512 MaxPool 78.0

laura ComParE x 77.0
environment linear 512 MaxPool 71.0
environment mel256 512 RangePool 74.0
environment mel256 6144 AvgPool 71.0
music linear 512 MaxPool 71.0
music linear 6144 AvgPool 71.0

loslibros environment linear 6144 AvgPool 76.0
music linear 512 MaxPool 76.0
music linear 6144 AvgPool 75.0

luisa ComParE x 76.0
environment linear 512 AvgPool 76.0
environment mel256 512 AvgPool 78.0
music linear 512 AvgPool 76.0

micasa ComParE x 74.0
environment mel256 512 MaxPool 76.0
music linear 512 AvgPool 75.0

omar YAMNet RangePool 74.0
environment mel256 512 AvgPool 75.0
music linear 512 MaxPool 77.0
music linear 6144 AvgPool 74.0

preocupado ComParE x 81.0
environment mel256 512 AvgPool 84.0
music linear 512 AvgPool 79.0

rosita ComParE x 74.0
environment mel256 512 AvgPool 83.0
environment mel256 6144 MaxPool 74.0
music linear 512 MaxPool 77.0

triste environment linear 512 AvgPool 85.0
environment mel256 512 AvgPool 79.0
environment mel256 6144 MaxPool 79.0
music linear 512 AvgPool 82.0
music mel256 512 AvgPool 79.0
music mel256 6144 AvgPool 79.0

viste environment linear 512 MaxPool 78.0
environment mel256 512 AvgPool 79.0
environment mel256 6144 MaxPool 77.0
music mel256 6144 MaxPool 77.0
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