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Abstract—In this paper, an efficient domain-adaptation 
method is proposed for fraud detection. The proposed method 
employs the discriminative characteristics used in feature maps 
and generative adversarial networks (GANs), to minimize the 
deviation that occurs when a common feature is shifted between 
two domains. To solve class imbalance problem and increase the 
model’s detection accuracy, new data samples are generated by 
applying a minority class data augmentation method, which uses 
a GAN. We evaluate the classification performance of the 
proposed domain-adaption model by comparing it against 
support vector machine (SVM) and convolutional neural 
network (CNN) models, using classification performance 
evaluation indicators. The experimental results indicated that the 
proposed model is applicable to both test datasets; furthermore, 
it requires less time for learning. Although the SVM offers a 
better detection performance than the CNN and proposed 
domain-adaptation model, its learning time exceeds those of the 
other two models when dataset increases. Also, although the 
detection performance of the CNN-based model is similar to that 
of the proposed domain-adaptation model, its learning process is 
longer. In addition, although the GAN used to solve the class 
imbalance problem of the two datasets requires slightly more 
time than SMOTE (synthetic minority oversampling technique), 
it shows a better classification performance and is effective for 
datasets featuring class imbalances. 
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I. INTRODUCTION 
With the rapid development of information technology, the 

existing financial industry paradigm is changing; the new 
paradigm, following the evolution of smartphones and mobile 
technologies, is creating new forms of electronic financial 
services, increasing the number of non-face-to-face transactions 
(through the use of various devices and communications 
technologies), and simplifying and diversifying payment 
methods. However, alongside these developments, concerns 
over security incidents (e.g., cyber threats involving the leakage 
and hacking of financial and personal information) are also 
increasing, owing to the new approaches facilitated by the 
Internet, device diversity, transaction simplicity, and ease of 
data flow. Therefore, the performances of fraud detection 
systems (FDS) must be improved, to actively respond to these 
diversified and intelligent cyber threats. Accordingly, machine- 
and deep-learning based technologies, which learn large 
quantities of data to improve prediction and classification 
accuracies, have recently been developed; thus, research 
incorporating these technologies has increased accordingly, to 

improve the performances of FDSs. However, the existing 
FDS’s abnormal-transaction-detection method which combines 
machine- and deep-learning techniques to identify abnormal 
transactions in large quantities of real-time data is time-
consuming and computationally expensive. Therefore, this 
study presents a faster-learning abnormal-transaction-detection 
model, by training a model suitable for data across different 
domains and utilizing the common features and information 
thereby found. The proposed model to detect anomalies 
between different domains is constructed using domain 
adaptation method [1] which is one of transfer learning [2], a 
machine-learning method that utilizes pre-learned domain 
information from similar domains when a specific task or 
domain is changed. The datasets employed in the proposed 
domain-adaptation method are generally used in research 
relating to abnormal-transaction detection; in particular, they are 
benchmark datasets for fraud detection in credit card [3] and 
financial [4] datasets. However, because both datasets feature 
an unbalanced ratio between the normal transactions and 
fraudulent or anomalous ones, the classes must be balanced to 
improve the machine learning performance and ensure 
smoothly learning. Then, a data augmentation method can be 
used to increase the total number of data when datasets are 
insufficient; this method is applied to the minority class using a 
generative adversarial networks (GANs) [5]; the augmented 
data are used for training/test data of the proposed domain-
adaptation model, and the results are compared with those of 
SMOTE (Synthetic Minority Oversampling Technique) [6] 
which is one of oversampling methods. Therefore, in this study, 
a GAN and SMOTE are used to solve the class imbalance 
problem for credit-card and financial-transaction fraud datasets; 
then, the domain-adaptation method is used to implement a 
model for detecting abnormal transactions in the two datasets; 
finally, the method’s effectiveness is verified through a 
comparison of its classification performance against those of 
support vector machine (SVM) [7] and convolutional neural 
network (CNN) [8] based methods. The remainder of the paper 
is organized as follows: In Section II, the background and 
related research are described; in Section III, the model and 
datasets employed are described in detail; in Section IV, the 
experimental environment, learning method, and 
hyperparameters are described; in Section V, the classification 
performance of the model is compared and analyzed against 
those of the SVM- and CNN-based models; and in Section VI, 
the conclusions and limitations of the research are described, 
and future research directions are considered. 
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II. RELATED WORKS 
This section describes existing fraud detection methods, data 

augmentation approaches, and domain adaptation methods. 

A. Fraud Detection 
Abnormal transaction detection is a data mining approach 

used to detect transactions that differ from normal transaction 
patterns. The detection results are divided into two transaction 
classes: normal and abnormal. A variety of detection 
technologies are constantly being studied to minimize the risks 
posed to users by fraudulent transactions. Studies for abnormal 
transaction detection include the development of procedures for 
classification (a field of supervised learning), clustering (a field 
of unsupervised learning), deep learning and so on. In the 
existing research on classification-model-based abnormal 
transaction detection approaches, [9]  proposed Very Fast 
Decision Tree, which can manage unbalanced data using 
decision trees; [10] employed a hidden Markov model (HMM) 
to learn a normal credit card transaction, and they classified 
transactions that were not accepted by the HMM as abnormal; 
[11] detected abnormal transactions using k-Nearest Neighbors, 
which offers reduced memory consumption compared to other 
machine learning methods. Furthermore, [12] proposed a model 
to detect abnormal transactions and money laundering, by 
applying an SVM. In addition, deep learning models have been 
applied to abnormal transaction detection using auto-encoders 
or GANs as a solution for data unbalancing [13, 14]. In 
addition, a significant number of abnormal detection models 
have been proposed to increase the accurate detection rate of 
FDS. In our study, for the classification performance of fraud 
detection, the proposed domain-adaptation model was evaluated 
by comparing it with the SVM and CNN models, which are 
supervised learning-based analytical models. 

B. Oversampling 
Approaches to solving the data imbalance problem can be 

divided into four categories: sampling-based, cost-based, 
kernel-based, and active-learning-based methods [15]. The 
approach of changing the distribution between the majority and 
minority classes in unbalanced datasets is a sampling-based 
method; the distribution balance can be adjusted to reduce the 
number of data samples in the majority class (undersampling) or 
to increase the number in the minority class (oversampling). 
SMOTE is an oversampling method: it generates data between 
the minority class’ data samples by connecting a straight line 
between them. Majority Weighted Minority Oversampling 
Technique [16] identifies minority class data and assigns 
weights according to the Euclidean distance between them and 
the nearest data samples in the majority class; then, a clustering 
approach generates data between the weighted minority class 
data in the same way as SMOTE. Meanwhile, the Random 
Oversampling Examples (ROSE) [17] method generates new 
minority data based on the existing kernel-density estimate; 
robROSE [18] is an oversampling method that overcomes the 
shortcomings of ROSE (which can deviate under the influence 
of outliers). Of the above methods, we used SMOTE to solve 
the class imbalance problem, because it is easier to implement 
and understand than other methods and offers excellent 
performance characteristics. 

C. Data Augmentation 
Data augmentation, which was first introduced in [19], is a 

popular method for processing image data; it generates noise 
whilst preserving the amount of information in the data. GANs 
are suitable models for performing data augmentation; it 
consists of two artificial neural networks (ANNs) that learn by 
competing against each other: one is a generator that receives 
random noise as an input and processes it to resemble the 
distribution of the original data; the other is a discriminator that 
distinguishes the original data from those created by the 
generator. The generator seeks to make the data it produces 
indistinguishable from the original data as much as possible, 
and the discriminator tries to classify the two types of data with 
the highest possible probability, in opposition to the generator. 
As a result, data that pass through a network consisting of 
generators and discriminators are generated with a distribution 
similar to that of the original data. By varying the structures and 
purposes of GANs, researchers have successfully applied them 
to various fields; in particular, the field of image-data-related 
research [5, 20] has found considerable use for them, and 
models for increasing their performance and generating new 
image data have been proposed. Among them, deep 
convolutional GANs [21] provided guidelines for stable 
learning, and the Wasserstein GAN (WGAN) [22] improved the 
stability by attributing unsuccessful learning to the limit of the 
Kullback–Leibler (KL) divergence and redefining the loss 
function. Most of studies (e.g., [23, 24, 25]) have aimed to 
improve the network performance for image data. However, 
some studies have attempted to solve the data imbalance 
problem using GAN. In particular, the study [25] applied 
numerical data, not image data, to GAN. However, since GANs 
learn via the gradient descent method, learning problems can 
occur due to the loss functions [22]. Therefore, in this study, 
data augmentation was performed for the minority class data 
samples of each dataset, by applying the loss function of 
WGAN to alleviate the GAN’s limitations and generate datasets 
more closely resembling the original data. Because the GAN-
based minority class data-augmentation method is similar to the 
oversampling method, it is applied by integrating it with 
oversampling techniques rather than data augmentation. 
Therefore, in this study, we use the terms “data oversampling” 
and “data augmentation” interchangeably. 

D. Domain Adaptation 
A transfer learning is a machine-learning method that 

utilizes pre-learned domain information from similar domains 
when a specific task or domain is changed. The area in which 
the transfer learning model previously worked is referred to as 
the source domain, and the new one is referred to as the target 
domain; transfer learning, depending on the presence or absence 
of labels in the domain, is primarily divided into multi-task 
learning [26], in which the class exists only in the target 
domain; self-taught learning [27], in which the class exists in 
the source domain but no classes exist in the target domain; and 
domain adaptation [1], in which the class exists in both 
domains. In this study, we consider a domain adaptation model 
to detect anomalies between different domains. Regarding 
domain adaptation [28], several previous studies [29, 30, 31] 
have focused on minimizing the differences between the source 
and target domain feature-map distributions; most of these have 

95 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

used the maximum mean discrepancy [32] loss function. Deep 
Correlation Alignment [29] matches the mean and covariance of 
the two distributions. In [31], the addition of a fully connected 
layer to the domain adaptation model was proposed, and a 
method was derived to determine the resulting value of the 
binary label and approximate the uniform distribution via the 
domain confusion loss. ReverseGrad [30], a gradient-reversal 
algorithm, calculates the gradient in the reverse direction when 
deriving the loss function in the network; it has exhibited a 
faster learning performance than comparable methods. In 
addition to [30], a study investigating methods of reconstructing 
images in the target domain was also presented in [31]. In [33], 
probabilities were used to learn the distribution between the two 
domains, and the distance between data within the same class 
across the two domains was expressed as a probability; learning 
was conducted to maximize this probability. Adversarial 
Discriminative Domain Adaptation (ADDA) [34] applied the 
loss function used in discriminator of GAN to match the 
distributions between the two domains, thereby enabling more 
effective learning. This method has the advantage of being able 
to interact with other domain-adaptation models. In this study, 
to facilitate interactions between similar domains, considering 
the advantages of ADDA, it was applied to the abnormal 
transaction detection model. 

III. METHODOLOGY 
This section describes a set of approaches conducted for 

fraud detection in FDSs. Section A describes the experimental 
dataset used in this study. Section B and C describe data 
augmentation to solve class-imbalance problems in learning. 
GAN model was used for data augmentation of minority class 
through the creation of new samples. It was compared to 
SMOTE used for data oversampling as well. Section D presents 
the proposed domain adaptation method, which is capable of 
evaluating classification performances on two datasets of 
similar domains. Fig. 1 shows the simplified overall structure of 

the model proposed in this study, and Fig. 2 illustrates the flow 
of this structure. 

A. Dataset 
The credit card dataset here employed consists of data 

collected by the Machine Learning Group [3] and Worldline. 
The dataset contains a total of 284,315 normal and 492 
abnormal transaction data samples. For the data, owing to 
security issues (e.g., financial and personal information leaks); 
the test was conducted using a total of 30 variables. Similarly, 
the financial transaction dataset is an artificial (owing to 
security issues) dataset based on actual data. This dataset 
contains simulation results obtained through PaySim [4], using 
real financial transaction samples taken over a period of one 
month; it consists of a total of 11 variables and includes 
6,354,407 normal and 8,213 abnormal transaction data samples. 
Unlike the credit card fraud dataset, this dataset was processed 
via min-max normalization before being used as input data in 
this work. 

B. Data Oversampling 
SMOTE oversamples the minority class data when class 

imbalances occur; in this study, it was adopted as the 
oversampling method because it delivers a strong performance 
whilst also being theoretically simple and easy to implement. 
First, SMOTE takes the data of a minority class and then finds 
the k-nearest neighbors of these data. Next, the differences 
between the current sample and these k neighbors are obtained, 
multiplied by a random value (between 0 and 1) to generate 
data, and combined with the original sample. It also shifts the 
existing data slightly, to account for the neighbors it adds. In 
this study, SMOTE was implemented using the imbalanced-
learn Python library [35]. The oversampled data were tested 
with ratios of 0.3:1, 0.5:1, 0.7:1 and 1:1 between the minority 
and majority classes, respectively. 

 
Fig. 1. Simplified Overview of the Proposed Methodology. 
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Fig. 2. An Overview Flow Chart of the Proposed Methodology. 

C. Data Augmentation using GANs 
In existing GANs, several problems can arise when training 

the GAN via the gradient descent method [22]. First, if the 
discriminator makes an incorrect judgment, the generator does 
not receive accurate feedback, and the loss function cannot 
learn properly. Second, if the discriminator makes a very 
accurate judgment, the gradient of the loss function quickly 
converges to 0, resulting in a significant delay or disturbance to 
the learning speed. Because of these two problems, existing 
GANs are limited. WGANs compensate for these GAN 
shortcomings; in them, the KL divergence, which is used to 
define the loss function in existing GANs, is redefined using the 
Wasserstein distance   (also referred to as the Earth mover’s 
distance); this is an index that measures the distance between 
the two probability distributions. Under KL divergence, the 
distance value is 0 when the two distributions overlap each 
other, and it is infinite or constant when they do not overlap, 
showing an extreme distance value. The Wasserstein distance 
can be readily applied in training because a constant value is 
maintained regardless of whether the distributions overlap. 
Therefore, WGANs redefine the loss function using this 
Wasserstein distance, to smoothly train and improve the data 
such that it resembles the existing data as much as possible. 
Therefore, in this study, oversampling was performed using the 
WGAN loss function within a general GAN model and 
inputting the minority class of the original data. The structure of 
the GAN-based data oversampling model is as shown in Fig. 3. 
Although it has an identical structure to the general GAN, the 

potential problems of the existing GAN have been resolved by 
applying the WGAN theory and loss function. For each epoch, a 
random noise z is fed into the generator to generate fake data, 
and the fake data are merged with the abnormal transaction data 
(the minority class) from the original dataset. The random noise 
is expressed as a vector of the size to be generated, and the 
combined data are input to the discriminator, which attempts to 
distinguish the original data from the fake data (generated by 
the generator) and classify them as either real (1) or fake (0). 
Using the discriminator’s classification results, the generator 
applies loss function to minimize the classification probability 
and the discriminator seeks to maximize it. The loss function is 
expressed as. 

∇𝜔
1
𝑚
∑ �𝑓�𝑥(𝑖)� − 𝑓�𝐺(𝑧(𝑖))��𝑚
1=1              (1) 

∇𝜃
1
𝑚
∑ �𝑓�𝐺(𝑧(𝑖))��𝑚
1=1               (2) 

and (2) are the loss functions applied to the discriminator 
and generator, respectively. Above, ω is the parameter of the 
discriminator, and ∇ω is the gradient descent for ω. Also, θ is 
the parameter of the generator and ∇θ is the gradient descent for 
θ. x is the original data, z is the random noise and G is the 
generator. These loss functions differ from that of existing 
GANs, and the purpose of the discriminator also differs 
therefrom. Instead of using a direct criterion for identifying the 
fake data generated by the generator, the discriminator learns 
the K-Lipschitz continuous function, which is used to calculate 
the Wasserstein distance. In this process, as the loss function 
decreases, the Wasserstein distance becomes smaller and the 
fake data generated by the generator approach the actual data 
distribution [22]. 

For oversampling, the WGAN loss function was applied in a 
GAN. Only the data in the minority classes were selected and 
input to the model; the random noise followed the distribution 
of the input data through the interaction of the generator and 
discriminator. Finally, when the probability of distinguishing 
between the input and generated data converged to 0.5, the 
model was terminated, and the generated data combined with 
input data to resolve the original data imbalance. The 
proportions of generated data and random noise were 
determined by adjusting the ratio according to the quantity of 
original data. For the data oversampled through SMOTE, the 
amount of minority class data was determined according to the 
sampling strategy of the original data. If the sampling strategy 
was 1, the [minority class: majority class] ratio became [1:1]; if 
the sampling strategy was 0.5, it became [0.5:1]. Therefore, to 
generate GAN oversampling results similar to the data 
processed through SMOTE, the amount of random noise z was 
set to (0.3, 0.5, 0.7, 1) times the size of the majority class. 

 
Fig. 3. Architecture for GAN-based Data Augmentation. 
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D. Domain Adaptation for Fraud Detection 
Detecting abnormal transactions is a time-consuming and 

expensive process when using different models for two datasets 
of similar domains. Therefore, to develop a single model 
capable of detecting abnormal transactions from two datasets, 
we applied a domain-adaptation method which employs the 
discriminative characteristics of GANs, such as those used in 
ADDA [34]. While the ADDA was applied to image datasets, 
the proposed domain-adaptation method was applied to text 
datasets. Also in our study, the text datasets were augmented to 
avoid class imbalance problems. The domain-adaptation model 
used in this study was composed of source and target encoders 
that employed CNNs as shown in Fig. 4 and 5, respectively. 
Each encoder consisted of a 1D convolution layer (Conv1d), 
max pooling, and a fully connected layer. The convolution layer 
was used because it can readily extract feature maps and does 
not require any further layer (e.g., recurrent neural networks) for 
time-independent datasets. In addition, a CNN was used 
because these networks outperform ANNs in terms of time and 
performance efficiency. Two convolutional layers and two max 
pooling layers were used to prevent unsmooth learning or 
overfitting from occurring when adjusting the hyperparameters 
to match the feature maps. The model first learned a source 
encoder and classifier using the credit card fraud dataset (source 
domain). The loss function applied to the source encoder is 
expressed as follows: 

min 𝐿𝐶�𝐶�𝑓𝑠(𝑋𝑆)�,𝑌𝑆�              (3) 

Here, C is the classifier, 𝑓𝑆 is the source encoder, 𝑋𝑆 is the 
credit card dataset, and 𝑌𝑆 is the credit card dataset class. Next, 
the financial transaction fraud dataset (target domain) was input 
to the CNN-based target encoder. The learning proceeded by 
labeling the output of the target encoder as 1 and inputting it to 
the discriminator. Expressed otherwise, when the discriminator 
receives the output of the target encoder, the learning proceeds 
in the direction in which the result value becomes 1. The target 
encoder’s loss function is expressed as 

min 𝐿𝑡�𝐷�𝑓𝑡(𝑋𝑡)�, 1�              (4) 

where D is the identifier, 𝑓𝑡 is the target encoder, and 𝑋𝑡 is 
the financial transaction dataset. The discriminator learns the 
distribution by labeling the output value of the source encoder 
as 1 (real) and the output value of the target encoder as 0 (fake), 
to properly distinguish between normal and fraudulent data; 
then, it applies a loss function. The loss function applied to the 
discriminator is expressed as follows: 

min 𝐿𝐷�𝐷�𝑓𝑠(𝑋𝑆)�, 1� 

min 𝐿𝐷�𝐷�𝑓𝑡(𝑋𝑡)�, 0�              (5) 

 
Fig. 4. Configuration of Source Encoder with Classifier. 

 
Fig. 5. Configuration of Target Encoder. 
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The entire learning process optimizes the loss functions 
described above, operating in a stepwise fashion. Based on the 
credit card fraud dataset (including the class information), the 
source encoder and classifier learn first, followed by the target 
encoder and discriminator. The source encoder proceeds in a 
fixed state whilst the target encoder and discriminator are being 
trained; thus, the target encoder’s and discriminator’s learning 
can proceed smoothly, without checking the state of the source 
encoder and classifier. Fig. 6 illustrates the overall structure of 
the domain-adaptation model introduced in this study; the 
components denoted with solid lines indicate a state in which 
learning is completed, and components formed of dotted lines 
indicate that learning takes place. Thus, the entire test process is 
as follows. First, the source encoder and classifier are trained on 
the source domain, and the discriminator and target encoder are 
trained from the source encoder and target domain. Finally, the 
proposed domain-adaptation model terminates the process when 
the target and source encoder can completely derive the 
classification results of the target and source domains, 
respectively. 

E. Evaluation 
The test results were evaluated using the area-under-curve 

(AUC) score, which is a classification-model performance 
evaluation index. The receiver operating characteristic (ROC) 
curve is a performance measure commonly used in binary 
classification and medical applications. Table I shows the 
confusion matrix; here, True (T)/False (F) indicates that the 
predicted value is the same/differs from the actual value, and 
Positive (P)/Negative (N) indicates how the predicted value was 
obtained. The ratio between the true-positive rate (TPR) and 
false-positive rate (FPR) is expressed as a graph of the ROC 
curve, and the AUC score is the area underneath this curve. The 
AUC score of a model with 100% incorrect prediction is 
expressed as 0.0, and the AUC score of a model with 100% 
correct predictions is expressed as 1.0; the performances of the 
models used in this study were evaluated accordingly. 

TABLE. I. PARAMETERS IN ROC CURVE BY CONFUSION MATRIX 

 Normal Prediction Fraudulent Prediction 

Normal Transaction TN FP 

Fraudulent Transaction FN TP 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

IV. EXPERIMENTS 
To evaluate the classification performance of the proposed 

domain-adaptation model, an SVM and CNN were employed as 
comparison machine and deep learning methods, respectively. 
Among machine learning methods, SVM has received 
particular attention for their excellent performance. It is a 
supervised learning model mainly used for pattern recognition 
and data analysis (in particular, classification and regression). 
Here, because both credit card and financial transaction datasets 
have class labels, SVM was used to detect abnormal 
transactions. The kernel of SVM uses a radial basis function. 
After testing values from 1 to 10,000, the hyperparameter C was 

set as 1000, which was found to deliver the optimal time and 
accuracy performances. The compositions of the source and 
target encoders in the proposed domain-adaptation model are as 
shown in Figs. 4 and 5. The source encoder sets the filter, kernel 
size, strides, and activation function, as shown in Fig. 4; the 
feature map (which undergoes max pooling after the CNN 
layer) passes through the fully connected layer. The output of 
the fully connected layer is passed to the classifier, to derive the 
classification result. The target encoder sets the number of 
strides to 2, to derive an output value with the same shape as the 
output value of the source encoder; other parameters (i.e., filter, 
kernel size, and activation function) are set identically to those 
of the source encoder. In addition, to prevent overfitting, a 
dropout was applied to the fully connected layer, with a ratio of 
0.5. 

The loss function of the classifier was calculated from the 
softmax cross-entropy, and the loss function of the 
discriminator was calculated using the sigmoid binary cross-
entropy and optimized through the Adam optimizer (learning 
rate = 0.0001, beta 1 = 0.5, beta 2 = 0.99). The CNN model 
used the source encoder, target encoder, and classifier of the 
domain adaptation model. The credit card fraud data were used 
as the input data of the source encoder, and the financial 
transaction fraud dataset was used as the input data of the target 
encoder, to compare the classification results. The number of 
nodes of the hidden layer used in the GAN-based oversampling 
method was set to 128, the epoch was set to 20, and the Adam 
optimizer was set identically to the domain-adaptation model. 
The random noise was set as a random number extracted from a 
uniform distribution within the range [-1, 1]. The Ubuntu 
18.04.4 LTS test environment consisted of an Intel(R) Xeon 
CPU E5-2620 v4 with a 2.10 GHz CPU, GTX 1080 GPU, and 
64 GB RAM. 

V.  RESULTS AND ANALYSIS 

Table II compares the classification performance results of 
the SVM, CNN, and proposed domain-adaption models. The 
experiment was conducted, and the results of the classification 
performance were averaged by summing only values above 0.8; 
this expresses the ratio between the majority and minority class 
when augmenting or oversampling a dataset. In other words, if 
the majority class is 1, a quantity of data equal to the ratio is 
generated to oversample the minority class. 

Table III shows the time taken for each model to receive 
data, train it, and derive its classification results. Table IV 
shows the time taken to oversample each dataset with GAN and 
SMOTE, respectively. Fig. 7 compares the performances of the 
GAN- and SMOTE-based oversampling methods. The left-hand 
and right-hand graphs describe results for the credit card and 
financial transaction fraud datasets, respectively; the x-axis 
denotes the ratio mentioned in Table II. The AUC scores on the 
y-axis represent the averaged classification performances for all 
methods; the GAN-based oversampling method takes slightly 
longer than SMOTE to complete, but it exhibits a superior 
performance (as shown in Fig. 7). The left-hand graph in Fig. 8 
shows the average classification performance for the dataset in 
which the GAN-based oversampling method was applied. The 
right-hand graph shows the time-averaged values of the GAN-
based oversampling method in Table III. In Fig. 8, although the 
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classification performance of the domain-adaption model was 
inferior to those of the CNN and SVM, it was found to be 
suitable as an abnormal transaction detection model for both test 
domain datasets, because it reduced the required learning time 
when performing abnormal transaction detection on two 
datasets with similar domains. The SVM outperformed the 
CNN and domain-adaption models; however, it is not readily 

applicable to larger datasets, because its learning time increases 
sharply when the dataset increases. Compared to the domain-
adaption model, the CNN model shows no significant 
difference in classification performance; however, because it 
requires more learning time, it is limited as a classification 
model for different domains. 

TABLE. II. CLASSIFICATION RESULTS OF THE SVM, CNN, AND PROPOSED DOMAIN-ADAPTION MODELS IN AUC SCORE 

Dataset Method Oversampling using GAN Oversampling using SMOTE 

 Ratio 0.3 0.5 0.7 1 0.3 0.5 0.7 1 

Credit Card 

SVM 0.9984 0.9989 0.9994 0.9996 0.9639 0.9648 0.9662 0.9723 

CNN 0.9844 0.9895 0.9903 0.9862 0.9073 0.9261 0.915 0.899 

Domain 
Adaptation 0.9842 0.9889 0.9910 0.9888 0.9067 0.9257 0.921 0.9011 

Financial 

SVM 0.9986 0.9990 0.9989 0.9996 0.9701 0.9726 0.9754 0.9801 

CNN 0.88 0.8973 0.8988 0.9284 0.861 0.864 0.8721 0.9078 

Domain 
Adaptation 0.8821 0.8967 0.8927 0.9235 0.868 0.8701 0.8858 0.9125 

TABLE. III. TIME IN SECONDS TAKEN FOR EACH MODEL TO RECEIVE DATA, TRAIN IT, AND DERIVE ITS CLASSIFICATION RESULTS 

Dataset Method Oversampling using GAN Oversampling using SMOTE 

 Ratio 0.3 0.5 0.7 1 0.3 0.5 0.7 1 

Credit Card 

SVM 198 215 257 261 185 229 265 311 

CNN 145 159 187 203 151 161 199 238 

Domain 
Adaptation 143 161 184 208 150 158 201 231 

Financial 

SVM 23940 24146 26756 28869 25442 26541 29287 30218 

CNN 1345 1973 2329 2975 1421 1898 2423 3033 

Domain 
Adaptation 456 657 823 1206 445 558 901 1158 

TABLE. IV. DATA AUGMENTATION PROCESSING TIME IN SECONDS WITH GAN AND SMOTE 

 Oversampling using GAN Oversampling using SMOTE 

Ratio 0.3 0.5 0.7 1 0.3 0.5 0.7 1 

Credit Card 16 28 43 63 0.61 0.72 0.82 1.01 

Financial 303 492 714 1204 5.67 6.10 6.91 10.2 
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Fig. 6. Architecture of Proposed Domain-Adaptation Method for Fraud Detection. 

 
Fig. 7. AUC Scores for Datasets Augmented by GAN and SMOTE. 
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Fig. 8. Learning Processing Time for Datasets Augmented by GAN and SMOTE. 

VI. CONCLUSIONS 

In this study, a domain-adaptation method, applicable to 
data in similar domains, was proposed. The model to which the 
proposed domain-adaptation method was applied has the 
advantage of minimizing domain shifts when the domains are 
similar, even if the dataset has changed. In the experiments, 
credit card and financial transaction fraud datasets were used to 
evaluate the model’s performance. Both datasets had a class 
imbalance problem; thus, oversampling was conducted using 
GAN and SMOTE; then, these data were used as input data of 
the model. Moreover, a classification performance comparison 
was made against SVM and CNN, to evaluate the model’s 
performance. As a result, though the proposed domain adaption 
model did not achieve a better classification performance than 
the SVM or CNN, its performance was comparable thereto, 
while requiring a shorter learning time. Moreover, the GAN-
based oversampling method, which was used to solve the class 
imbalance problem, outperformed SMOTE. Although the CNN 
showed a similar classification performance to the domain-
adaption model, it required a longer learning time. The SVM 
had a high classification performance; however, it required a 
comparatively longer learning time than the CNN when the 
dataset size was increased. As a result, the proposed domain-
adaptation model was shown to be capable of simultaneously 
classifying two datasets with similar domains and shortening 
the learning time compared to the SVM and CNN. However, 
there are several limitations to this study, which should be 
addressed in the future: both datasets were constructed using 
CNN models, to smoothly reuse the feature maps; the 
classification performance was insufficient compared to that of 
the SVM; and various domain data and results were absent. 

Therefore, in future research, structural changes will be made to 
the oversampling method proposed in this study, to make use of 
the various abnormal transaction data (including time-series 
data) and judge the performance of the model more objectively. 
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